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Aim. To investigate the role of Ca2+ release-activated Ca2+ (CRAC) channels in the ROS production in macrophages. Methods. The
intracellular [Ca2+]i was analyzed by confocal laser microscopy. The production of ROS was assayed by flow cytometry. Results.
Both LPS and thapsigargin induced an increase in intracellular [Ca2+]i, either in the presence or absence of extracellular Ca2+ in
murine macrophages. The Ca2+ signal was sustained in the presence of external Ca2+ and only initiated a mild and transient rise in
the absence of external Ca2+. CRAC channel inhibitor 2-APB completely suppressed the Ca2+ entry signal evoked by thapsigargin,
and suppressed approximately 93% of the Ca2+ entry signal evoked by LPS. The increase in intracellular [Ca2+]i was associated
with increased ROS production, which was completely abolished in the absence of extracellular Ca2+ or in the presence of CRAC
channel inhibitors 2-APB and Gd3+. The mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone and
the inhibitor of the electron transport chain, antimycin, evoked a marked increase in ROS production and completely inhibited
thapsigargin and LPS-evoked responses. Conclusions. These findings indicate that the LPS-induced intracellular [Ca2+]i increase
depends on the Ca2+ entry through CRAC channels, and close functional coupling between CRAC and ROS production in murine
macrophages.

Copyright © 2006 Sheng-Wei Jin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In nonexcitable cells, one major route for Ca2+ influx is
through store-operated Ca2+ channels (SOC) in the plasma
membrane [1]. In some cell types including macrophages,
store-operated Ca2+ influx channels are also called Ca2+

release-activated Ca2+ (CRAC) channels [1, 2]. However, the
downstream consequences of CRAC channels activation are
not clearly established. In Jurkat T cells, Ca2+ entry through
CRAC channels is required for T-cell receptor-mediated ac-
tivation of nuclear transcription factors that regulate the ex-
pression of cytokine genes central to the immune response
[3]. In RBL-1 cells, Ca2+ entry through CRAC channels stim-
ulates arachidonic acid production and leukotriene secre-
tion [4]. Dysfunction of CRAC has been linked to severe
combined immunodeficiency [5], acute pancreatitis [6], and
Alzheimer’s disease [7]. CRAC inhibition attenuates neu-
trophil function and postshock acute lung injury in rats [8].

Professional phagocytes generate high levels of reac-
tive oxygen species (ROS) using a superoxide-generating
NADPH oxidase as part of their armory of microbicidal
mechanisms, and ROS production is largely dependent on
[Ca2+]i mobilization [9]. LPS increases intracellular calcium
concentration and ROS production in macrophages [10].
There are a number of different Ca2+ channel types found
in nonexcitable cells, such as macrophages [11]. In Kupffer
cells (liver macrophages), LPS causes the irrepressible influx
of calcium via L-type voltage-dependent calcium channels
[12]. Macrophage activation by a vanadyl-aspirin complex is
dependent on L-type calcium channel [13]. Yet, it is not clear
whether LPS-induced intracellular Ca2+ increase depends on
CRAC channels and the relationship between CRAC calcium
entry and ROS production in macrophages.

The aim of this study was to use Fluo-3/AM and DCFH-
DA as a probe to examine intracellular calcium concentra-
tion ([Ca2+]i) changes and ROS generation in RAW264.7
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macrophages challenged with LPS or thapsigargin. Our hy-
pothesis was that LPS-induced intracellular [Ca2+]i increase
depends upon CRAC channels, and CRAC channels are es-
sential for ROS production in murine macrophages.

MATERIALS AND METHODS

Experimental protocol

RAW264.7 cells were treated with LPS (2, 10 μg/mL) (Es-
cherichia coli O111: B4, Sigma, USA) or thapsigargin (1,
2 μM) (ALEXIS, USA) in both the presence and absence
of external Ca2+. Intracellular calcium was monitored using
laser confocal microscopy. ROS were measured by flow cy-
tometry.

Cell culture

RAW264.7 cells (obtained from the China Center for Type
Culture Collection, CCTCC, Shanghai, China) were cultured
(37ÆC, 5% CO2) in RPMI 1640 medium (Gibco, BRL) with
10% fetal bovine serum and penicillin-streptomycin. For
Ca2+ imaging experiments, cells were passaged onto 35 mm
culture dishes containing glass coverslips (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) and used 24 to 48
hours after plating.

