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INTRODUCTION

Epithelial ovarian tumors are the most common type 
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Materials and Methods: A total of 88 patients with histopathologically confirmed ovarian epithelial tumors after surgical 
resection, including 30 BEOT and 58 MEOT patients, were divided into a training group (n = 62) and a test group (n = 26). 
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weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging, were extracted using MaZda 
software and the three top weighted texture features were selected by using the Random Forest algorithm. A non-texture 
logistic regression model in the training group was built to include those clinical and conventional MRI variables with p value 
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84.6%; accuracy, 82.3%; AUC, 0.818). The AUCs were statistically different (p value = 0.038). In the test group, the AUCs, 
sensitivity, specificity, and accuracy were 0.840, 73.3%, 90.1%, and 80.8% when the non-texture model was used and 0.896, 
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of ovarian tumors. They account for approximately 90% 
of all ovarian cancers and have been recognized as the 
leading cause of gynecological cancer death worldwide (1). 
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These tumors could be histologically classified into three 
groups, namely, benign (57–60%), borderline (4–15%), 
and malignant (21–33%) epithelial ovarian tumors (1). 
Borderline epithelial ovarian tumors (BEOTs) typically 
represent an intermediate grade of neoplasm between 
benign and malignant (1, 2) because of their specific 
histological features (low malignant potential and lack of 
stromal invasion, mitotic activity, and nuclear atypia). Due 
to their distinct therapeutic strategies and prognoses, it is 
of great importance to differentiate BEOTs from malignant 
epithelial ovarian tumors (MEOTs). Specifically, according 
to the National Comprehensive Cancer Network guidelines 
(Version 1.2020) (3), a conservative surgical approach 
with preserved fertility is recommended to treat young 
BEOT patients, whereas most patients with MEOTs should 
undergo radical surgery followed by adjuvant chemotherapy 
(3-5). Moreover, the prognosis of BEOT is far superior to 
MEOT, usually with a long-term (> 10 years) survival rate 
in 95% of cases (6, 7). Therefore, preoperative differential 
diagnosis of BEOTs and MEOTs may be crucial and helpful 
in determining treatment strategies and predicting the 
prognosis of patients with ovarian epithelial tumors.

In comparison to ultrasonography and computed 
tomography, magnetic resonance imaging (MRI) is 
a valuable tool for identifying the morphological 
characteristics of ovarian epithelial tumors (8). However, 
previous studies have revealed limitations of conventional 
MRI in distinguishing BEOT from MEOT, especially since 
these two types of tumors have very similar morphological 
features (9-12). Advanced MRI techniques, such as dynamic 
contrast-enhanced-MRI, diffusion-weighted imaging (DWI) 
with the measurement of the apparent diffusion coefficient 
(ADC), and enhanced T2*-weighted angiography, have 
been previously used to distinguish between the two types 
of tumors (13-15). Most of these studies involved a pre-
selected region of interest instead of the entire tumor. This 
technique limits the accuracy and heterogeneity of ovarian 
tumors due to its large size, rendering analysis susceptible 
to personal selection bias and sample bias. 

Texture analysis is a quantitative technique that 
allows the evaluation of the gray-level intensity and the 
relationship among pixels, which are not discernible to 
human eye (16). Through the assessment of gray level 
distribution, coarseness, and regularity in a lesion, texture 
analysis may be able to evaluate tumor heterogeneity based 
on medical images obtained in daily clinical practice. Ng 
et al. (17) suggested that whole tumor texture analysis 

could provide a more representative evaluation of tumor 
heterogeneity than the largest cross-sectional area analysis. 
To date, no study has been performed to differentiate BEOTs 
from MEOTs using whole tumor texture analysis. Thus, this 
study aimed to explore the value of MR images-based whole 
tumor texture analysis in differentiating BEOTs from FIGO 
stage I/II MEOTs.

