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Neurodegenerative diseases that affect serious gait abnormalities include Parkinson's disease (PD), amyotrophic lateral sclerosis
(ALS), and Huntington disease (HD). These diseases lead to gait rhythm distortion that can be determined by stride time interval
of footfall contact times. In this paper, we present a new method for gait classification of neurodegenerative diseases. In particular,
we utilize a symbolic aggregate approximation algorithm to convert left-foot stride-stride interval into a sequence of symbols
using a symbolic aggregate approximation. We then find string prototypes of each class using the newly proposed string grammar
unsupervised possibilistic fuzzy C-medians. Then in the testing process the fuzzy k-nearest neighbor is used. We implement the
system on three 2-class problems, i.e., the classification of ALS against healthy patients, that of HD against healthy patients , and
that of PD against healthy patients. The system is also implemented on one 4-class problem (the classification of ALS, HD, PD, and
healthy patients altogether) called NDDs versus healthy. We found that our system yields a very good detection result. The average
correct classification for ALS versus healthy is 96.88%, and that for HD versus healthy is 97.22%, whereas that for PD versus healthy
is 96.43%. When the system is implemented on 4-class problem, the average accuracy is approximately 98.44%. It can provide
prototypes of gait signals that are more understandable to human.

1. Introduction

Neurodegenerative diseases (NDDs) are the diseases of
neuronal destruction in the central nervous system. The
NDDs cause the volume of the brain and the amount
of nerve deterioration over time. The diseases reduce the
ability of patient and destroy tissue and nerves of the brain
because nerves or neurons in the brain normally cannot
reproduce themselves. Some neurodegenerative disorders
such as Parkinson’s disease (PD), Huntington disease (HD),
and amyotrophic lateral sclerosis (ALS) usually occur at an
older age and can lead to serious gait abnormalities [1].
Since balancing and sequencing of movement are controlled
by the central nervous system, the gait of patient with

neurodegenerative disorders will become abnormal. The
main symptoms of PD are legs trembling, slowed moving,
and impaired posture and balance. It may grow worse over
time [2]. The main symptoms of HD are mood change,
coordination of muscles problem, uncontrolled movement,
and difficulty in walking.The patient with HDmay lose their
intellectual and behavioural abilities andmay also experience
psychiatric symptoms [3]. For ALS patient, a part of nerve
cells that control muscle function is destroyed. Characteristic
of this disease is continuous muscle atrophy. It causes muscle
weakness and tenderness. The general symptoms in ALS are
difficulty in walking, swallowing, breathing, and speaking
[4]. In [5], they found that the patients with neurodegen-
erative diseases had decreased stride length as compared
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Figure 1: An example from (a) the Copenhagen chromosomes data set, (b) the MNIST data set, and (c) the USPS data set.

to healthy control subjects. From above reasons, the stride-
to-stride of gait information is utilized for gait pattern
classification in patients with neurodegenerative diseases
because of the gait pattern difference between healthy and
NDD subjects.

In recent related studies, the information from time
series of stride intervals, swing intervals, and stance intervals
of stride-to-stride is utilized to classify the gait pattern of
the patient with NDDs and healthy control subjects. Some
research works involved detecting either PD or ALS only [9,
13, 14]. Some of them involvedHD,ALS, and PD classification
[8, 10–12]; however, the information from left and right feet
is used in the system. A few of them utilized only right-foot
information to classify HD, ALS, and PD [7]; however, this
method only detected a patient with one disease against a
healthy patient, not finding a patient with one of the diseases
against a healthy patient. All previous researches utilized a
regular numeric classifier, e.g., the support vector machine
and K∗ classifier. Hence, these methods cannot provide a
prototype signal for each disease.

In this paper, we propose the syntactic method for
gait pattern classification from time series information. In
particular, we introduce a string grammar unsupervised
possibilistic fuzzy C-medians (sgUPFCMed) to recognize

PD, ALS, and HD from the left-foot stride interval. It is
worthwhile noting that the sgUPFCMed is a brand new
algorithm proposed by our research group. It is a part of
the recent doctoral thesis of one of our group members
[6] and has never been published elsewhere. In the thesis,
it was implemented on some standard data sets that are
syntactic data set by nature, e.g., the Copenhagen chromo-
somes data set [15–17], the MNIST database of handwriting
digit data set from http://algoval.essex.ac.uk/data/sequence/
as described in [18–21] collected by Professor Simon M.
Lucas, and the USPS handwritten digit data set col-
lected by Professor Simon M. Lucas and downloaded from
http://algoval.essex.ac.uk/data/sequence/ [18–21]. Example
from each data set is shown in Figure 1. The histogram of
each image in the Copenhagen chromosomes data set was
encoded into a string. It should be noted that we downloaded
the encoded data set, not the images in these three data
sets. The experiment results on both 10-fold cross validation
and the blind test data sets from all three data sets are
shown in Table 1. This shows that the algorithm is capable
of classifying syntactic data set and also providing good
classification results.