Intracellular Ca2+ measurements

Fluo-3/AM (5 μM) (Biotium, Calif, USA) was added into the
incubation medium and incubated for 30 minutes at 37ÆC.
Cells were washed free of extracellular Fluo-3/AM dye in
standard external solution containing (in mM) NaCl 145,
KCl 2.8, CaCl2 2, MgCl2 2, D-glucose 10, and HEPES 10,
pH 7.4, with NaOH. Ca2+-free solution was a standard ex-
ternal solution without Ca2+; the Ca2+ was substituted with
1 mM EGTA. Fluorescence measurements of [Ca2+]i were
performed using confocal laser scanning microscopy (Olym-
pus FV500, Japan) with Olympus IX71 camera in the pres-
ence and absence of Ca2+ in the bath. Fluo-3 was excited at
488 nm and emission measured between 500 and 550 nm.
Images of 512 � 512 pixels were acquired with a 20 � ob-
jective. Laser scanning was started to obtain a time series of
images. Acquisition rate was 1 frame (512� 512) per 15 sec-
onds. The obtained images were quantitatively analyzed for
changes in fluorescence intensities within regions of interest
(ROIs) using the Olympus FV500 Vision software. In each
cell well, at least 15 equivalent-sized ROIs were identified,
monitored, and analyzed during the experimental period.
Fluorescence intensity and the curve of the time course were
analyzed by the computer automatically. Increase in [Ca2+]i

is expressed as a ratio: fluorescence intensity of Fluo-3 over
baseline (fluorescence/baseline). This ratio method is used
because it is independent of factors such as dye concentra-
tion, excitation intensity, and detector efficiency.

The flow cytometric assay of ROS

The dye, DCFH-DA, has been used to measure intracellu-
lar generation of ROS. The method is based on the fact

that DCFH-DA diffuses through the cell membrane and it
is hydrolyzed by intracellular esterases to DCFH, which re-
mains trapped within the cells. DCFH, a nonfluorescent
compound, is able to react with ROS, and to generate the
fluorescent 2�, 7�-dichlorofluorescein (DCF). Thus fluores-
cence intensity is proportional to the amount of ROS pro-
duced by the cells. Briefly, cells were harvested and sus-
pended at a concentration of 1 � 106 cells/mL in PBS. Cells
were washed with PBS and incubated with DCFH-DA (2�, 7�-
dichlorofluorescein diacetate, Molecular Probes, Ore, USA)
(10 μM) for 20 minutes at 37ÆC in the dark. After washing
twice with cold PBS, cells were analyzed by flow cytometry
(Becton-Dickinson, NJ, USA). FL1 amplifier mode, DCFH,
was excited at 488 nm and emitted at 525 nm. Phorbol 12-
myristate 13-acetate (PMA) 10 μM was used as a positive
control. We determined M1 and M2 by mean fluorescence
intensity as the gate, data were expressed as % gated, M1
stands for the percentage of negative cells, M2 stands for the
percentage of positive cells. Approximately 10 000 cells were
analyzed per group.

Statistical analysis

Data are expressed as mean � SD. The statistical analysis was
carried out using SPSS 11.0 programs (SPSS, Chicago, Ill).
All data were analyzed by one-way analysis of variance fol-
lowed by Student-Newman-Kuels post hoc test for multiple
comparisons. P < .05 was considered the threshold for statis-
tical significance between the control group and the experi-
mental groups.

RESULTS

Thapsigargin-evoked Ca2+ influx but not Ca2+ release
stimulates ROS production

In RAW264.7 cells, the SERCA inhibitor thapsigargin de-
pletes internal Ca2+ stores and subsequently activates CRAC
channels. The intracellular [Ca2+]i in RAW264.7 cells was de-
termined fluorometrically with the calcium indicator Fluo-
3/AM as described previously. The upper panel in Figure 1(a)
depicts RAW264.7 cells preloaded with Fluo-3/AM, and the
lower panel shows typical Ca2+ responses obtained after
stimulation with thapsigargin (2 μM). In the absence of ex-
ternal Ca2+, thapsigargin triggered Ca2+ release from the in-
ternal stores, and the Ca2+ signal decayed back to prestim-
ulation levels over several minutes. In the presence of exter-
nal Ca2+, however, the Ca2+ signal was sustained. Dimethyl
sulphoxide (DMSO) used as the thapsigargin vehicle did not
produce any significant [Ca2+]i change (Figure 1(b)). To test
the relationship between Ca2+ influx through CRAC chan-
nels and ROS production, we measured ROS formation at
different times after stimulation with thapsigargin in the
presence and absence of external Ca2+. The results are shown
in Figures 2(a), 2(b). The addition of thapsigargin into the
culture medium induced an elevation in ROS at 1 minute,
which reached maximal levels within 10 minutes and re-
turned to basal levels in 20 minutes. Thapsigargin stimulated
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Figure 1: Thapsigargin induced an elevation of [Ca2+]i in RAW264.7 cells. (a) The upper panel is an image of resting RAW264.7 cells loaded
with Fluo-3/AM, and the lower panel shows typical Ca2+ responses obtained after stimulation with thapsigargin (2 μM) in the presence of
external Ca2+. (b) Intracellular Ca2+ signals to thapsigargin in the absence and presence of external Ca2+. Figure 1(b) is representative of four
experiments performed on different experimental days. TG: thapsigargin.