MATERIALS AND METHODS

Participants
Patients with known or suspected history of ovarian 

neoplasms between September 2014 and May 2019 were 
retrospectively reviewed in our hospital. Patients who met 
the following criteria were included in the study: 1) those 
who preoperatively underwent standard dedicated pelvic 
MRI including contrast-enhanced T1-weighted imaging (CE-
T1WI) and DWI; 2) those with pathologically confirmed 
BEOTs or MEOTs after surgical resection; 3) those with FIGO 
stage I/II MEOTs (tumor limited to one or both ovaries or 
tumor involving one or both ovaries with pelvic extension 
below pelvic brim or primary peritoneal cancer); and 4) 
those in whom the serum cancer antigen-125 (CA-125) was 
measured preoperatively. Patients who met the following 
criteria were excluded: 1) those who underwent prior related 
treatment (n = 10); 2) those with poor image quality due to 
dielectric effect artifact (n = 1); and 3) those with ruptured 
cystic masses (n = 3). The clinical, MRI, and pathological 
data recorded were reviewed. Ultimately, a total of 88 
consecutive patients were enrolled for analysis, including 
30 BEOT and 58 MEOT patients. Patients were then randomly 
allocated to either the training (n = 62) or test (n = 26) 
group, with the distribution of BEOTs balanced between the 
two groups. A flow diagram showing the patient selection 
protocol and the inclusion and exclusion criteria is shown 
in Figure 1. In cases involving peritoneal carcinomatosis, 
which were confined to the pelvis (FIGO stage II), we 
evaluated the primary lesion. In bilateral lesions, lesions 
with a greater solid portion or a greater septa number 
were selected for analysis as these radiological features 
suggested a more aggressive histology.

The authors are accountable for all aspects of the work in 
ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and 
resolved. This single-center retrospective cohort study was 
approved by the Institutional Review Board (No. [2016]118 
and No. [2019]283), who determined the requirement for 
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informed consent could be waived.
The datasets generated and/or analyzed during the 

current study are not publicly available due to patient 
privacy protection, but are available from the corresponding 
author on reasonable request.

MRI Technique
All examinations were performed using a 3T MR scanner 

(MAGNETOM Verio, Siemens Healthineers). The standard 
dedicated pelvic MRI protocol consisted of the following 
sequences: transverse turbo spin echo (TSE)-T1WI, 
transverse and sagittal TSE- T2WI with fat-suppression, 
and DWI (b value = 50 and 800 s/mm2). For three phases, 
CE-T1WI and three-dimensional volumetric interpolated 
breath-hold examination with fat-suppression were 
performed in the transverse, sagittal, and coronal planes 

at 40–60 seconds, 90–110 seconds, and 170–190 seconds 
after intravenous injection of gadobenate dimeglumine 
(MultiHance, Bracco; 0.2 mmol/kg body weight; rate of 3.0 
mL/s). The MRI protocol is shown in Table 1. 

Conventional MRI Features Analysis
All MR images were reviewed independently by two 

radiologists (with 3 and 30 years of experience in abdominal 
MRI, respectively) who were blinded to the clinical 
information and the lesion type (either BEOTs or MEOTs). 
Similar to previous studies (18, 19), tumors were evaluated 
based on the following features: 1) morphology, classified 
as either lobulated (notches ≥ 2) or round/oval; 2) 
configuration, which was classified as either purely cystic, 
predominantly cystic (≤ 1/3 solid component), mixed cystic/
solid (1/3 to 2/3 solid component), or predominantly-solid 

Patients who visit to our hospital with known or suspected history of ovarian neoplasms
between September 2014 and May 2019

n = 102

Included

Excluded

n = 88

30 BEOT patients

Training group (n = 62)
  - 21 BEOTs
  - 41 stage I/II MEOTs

Test group (n = 26)
  - 9 BEOTs
  - 17 stage I/II MEOTs

58 stage I/II MEOT patients

1)  Underwent preoperative standard dedicated pelvic MRI protocol including  
CE-T1WI and DWI

2) Pathologically confirmed BEOTs or MEOTs after surgical resection
3) FIGO stage I/II MEOTs
4) Availability of serum cancer antigen-125