Since our algorithm is not a numeric classifier but a
syntactic classifier, we transform the gait time series into a
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Table 1: Results from 3 data sets [6].

Data set Validation sets Blind test data set
Average error ± standard deviation (%) Average error ± standard deviation (%)

Copenhagen chromosomes 87.05%±1.23% 87.82%±1.65%
MNIST 97.89%±0.21% 98.09%±0.44%
USPS 95.53%±0.31% 93.46%±0.91%

string using the symbolic aggregate approximation (SAX)
[22].The sgUPFCMed is utilized to find a string prototype(s)
for each disease. Then the fuzzy k-nearest neighbor [23] is
utilized to find the best match for a test data sample. The
paper is structured as follows. The description of the NDDs
detection system is introduced in Section 2. The results of
gait classification are shown in Section 3. Finally, we draw the
conclusion in Section 4.

2. System Description

In this section, we introduce the details of our system for gait
pattern classification of patients with neurodegenerative dis-
eases (NDDs).We take the gait data set from gait dynamics in
neurodegenerative disease database (http://www.physionet
.org/physiobank/database/gaitndd/). This data set consists
of 64 subjects from 15 subjects with PD, 20 subjects with
HD, 13 subjects with ALS, and 16 healthy control subjects
[24]. Subjects were requested to walk along a 77-meter-
long hallway for 5 minutes without stopping. Force-sensitive
switches underneath each subject’s feet were recorded at 300
Hertz sampling rate. From the recorded force, the time series
of the stride time, stance time, and swing time were derived.
To eliminate the startup effects, we follow the same method
in [25]. The first 20 values of each samples are removed.
The 3-SD median filter is utilized for eliminating the outliers
that are far away from the median value [25]. The raw data
are obtained using force-sensitive resistors, with the output
roughly proportional to the force under the foot. Stride-to-
stride measures of footfall contact times are derived from
these signals as shown in Figure 2. In the experiment, we only
use left-foot stride-to-stride interval data set. The proposed
scheme of the detection system is shown in Figure 3. We
transform each time series data into a sequence string using
the symbolic aggregate approximation (SAX) representation
[22] to convert any time series into a sequence of symbols.
The gait time series

⇀𝑇 of length n is converted into its
Piecewise Aggregation Approximation (PAA) (a vector of w-
dimensional space (⇀𝑃 𝑖 = 𝑝1, . . . , 𝑝𝑤)) using

⇀𝑃 𝑖 = 𝑤𝑛
(𝑛/𝑤)𝑖∑

𝑗=(𝑛/𝑤)(𝑖−1)+1

𝑝𝑗. (1)

The time series data (
⇀𝑇) is normalized into a series datawith 0

mean and 1 standard deviation.Then it is divided into several
frames with the size of w and each frame is converted to PAA
data (⇀𝑃 𝑖). Then each ⇀𝑃 𝑖 (for 𝑖 = 1, . . . , ⌊𝑛/𝑤⌋) is mapped
into a symbol. In our experiment, w is set to be equal to

the length of the time series. There are 8 symbols used in
the experiment. Example of the string generation is shown
in Figure 4. In this figure the gait time series is transformed
to “fbfdbcaddfgh. . . . . .dffhdd”.

Now, we are ready to create prototypes with the
string grammar unsupervised possibilistic fuzzy clustering
(sgUPFCMed). The sgUPFCMed is a modified version of
the unsupervised possibilistic fuzzy C-means (UPFCM) [26],
a combination of the possibilistic fuzzy C-means (PFCM)
[27] and the unsupervised possibilistic clustering (UPCM)
[28]. It is to solve the problem of generating coincident
clusters of the UPCM. The UPFCM is developed based
on the characteristics of both fuzzy and possibilistic C-
means. Hence, the UPFCM should be able to deal more
effectively with noise, overlapping, and outliers. Since the
sgUPFCMed is modified from the UPFCM, it should have
the same properties as the UPFCM. The brief description of
the algorithm is as follows. Assume 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁} be a
set of 𝑁 strings. Each string (𝑠𝑘) is a sequence of symbols
(primitives). For example, 𝑠𝑘 = (𝑥1𝑥2 . . . 𝑥𝑙), a string with
length 𝑙, where each 𝑥𝑖 is amember of a set of defined symbols
or primitives. Suppose V = (𝑠𝑐1, 𝑠𝑐2, . . . , 𝑠𝑐𝐶) represents a 𝐶-
tuple of string prototypes, each of which characterizes one of
the𝐶 clusters.𝐿𝑒V(𝑠𝑐𝑖, 𝑠𝑗)] is the Levenshtein distance [29–32]
between string 𝑠𝑗 and string prototypes 𝑠𝑐𝑖.U is amembership
matrix [𝑢𝑖𝑘]𝐶×𝑁 and T is a possibilistic matrix [𝑡𝑖𝑘]𝐶×𝑁. The
objective function of the sgUPFCMed is

min 𝐽𝑚,𝜂 (U,T,V; 𝑆) =
𝐶∑
𝑖=1

𝑁∑
𝑘=1

(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘) 𝐿𝑒V (𝑠𝑘, 𝑠𝑐𝑖)