ROS production in a dose-dependent manner (Figures 2(c),
2(d)), direct voltage-gated Ca2+ channel blockade nifedipine
did not suppress the ROS production (Figure 2(d)). No in-
crease in ROS formation could be detected in the 10 minutes
following stimulation with thapsigargin in a Ca2+-free solu-
tion (Figure 2(a)).

The CRAC channels inhibitors
2-Aminoethoxydiphenylborate (2-APB) and Gd3+ block
thapsigargin-dependent stimulation of ROS production

20 μM 2-APB completely suppressed the Ca2+ entry signal
evoked by 2 μM thapsigargin (Figure 3(a)). 2-APB also pre-
vented the ability of thapsigargin to release ROS (Figure
3(b)). Similar findings were obtained with 10 μM Gd3+ (Fig-
ure 3(b)).

LPS stimulates Ca2+ entry and [Ca2+]i increase
through CRAC channels

The addition of LPS (2 μg/mL) into the culture medium in-
duced an elevation in [Ca2+]i which reached maximal lev-
els within 90 seconds and slowly returned to basal levels.
However, the Ca2+ signal was sustained with 10 μg/mL LPS
(Figure 4(a)). Thapsigargin (1 μM) produced a slow [Ca2+]i

increase, followed by a return to basal levels. After thapsi-
gargin treatment, the effect of LPS (10 μg/mL) on [Ca2+]i

increase was completely abolished (Figure 4(b)). The rate
of Ca2+ entry (measured following readmission of external
Ca2+) was significantly slower when CRAC channel blocker
2-APB (20 μM) was applied (Figures 4(c), 4(d)).

LPS-evoked Ca2+ influx stimulates ROS production

The addition of LPS (10 μg/mL) into the culture medium
increased ROS production which reached maximal levels

within 20 minutes and slowly returned to basal levels in 16
hours (Figures 5(a), 5(b)). At 20 minutes, the stimulation of
ROS production with LPS (10 μg/mL) was suppressed in the
absence of external Ca2+, or when pretreated with 20 μM 2-
APB (Figures 5(a), 5(b)).

Effect of FCCP and antimycin on thapsigargin and
LPS-evoked generation of ROS

To test whether ROS source was located in the mitochondria,
we carried out a set of experiments in which macrophages
were incubated in the presence of the mitochondrial uncou-
pler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone
(FCCP) and/or the inhibitor antymicin. When the FCCP
(1 mM) was added to the cells, a significant increase in ROS
production was observed. In the presence of FCCP, stimula-
tion of cells with 2 μM TG or 10 μg/mL LPS failed to induce
further increases in ROS level (Figure 6(a)).

We further characterized the origin of ROS within the
mitochondria, and performed a series of experiments by in-
cubation of macrophages in the presence of the electron
transport chain inhibitor antimycin. Treatment of cells with
5 mM antimycin led to a significant increase in ROS gener-
ation. In the presence of the mitochondrial inhibitor, stim-
ulation of cells with 10 μg/mL LPS failed to evoke further
increases in ROS production. A similar result was obtained
when the cells were challenged with TG (2 μM) in the pres-
ence of the inhibitor (Figure 6(b)).

DISCUSSION

The measurement of [Ca2+]i in RAW264.7 cells has pro-
vided evidence that LPS stimulates the entry of extracellu-
lar Ca2+. Support for an increased entry of extracellular Ca2+