1) Received prior related treatment (n = 10)
2) Presented poor image quality (n = 1)
3) Ruptured cystic mass (n = 3)

Fig. 1. Flow diagram of the inclusion and exclusion criteria for the study. BEOT = borderline epithelial ovarian tumor, CE-T1WI = contrast-
enhanced T1-weighted imaging, DWI = diffusion-weighted imaging, MEOT = malignant epithelial ovarian tumor

Table 1. MRI Protocol
Sequences TR (ms) TE (ms) Slice Thickness (mm) Intersection Gap (mm) FOV (mm) Matrix

TSE-T1WI 800 10 5 1.0 360 x 360 384 x 384 x 70%
TSE-T2WI 4000 96 5 1.0 360 x 360 384 x 384 x 70%
DWI 6000 58 5 1.0 400 x 300 180 x 180 x 85%
VIBE-T1WI 3.2 1.2 3 0 360 x 300 384 x 384 x 70%

DWI = diffusion-weighted imaging, FOV = field of view, TE = echo time, TR = repetition time, TSE = turbo spin echo, T1WI = T1-weighted 
imaging, T2WI = T2-weighted imaging, VIBE = volumetric interpolated breath-hold examination
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(≥ 2/3 solid component). Solid component was defined 
as a papillary projection (any enhancing solid projection 
into the cyst from the cyst wall with a height ≥ 3 mm) or 
a solid portion; 3) maximum diameter of lesion and solid 
component; 4) presence of thickened irregular septa defined 
as focal areas of septa thickening with a thickness ≥ 3 mm 
within a cyst (20); 5) number of loculi, classified as either 
unilocular, multilocular, or honeycomb loculi (grouped and 
innumerable sub-centimeter-sized locules) (21); 6) signal 
intensity, categorized as either low, moderate, or high based 
on the signal of the myometrium in cystic components 
during T1WI and T2WI; 7) the presence hemorrhagic fluid in 
the loculi; 8) enhancement degree of the solid component 
or septa/wall, categorized as either mild, moderate, 
or significant based on the signal of the iliopsoas and 
myometrium; 9) the presence of ascites, graded as either 
mild (limited to the Douglas pouch), moderate (limited to 
the pelvic cavity), or massive (beyond the pelvic); and 10) 
the presence of a peritoneal implant. 

Image Segmentation 
The sagittal T2WI, transverse DWI, and sagittal CE-

T1WI images were retrieved from a picture archiving and 
communication system (PACS, Carestream) in Bitmap 
(BMP) format. The MR images were then loaded into the 
MaZda package for manual segmentation (open source 
software, http://www.eletel.p.lodz.pl/mazda/) (22). 
This package included image processing, extraction, and 
selection of texture features. To minimize the influence 
of contrast and brightness variation, image gray-level 
intensity normalization was performed using a method that 
normalizes image intensities within a range (µ - 3δ, µ + 
3δ; µ, mean gray level value; δ, standard deviation; both µ 
and δ are computed separately for every volume of interest 
[VOI]) in MaZda. The VOI, which encompassed the whole 
tumor was delineated on T2WI, DWI (b value = 800 s/mm2), 
and CE-T1WI images on each slice respectively segmented 
by the junior radiologist. ADC maps and DWI images with 
b values of 50 s/mm2 were used for the segmentation 
of VOIs in DWI images with b values of 800 s/mm2. The 
experienced radiologist validated all the segmented images. 
The procedure is presented in Figure 2. 

Texture Feature Extraction and Selection
All 264 VOIs delineated by the junior radiologist were 

loaded into the MaZda package for texture analysis. The 
software automatically computed 314 texture features 

within each VOI, and generated a texture features analysis 
report. These texture features are shown in Table 2. Usually, 
only a limited number of features carry relevant information 
needed for texture discrimination. Therefore, texture feature 
reports for the training group (n = 186; 62 x 3) were loaded 
into the MaZda package to identify the most discriminative 
features for the classification of BEOTs and MEOTs. The 
MaZda package uses three feature selection methods: 
Fisher’s coefficient (Fisher), classification error probability 
combined with average correlation coefficient (POE + ACC), 
and mutual information (MI). These are supervised methods 
(23-25). To perform feature selection based on MaZda’s 
automatic techniques, we used a combination of Fisher, 
POE + ACC, and MI. Texture features with the lowest POE 
+ ACC coefficients, the highest Fisher coefficients, and the 
highest individual MI were ultimately selected. Finally, 
thirty optimal discriminative power features from each 
sequence (T2WI, DWI, and CE-T1WI) of the training group 
were selected.