+ 𝛽
𝜂2√𝑐

𝐶∑
𝑖=1

𝑁∑
𝑘=1

(𝑡𝜂
𝑖𝑘
log 𝑡𝜂
𝑖𝑘
− 𝑡𝜂
𝑖𝑘
) ,

(2)

where 𝑢𝑖𝑘 is the membership value of string 𝑠𝑘 in the cluster𝑖, 𝑡𝑖𝑘 is the possibilistic value of string 𝑠𝑘 in the cluster 𝑖, 𝑚 is
the fuzzifier (normally 𝑚 > 1), 𝜂 > 1, 𝛽 > 0, 𝑎 > 0, 𝑏 >
0, ∑𝐶𝑐=1 𝑢𝑖𝑘 = 1 for 𝑘 = 1, . . . , 𝑁, and 0 ≤ 𝑢𝑖𝑘, 𝑡𝑖𝑘 ≤ 1. 𝛽 is
defined as the sample covariance [23] based on the Euclidean
distance. Since our data set is a string data set, the calculation
of 𝛽 will be

𝛽 = ∑𝑁𝑘=1 𝐿𝑒V (𝑀𝑒𝑑, 𝑠𝑘)𝑁 , (3)

whereMed is the median string of the data set; i.e.,

𝑀𝑒𝑑 = argmin
𝑗∈𝑆

𝑁∑
𝑘=1

𝐿𝑒V (𝑠𝑗, 𝑠𝑘) for 1 ≤ 𝑖 ≤ 𝐶. (4)

The theorem for the sgUPFCMed and its corresponding proof
are shown inTheorem 1. This theorem shows that the update
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Figure 2: An example of sequence of stride times from different groups of subjects including (a) a subject with ALS disease, (b) a subject
with HD, (c) a subject with PD, and (d) a healthy control (CO) subject.
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Figure 3: System overview of gait patterns classification in patients with neurodegenerative diseases.

equation of a membership value of string 𝑘 in cluster 𝑖 (𝑢𝑖𝑘)
(5) and the update equation of a possibilistic value of string 𝑘
in cluster 𝑖 (𝑡𝑖𝑘) (6) give the minimum value of the objective
function (𝐽𝑚,𝜂(U,T,V; 𝑆)).
Theorem 1 (sgUPFCMed). If 𝐿𝑒V(𝑠𝑘, 𝑠𝑐𝑖) > 0 for all 𝑖 and 𝑘,
when 𝑚, 𝜂, 𝑘 > 1, and 𝑆 contains 𝐶 < 𝑁 distinct string data,
then 𝐽𝑚,𝜂 is minimized only if the update equation of 𝑢𝑖𝑘 is

𝑢𝑖𝑘 = 1
∑𝐶𝑗=1 (𝐿𝑒V (𝑠𝑐𝑖, 𝑠𝑘) /𝐿𝑒V (𝑠𝑐𝑗, 𝑠𝑘))1/(𝑚−1) (5)

and the update equation of 𝑡𝑖𝑘 is
𝑡𝑖𝑘 = exp(−𝑏𝜂√𝑐𝐿𝑒V (𝑠𝑐𝑖, 𝑠𝑘)𝛽 ) . (6)

Proof. From the Lagrange multiplier theorem, (5) is obtained
by solving the reduced problem minU∈𝑀𝑓𝑐𝑛{𝐽𝑘𝑚,𝜂(U) =

∑𝐶𝑖=1(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝑠𝑘, 𝑠𝑐𝑖)} where T and V are fixed for the
k-th column of U.The proof of this equation is similar to that
in [23]; hence, it is obvious and easy to prove (5).