via CRAC channels was obtained from three sources. Firstly,
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Figure 2: Thapsigargin stimulated ROS production. (a), (b) Flow cytometry profiles showing the time course of ROS production follow-
ing stimulation with thapsigargin. RAW246.7 cells were subjected to thapsigargin (2 μM). ROS were measured by a flow cytometry. ROS
production was suppressed in the absence of external Ca2+ over 10 minutes. (c), (d) Thapsigargin increased the production of ROS in a
dose-dependent manner in the presence of external Ca2+ (at 10 minutes). Three independent experiments have been performed. �P < .05
versus control group; ��P < .01 versus control group.
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Figure 3: CRAC channel blockers prevented thapsigargin-evoked ROS production. (a) 2-APB suppressed the Ca2+ signal induced upon
readmission of external Ca2+. The cells were pretreated for 8 minutes with thapsigargin (2 μM) in Ca2+-free solution, 20 μM 2-APB was
added just 2 minutes before the readmission of the Ca2+ as indicated. Figure 3(a) is representative of three experiments performed on
different experimental days. (b) 2-APB and Gd3+ inhibited the ability of thapsigargin (2 μM) to stimulate ROS production in the presence of
external Ca2+. Three independent experiments have been performed. TG: thapsigargin. ��P < .01 versus control group.
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Figure 4: LPS stimulated Ca2+ entry and [Ca2+]i increase through CRAC channels. (a) LPS induced an elevation in calcium in RAW264.7
cells in the presence of external calcium. (b) After 3 minutes of 1 μM thapsigargin treatment, the effect of LPS (10 μg/mL) on [Ca2+]i increase
was completely abolished. (c) 20 μM 2-APB suppressed the Ca2+ signal induced upon readmission of external Ca2+ to cells pretreated for 8
minutes with LPS (2 μg/mL) in Ca2+-free solution. 2-APB was added just 2 minutes before the readmission of the Ca2+. (d) The summarized
aggregate data compares the effects of the control and 2-APB on the initial rate of Ca2+ entry following readmission of the Ca2+ to cells with
stores depleted by LPS. The rate of Ca2+ influx was obtained by measuring the initial slope of the Ca2+ rise following readmission of Ca2+ to
cells with depleted stores. 2-APB was added just 2 minutes before the readmission of the Ca2+. Three independent experiments have been
performed. Figures 4(a), 4(b), 4(c) are representative of at least three experiments performed on different experimental days. ��P < .01
versus control group.

under the conditions imposed by the experiment, both LPS
and thapsigargin induced an increase in intracellular [Ca2+]i,
either in the presence or absence of Ca2+ in the extracellular
medium. However, in the presence of external Ca2+, the Ca2+

signal was sustained, and in the absence of external Ca2+,
thapsigargin only initiate a mild and less sustained rise in
[Ca2+]i. Similar results were found in the LPS group. Our re-
sults indicated that the main source of increased intracellular
Ca2+ was indeed extracellular. Secondly, the effect of LPS on
[Ca2+]i increase was completely abolished by pretreatment
with thapsigargin indicating that LPS triggered the entry of
extracellular Ca2+ via depleting sarco/endoplasmic reticulum
Ca2+ stores. This subsequently activated CRAC channels just
as did thapsigargin. Thirdly, the CRAC channel inhibitor, 2-
APB, completely suppressed the Ca2+ entry signal evoked by
thapsigargin, and suppressed approximately 93% of the Ca2+

entry signal evoked by LPS. This shows that other Ca2+ chan-
nels also open when induced by LPS, but contribute little
to the overall Ca2+ signal. 2-APB inhibited ICRAC and store-
operated entry in the mutant DT40 cell line in which InsP3
receptors are not expressed [14]. Hence, InsP3 receptors are
not required for 2-APB block of store-operated entry. 2-APB
is becoming a popular tool to probe functional consequences
of inhibiting store-operated entry, because it seems to block
CRAC channels directly and rapidly, most likely on an ex-
ternal site [14, 15]. The trivalent cation, Gd3+, which fully
blocks the channels in the low micromolar concentration
range [16], is often used to separate endogenous CRAC chan-
nels from recombinant transient receptor potentials (TRP’s)
[17].

ROS are a molecular group that can be produced in the
course of different physiological processes and react with a
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Figure 5: LPS-evoked Ca2+ influx stimulated ROS production. (a) Flow cytometry profiles showing the time course of ROS production
following stimulation with LPS (10 μg/mL) in the presence of external Ca2+. Stimulation of ROS production with LPS (10 μg/mL) at 20
minutes was suppressed in the absence of external Ca2+ or when pretreated with 2-APB (20 μM) in the absence of external Ca2+. Figure 5(a)
is representative of three experiments performed on different experimental days. (b) Aggregate data are summarized. TG: thapsigargin.
��P < .01 versus control group.
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Figure 6: (a) Effect of mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP) on thapsigargin and LPS-
evoked generation of ROS. When the FCCP (1 mM) was added to the cells, a significant increase in ROS production was observed at 10
minutes. In the presence of FCCP, stimulation of cells with 2 μM TG or 10 μg/mL LPS failed to induce further increases in ROS level. (b)
Effect of antimycin on thapsigargin and LPS-evoked generation of ROS. Treatment of cells with 5 mM antimycin led to a significant increase
in ROS generation at 10 minutes. In the presence of the antimycin, stimulation of cells with 10 μg/mL LPS failed to evoke further increases
in ROS production. A similar result was obtained when the cells were challenged with TG (2 μM) in the presence of the antimycin. Three
independent experiments have been performed. TG: thapsigargin. ��P < .01 versus control group.