In order to solve the multicollinearity problem, the 
Random Forest Algorithm based on the Python Scikit-learn 
Library was used to select the top feature from the thirty 
optimal discriminative power features. It calculated the 
relative importance of each texture feature, and the most 
weighted texture features in each sequence were finally 
selected to construct a diagnostic model.

Statistical Analysis
Statistical analyses were performed using SPSS (version 

25.0, IBM Corp.) and MedCalc (Version19.1.7, https://
www.medcalc.org). The consistency of assessment between 
the two radiologists was evaluated by using intra-class 
correlation coefficients (ICC) and Cohen’s kappa statistics 
(k) as follows: excellent (ICC/k > 0.80), good (ICC/k = 
0.61–0.80), moderate (ICC/k = 0.41–0.60), and fair (ICC/
k < 0.40). Numerical data were summarized using the 
median and interquartile range (IQR) when not normally 
distributed, and presented as mean and standard deviation 
(SD) when normally distributed. For normally distributed 
data, the independent sample t test was used, while the 
Mann-Whitney U-test was applied when the data are not 
normally distributed. Categorical variables were compared 
using either the Pearson’s chi-squared test or Fisher’s exact 
test. 

To evaluate clinical and statistical significance, we 
included clinical and conventional MR variables with p < 0.10 
to build a non-texture logistic regression model for patients 

http://www.eletel.p.lodz.pl/mazda/
http://www.eletel.p.lodz.pl/mazda/)[23][24][25]
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in the training group. Subsequently, a combined model 
integrating non-texture information and texture features 
was built for patients in the training group. The Hosmer-

Lemeshow test was applied to assess the appropriateness 
of fit of the two models. The model assessed in the training 
group was applied to the test group. The diagnostic 

Fig. 2. T2-weighted images of patients with BEOT (A) and MEOT (B), respectively. Manually defined volume of interest was drawn layer 
by layer in the tumor area by the MaZda software.

A

B

Table 2. List of Texture Features in the MaZda Software
Category More Detailed Features

Histogram (n = 9) Mean, Variance, Skewness, Kurtosis, Perc.01%, Perc.10%, Perc.50%, Perc.90%, Perc.99% 
Absolute gradient
  (n = 5)

GrMean, GrVariance , GrSkewness , GrKurtosis, GrNonZeros (percentage of pixels with nonzero gradient)

Run-length matrix
  (n = 25)

RLNonUni, GLevNonU, LngREmph, ShrtREmp, Fraction (features are computed for 5 various directions )

Co-occurrence matrix
  (n = 275)

AngScMom, Contrast, Correlat, SumOfSqs, InvDfMom, SumAverg, SumVarnc, SumEntrp, Entropy, DifVarnc, DifEntrp 
  (features are computed for 5 between-pixels distances [1, 2, 3, 4, 5] and for 5 various directions)

AngScMom = angular second moment, Correlat = correlation, DifEntrp = difference entropy, DifVarnc = difference variance, GLevNonU = grey 
level nonuiformity, GrKurtosis = absolute gradient kurtosis, GrMean = absolute gradient mean, GrNonZeros = percentage of pixels with nonzero 
gradient, GrSkewness = absolute gradient skewness, GrVariance = absolute gradient variance, InvDfMom = inverse difference moment, 
LngREmph = long run emphsis, n = total number of texture feature of each category extracted from MaZda, RLNonUni = run length 
nonuniformity, ShrtREmp = short run emphsis, SumAverg = sum average, SumEntrp = sum entropy, SumOfSqs = sum of suqares, SumVarnc = 
sum variance
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performance of the models and single texture features 
that differentiated BEOTs from MEOTs were evaluated using 
receiver operating characteristic (ROC) curve analysis. The 
areas under the ROC curve (AUCs) were analyzed using the 
DeLong test. A p < 0.05 was considered as statistically 
significant. However, p < 0.10 was selected as the filter 
value for univariate and multivariate analyses.

RESULTS

Clinical and Conventional MRI Characteristics
This study included 30 patients with 36 BEOTs and 58 

patients with 70 FIGO stage I/II MEOTs. The gynecological 
symptoms or findings of patients included accidentally 
discovered adnexal mass (35.2%, 31/88), abdominal 
distension (28.4%, 25/88), lower abdominal pain (27.2%, 
24/88), and abnormal uterine bleeding (9.0%, 8/88). 
The BEOTs included 11 serous (three bilateral cases), 
18 mucinous (one bilateral case), five seromucous (one 
bilateral case), and two Brenner tumors (one bilateral case); 
whilst the MEOTs included 46 serous (12 bilateral cases), 
11 mucinous, four seromucous, and nine clear cell tumors. 
Among the 31 MEOT patients with pathologically confirmed 
pelvic extension below the pelvic brim or primary peritoneal 

Table 3. The Comparison of Clinical and Conventional MRI Characteristics between BEOTs and MEOTs
Characteristics BEOT (n = 30) MEOT (n = 58) ICC/k* P

Age, years†  46 (28.0–60.3) 52 (46.0–57.3) 0.175
Ca-125, U/mL† 30.09 (17.07–55.60) 176.80 (36.22–1041.50) < 0.001
Morphology (%) 0.878 0.457

Lobulated 17/30 (56.7) 39/58 (67.2)
Round/oval 13/30 (43.3) 19/58 (32.8)

Configuration (%) 0.945 0.003
Purely cystic 1/30 (3.3) 0
Predominantly cystic 22/30 (73.3) 22/58 (37.9)
Mixed cystic/solid 4/30 (13.3) 18/58 (31.0)
Predominantly solid or solid 3/30 (10.0) 18/58 (31.0)

Maximum diameter of lesions, cm‡ 15.87 ± 7.67 12.22 ± 5.40 0.861 0.101
Maximum diameter of solid component, cm‡   2.42 ± 3.68  5.27 ± 2.67 0.839 < 0.001
Thickened irregular septa (%) 15/30 (50.0) 40/58 (69.0) 0.823 0.082
Number of loculi (%) 0.895 0.127

Unilocular 6/30 (20.0) 8/58 (13.8)
Multilocular 19/30 (63.3) 45/58 (77.6)
Honeycomb loculi 5/30 (16.7) 3/58 (5.2)

SI of cystic component on FS-T1WI (%) 0.927 0.439
Moderate to low 24/30 (80.0) 44/58(75.9)
High 5/30 (16.7) 12/58(20.7)

SI of cystic component on T2WI (%) 0.943 0.578
Low 1/30 (3.3) 3/58 (5.2)
Moderate to high 28/30 (93.3) 53/58 (91.4)

Enhancement (%) 0.865 0.691
Mild 6/30 (20.0) 8/58 (13.8)
Moderate 7/30 (23.3) 17/58 (29.3)
Significant 17/30 (56.7) 33/58 (56.9)

Hemorrhagic fluid in the loculi (%) 4/30 (13.3) 9/58 (15.5) 0.915 0.527
Ascites (%) 0.871 0.983

No/mild 11/30 (36.7) 22/58 (37.9)
Moderate 15/30 (50.0) 29/58 (50.0)
Massive 4/30 (13.3) 7/58 (12.1)

*Consistency of assessment was evaluated by ICC unless otherwise indicated, †Abnormally distributed numerical data were presented as 
the median (interquartile range), ‡Normally distributed numerical data were presented as the mean ± standard deviation. Consistency 
of assessment was evaluated by k. BEOT = borderline epithelial ovarian tumor, CA-125 = cancer antigen-125, FS = fat-suppressed, ICC = 
intra-class correlation coefficients, k = Cohen’s kappa statistics, MEOT = malignant epithelial ovarian tumor, SI = signal intensity
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cancer (FIGO stage II), only eight lesions (25.8%) were 
macroscopically observed by radiologists.