large variety of oxidizable cellular components [18]. There-
fore, reduction-oxidation reactions involving ROS have
gained attention as important chemical processes with im-
plications in cellular signal transduction, especially those in-
volving macrophages. Under our experimental conditions,

in the presence of extracellular Ca2+, both thapsigargin and
LPS induced an increase in ROS generation in a dose-
dependent manner. However, the effects were completely
abolished in the absence of extracellular Ca2+, demonstrat-
ing that ROS production is activated by Ca2+ influx, but
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not by Ca2+ release from the stores, despite reasonable over-
all increases in cytosolic Ca2+ concentration. The results of
many investigations have shown that calcium is essential
for production of ROS. Elevation of intracellular calcium
level is responsible for activation of ROS-generating enzymes
and formation of free radicals by the mitochondria respi-
ratory chain. Cytosolic Ca2+ is also an important regulator
of NADPH oxidase activation leading to the generation of
ROS, and ROS production is largely dependent on [Ca2+]i

mobilization. The mechanism of cytosolic Ca2+ activation
NADPH oxidase involves PKC, phospholipase A2, and Rac
pathways [19].

Next, we designed experiments to identify the nature
of the Ca2+ entry pathway that drives ROS production. If
Ca2+ entry through CRAC channels stimulates ROS release,
then one would expect inhibitors of CRAC channels to sup-
press this release. We tested this by using the CRAC channel
blockers 2-APB and Gd3+. Our results showed that CRAC
channel blockers completely suppressed the Ca2+ entry sig-
nal and also prevented the ability of ROS production evoked
both by thapsigargin and LPS, demonstrating that Ca2+ en-
try through CRAC channels stimulates ROS release. Fur-
thermore, the ROS release in macrophages did not require
voltage-gated Ca2+ influx, as direct voltage-gated Ca2+ chan-
nel blockade with nifedipine, did not suppress the ROS pro-
duction in our experiments. All these findings indicate that
ROS production is the downstream consequence of CRAC
channel activation and close functional coupling between
CRAC and ROS production in murine macrophages. In our
experiments, both thapsigargin and LPS induced an eleva-
tion in ROS at 1 minute. However, thapsigargin induced an
elevation in ROS which reached maximal levels within 10
minutes and returned to basal levels in 20 minutes, while
it reached maximal levels within 20 minutes and was still
higher in 6 hours in the LPS group. The experiment shows
that thapsigargin, a CRAC agonist, evoked a transient rise in
ROS, indicating that Ca2+ entry through CRAC is a trigger
for ROS production. Sustained production of ROS needs ac-
tivation of signaling cascades following stimulation of LPS.
In concordance with these results, thapsigargin triggered
Ca2+ release from the internal stores, and the Ca2+ signal
decayed back to prestimulation levels over several minutes
(Figure 1(b)), however, the Ca2+ signal was sustained with
10 μg/mL LPS (Figure 4(a)), these data clearly showed that
the different time scale in ROS formation depends on differ-
ent Ca2+ signal induced by thapsigargin and LPS.

Ca2+-dependent release of ROS suggests a dominant role
for the ROS generation enzyme that depended on Ca2+ in
our experiments, so it was of interest to analyze the in-
tracellular source of ROS. Mitochondria are probably the
most important source of increased free radical production.
These organelles accumulate large amounts of Ca2+ that can
lead to the generation of ROS, being the basis of excito-
toxicity injury mechanisms [20]. In the present study, we
showed that the mitochondrial uncoupler, carbonyl cyanide
p-trifluoromethoxy-phenylhydrazone, and the inhibitor of
the electron transport chain, antimycin, evoked a marked
increase in ROS and completely inhibited thapsigargin and

LPS-evoked responses. These results are consistent with pre-
vious reports in mouse pancreatic acinar cells [21]. Taken to-
gether, these data suggest that ROS evoked by thapsigargin
and LPS are generated mainly in the mitochondria.
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