A comparison of clinical and MRI characteristics in 
BEOT and MEOT patients is presented in Table 3. Patients 
with MEOT (176.80 [36.22, 1041.50] U/mL) had higher 
concentrations of CA-125 (median [IQR]) than those with 
BEOT (30.09 [17.07, 55.60] U/mL) (p < 0.001). Furthermore, 
MEOTs had a greater solid component (p < 0.001) and more 
frequently exhibited a mixed cystic-solid or predominantly-
solid configuration compared to BEOTs (p = 0.003) (Figs. 
3, 4). Purely cystic features were only observed in BEOTs. 
However, there were no significant differences in other 
qualitative variables between the two groups.

Texture Feature Extraction and Selection
The 30 optimal texture features automatically selected by 

the MaZda software in the training group are shown in Table 
4. Relative importance was calculated using the Random 
Forest Algorithm for each feature as outlined in Figure 5. 
The three most weighted texture features were the S(0,1,0) 
difference entropy (DifEntrp), extracted from T2WI images; 
the S(0,0,4) sum average (SumAverg), extracted from DWI 
images; and the S(0,0,5) SumAverg, extracted from CE-T1WI 
images. 

Logistic Regression Models and ROC Curves
The non-texture model built in the training group 

included CA-125, configuration, thickened irregular septa, 
and maximum diameter of solid component (all p values 
< 0.10). The combined model built in the training group 
integrated non-texture information and the three most 
weighted texture features. Table 5 shows the performance 

Fig. 3. A 39-year-old woman with right ovarian mucinous borderline tumor. 
Sagittal T2WI (A) shows an oval mixed cystic-solid mass with honeycomb loculi. The cystic component exhibited low signal intensity on T1WI (B). 
The solid component is significantly enhanced (white arrow, C) without restricted diffusion (D, E). The septa within the tumor show irregular 
thickness (black arrow, C). The corresponding histopathological section (F) shows mild to moderate nuclear atypia, with stratified columnar 
mucin-containing cells (hematoxylin-eosin staining; magnification x 100). T2WI = T2-weighted imaging

A

D E F

B C
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of the models in differentiating BEOTs from MEOTs in the 
training and test groups. The Hosmer-Lemeshow test 
revealed that both models were predictive in differentiating 
BEOTs from MEOTs (p = 0.348 and 0.073, respectively). In 
the training group, the combined model showed a superior 
diagnostic performance than the non-texture model, and 
the comparison of AUCs revealed that the difference in 
diagnostic performance was statistically significant (p = 
0.038). In addition, there was no significant difference 
in the AUCs of the combined model between the training 
group and the test group (p = 0.348). In the test group, 
however, there was no difference (p = 0.645) between the 
combined model (AUC, 0.896; 95% confidence interval [CI], 
0.713–0.980) and the non-texture model (AUC, 0.840; 95% 
CI, 0.644–0.953). 

The single texture features revealed a statistically 
significant difference between BEOTs and MEOTs in the 
training group (p < 0.001, p = 0.003, p = 0.015 for T2WI, 
DWI, and CE-T1WI images, respectively). The performance 
of the models and the single texture features in the 
training group are described in Figure 6. A comparison of 

Fig. 4. A 45-year-old woman with bilateral low-grade serous carcinoma in the left fallopian tube (FIGO stage II). 
Sagittal T2WI (B) shows cystic-predominant and mixed cystic-solid masses with thickened septas (white arrows, C). The solid component 
exhibited moderate signal intensity during T1WI (A) and restricted diffusion (black arrow, D, E). After contrast enhancing, it becomes markedly 
enhanced. The corresponding histopathological section (F) shows a solid component of cells with nuclear atypia (hematoxylin-eosin staining; 
magnification x 100).

A

D

B

E

C

F

Table 4. The Frequency for Each Category of the 30 Optimal 
Texture Features

Category
BEOTs vs. MEOTs

T2WI DWI CE-T1WI
Histogram (n = 9) 0 0 1/30
Absolute gradient (n = 5) 3/30 1/30 1/30
Run-length matrix (n = 25) 2/30 4/30 3/30
Co-occurrence matrix (n = 275) 25/30 25/30 25/30

CE = contrast-enhanced
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Fig. 5. The relative importance of the 30 optimal texture features derived from T2WI (A), DWI (B), and CE-MRI images (C) were 
automatically calculated using the Random Forest model. AngScMom = angular second moment, Correlat = correlation, DifEntrp = difference 
entropy, DifVarnc = difference variance, GrKurtosis = absolute gradient kurtosis, GrNonZeros = percentage of pixels with nonzero gradient, 
GrSkewness = absolute gradient skewness, GrVariance = absolute gradient variance, Horzl_Fraction = horizontal_fraction of image in runs, Horzl_
RLNonUni = horizontal_run length nonuniformity, InvDfMom = inverse difference moment, LngREmph = long run emphsis, SumAverg = sum average, 
SumOfSqs = sum of suqares, SumVarnc = sum variance, Vertl_ShrtREmp = vertical_short run emphsis, 135dr_RLNonUni = 135 degree_run length 
nonuniformity, 135dr_ShrtREmp = 135 degree_short run emphsis

A

B

C
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the combined model and single texture feature approaches 
showed that the combined model outperformed any single 
texture feature, including the S(0,1,0) DifEntrp (AUC, 0.818; 
95% CI, 0.699–0.904, p = 0.020), S(0,0,4) SumAverg (AUC, 
0.728; 95% CI, 0.600–0.833, p < 0.001), and S(0,0,5) 
SumAverg (AUC, 0.690; 95% CI, 0.560–0.801, p < 0.001) in 
the training group.

DISCUSSION

This study assessed the diagnostic performance of texture 
analysis in the discrimination of BEOTs from FIGO stage I/
II MEOTs. Our results showed that texture features derived 
from T2WI, DWI, and CE-T1WI images significantly differed 
between the BEOT and MEOT groups. In addition, diagnostic 

models that combine texture features and conventional 
variables could accurately differentiate BEOTs from MEOTs.

It has become acceptable to perform conservative 
fertility-sparing surgery and to omit lymphadenectomy 
during the treatment of BEOTs due to their favorable 
prognosis, while conservative surgery is restricted to only 
stage I A serous, mucinous, or endometrioid MEOTs (18). 
Imaging analyses of stage III or higher MEOTs tend to 
reveal a more aggressive appearance (obvious lymphatic 
spread and distant metastasis), and an ovarian tumor with 
such features can be easily diagnosed as an MEOT. On 
the other hand, a considerable portion of stage II MEOTs 
with pathologically confirmed pelvic invasion cannot be 
seen with the naked eye. Thus, we recruited only stage I/
II MEOTs patients for this study. Our results demonstrated 
that either a mixed cystic/solid or predominantly-solid 
configuration and a greater solid component were more 
frequently found in stage I/II MEOTs. These findings are 
consistent with previous observations (19, 26). 

Texture analysis is a novel imaging technique that can 
extract extensive data from biomedical images and can be 
investigated with textural analysis tools. Texture analysis 
of MRI images is performed by analyzing the gray tone 
variations among image voxels. This method captures spatial 
and intensity information that identify pathological changes 
and microstructural heterogeneity within a tumor. Since the 
voxel size in the MR images in this study was 1 mm and 
the features of texture analysis were set to no less than 6 
bits per voxel for texture extraction, the texture features 
detected subtle differences between MR images of BEOTs 
and MEOTs. Due to the heterogeneity of ovarian tumors, 
texture features based on the whole tumor contained more 
spatial information (along the extra-dimension) and higher 
sensitivity and specificity than traditional techniques which 
are based on a pre-selected region of interest. 

In our study, single texture features extracted from 
T2WI, DWI, and CE-T1WI images were significantly different 
between BEOTs and MEOTs. Considering that the same 
acquisition conditions were used, this might be due to the 
essential differences in spatial and intensity characteristics 

Table 5. Diagnostic Performance of the Non-Texture Model and Combined Model in Differentiating BEOTs from MEOTs

Moden
Training Group (n = 62) Test Group (n = 26)

P* Se (%) Sp (%) Ac (%) AUC Se (%) Sp (%) Ac (%) AUC
Non-texture model < 0.001 78.3 84.6 82.3 0.818 73.3 90.1 80.8 0.840
Combined model < 0.001 92.5 86.4 90.3 0.962 75.0 94.0 88.5 0.896

*Omnibus Tests of Model Coefficients. Ac = accuracy, AUC = area under the receiver operating characteristic curve, Se = sensitivity, Sp = 
specificity 
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Fig. 6. ROC curves of the logistic models and single texture 
features of BEOTs and MEOTs in the training group. The AUCs of 
the most weighted texture feature extracted from CE-T1WI, DWI, and 
T2WI images are 0.690, 0.728, and 0.818, respectively. The AUC of the 
non-texture model is 0.818 and that of the combined model is 0.962.
AUC = area under the ROC curve, ROC = receiver operating 
characteristic
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among image voxels caused by pathological changes and 
microstructural heterogeneity within different tumors. 
However, the single texture feature of CE-T1WI (AUC, 0.690) 
and DWI (AUC, 0.728) images showed a relatively lower 
diagnostic performance in the training group compared to 
that of T2WI images (AUC, 0.818). On CE-T1WI images, the 
difference in radiologic features between BEOTs and MEOTs 
may be related to the limitation of CE images, which are 
not sufficient to identify changes in the microcirculation 
induced by neoangiogenesis. This is consistent with our 
conventional imaging findings (p = 0.691) and several 
previous studies (10, 11, 19). On DWI images, this may be 
associated with the lower signal-to-noise ratio and the lack 
of ADC mapping.

Our results also indicated that the combined 
model showed the highest diagnostic performance in 
differentiating BEOTs from MEOTs, when compared to the 
non-texture model and the single texture features. This 
combined model used in the training group (accuracy, 
90.3%) was validated in the test group (accuracy, 88.5%) 
and there was no significant difference in the combined 
model between the two groups (p = 0.348). However, the 
superiority of the combined model compared to the non-
texture model was not significant in the test group. The 
predictability of diagnostic models tend to be higher in 
the training group than in the test group (27). This may 
result in decreased differences between the combined 
model and non-texture model in a test group. This reduced 
predictability may also be due to the complexity of the 
combined model (three texture features were added) for the 
training group compared to the non-texture model, leading 
to the impaired generalization capability of the model and 
the decreased accuracy of the combined model in the test 
group. Moreover, the increased number of variables in the 
combined model are more likely to result in an over-fitting 
phenomenon due to the small sample size in the test group.

This study still had several limitations. First, due to its 
retrospective design and relatively small sample size, it 
was impossible to compare different histological tumor 
types, limiting the generalizability and statistical power 
of the study. Second, our study only separated samples 
into either the training or test group in order to perform 
internal validation; however, external validation is still 
required. Therefore, further multi-center studies with larger 
patient sample sizes are needed to validate the applicability 
of our findings. Finally, although this study described 
preliminary results on texture analysis of MR images for 

the differentiation of BEOTs from MEOTs, further studies 
are needed to investigate the pathological basis of our 
findings.

In conclusion, MRI-based texture analysis of the whole 
tumor may assist in characterizing the differences between 
BEOT and MEOT patients. These findings in turn may guide 
diagnostic protocols for future patients. Furthermore, MRI 
texture features combined with clinical and conventional 
MRI characteristics exhibit better diagnostic performance 
than texture features alone.
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