Similarly, whenU andV are fixed for the i-th row of T, (6)
is proved by solving the problem min{𝐿 𝑖(T, 𝜆) = 𝐽𝑖𝑘𝑚,𝜂(T) =(𝑎𝑢𝑚𝑖𝑘 +𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝑠𝑘, 𝑠𝑐𝑖) + (𝛽/𝜂2√𝑐)∑𝐶𝑖=1∑𝑁𝑘=1(𝑡𝜂𝑖𝑘 log 𝑡𝜂𝑖𝑘 − 𝑡𝜂𝑖𝑘)}.
The derivative of 𝐿 𝑖(T, 𝜆) with respect to 𝑡𝑖𝑘 and setting it to
zero leads to

𝜕𝐿 𝑖 (T, 𝜆)𝜕𝑡𝑖𝑘
= 𝑏𝜂 (𝑡𝑖𝑘)𝜂−1 𝐿𝑒V (𝑠𝑘, 𝑠𝑐𝑖) + 𝛽

𝜂2√𝑐 (𝜂2 (𝑡𝑖𝑘)
𝜂−1 ln 𝑡𝑖𝑘)

= 0

(7)

𝑏𝜂√𝑐𝐿𝑒V (𝑠𝑘, 𝑠𝑐𝑖) + 𝛽 ln 𝑡𝑖𝑘√𝑐 = 0 (8)
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Figure 4: Example of string generation from gait time series.

𝑡𝑖𝑘 = exp(−𝑏𝜂√𝑐𝐿𝑒V (𝑠𝑐𝑖, 𝑠𝑘)𝛽 ) . (9)

To update a cluster center, we utilized the fuzzy median
string [23, 33–36] as follows:

𝑠𝑐𝑖 = arg min
𝑗∈𝑆

𝑁∑
𝑘=1

(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘) 𝐿𝑒V (𝑠𝑗, 𝑠𝑘)

for 1 ≤ 𝑖 ≤ 𝐶.
(10)

However, it has been proved in [35, 36] that the modified
median string provides a better classification than the regular
median string. Hence, in [23, 33–36], the modified fuzzy
median string is used. Let Σ∗ be the free monoid over the
alphabet set Σ and a set of strings 𝑆 ⊆ Σ∗. Then, the modified
fuzzy median, i.e., an approximation of fuzzy median using
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Start with the initial string 𝑠.
For each position 𝑖 in the string 𝑠
(1) Build alternative

Substitution: Set 𝑧 = 𝑠. For each symbol 𝑎 ∈ Σ
(a) Set 𝑧 to be the result of substituting 𝑖th symbol with symbol 𝑎.
(b) If ∑𝑁𝑘=1(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝑧, 𝑠𝑘) < ∑𝑁𝑘=1(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝑧, 𝑠𝑘),

then set 𝑧 = 𝑧.
Deletion: Set y to be the result of deleting the 𝑖th symbol of 𝑠.
Insertion: Set 𝑥 = 𝑠. For each symbol 𝑎 ∈ Σ
(a) Set 𝑥 to be the result of adding a at position 𝑖th of 𝑠.
(b) If ∑𝑁𝑘=1(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝑥, 𝑠𝑘) < ∑𝑁𝑘=1(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝑥, 𝑠𝑘),

then set 𝑥 = 𝑥.
(2) Choose an alternative
Select string 𝑠 from the set of strings {𝑠, 𝑥, 𝑦, 𝑧} from step (1) using

𝑠 = arg min𝐺∈{𝑠,𝑥,𝑦,𝑧}∑𝑁𝑘=1(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘)𝐿𝑒V(𝐺, 𝑠𝑘). Then set 𝑠 = 𝑠.
Algorithm 1

Store𝑁 unlabeled finite strings 𝑆 = {𝑠𝑘; 𝑘 = 1, . . . , 𝑁}
Initialize string prototypes for all C classes
Set𝑚, 𝜂, 𝑎, 𝑏
Compute 𝛽 using fuzzy median equation (3)
Do {

Compute Levenshtein distance between input string 𝑗 and cluster prototype 𝑖 (𝐿𝑒V(𝑠𝑗, 𝑠𝑐𝑖))
Update membership value using equation (5)
Update possibilistic value using equation (6)
Update center string of each cluster 𝑖 (𝑠𝑐𝑖) using equation (10) and (11)}Until (stabilize)

Algorithm 2

edition operations (insertion, deletion, and substitution) over
each symbol of the string, will be

𝑠𝑐𝑖 = arg min
𝑗∈Σ∗

𝑁∑
𝑘=1

(𝑎𝑢𝑚𝑖𝑘 + 𝑏𝑡𝜂𝑖𝑘) 𝐿𝑒V (𝑠𝑗, 𝑠𝑘)
for 1 ≤ 𝑖 ≤ 𝐶.

(11)

The cluster center update equation of the sgUPFCMed is
shown in Algorithm 1.

The sgUPFCMed algorithm is summarized in Algo-
rithm 2.

Afterwards, the multiprototype generation, i.e., 𝑆𝐶 =
{𝑠𝑐11 , . . . , 𝑠𝑐1𝑁1 , 𝑠𝑐21 , . . . , 𝑠𝑐2𝑁2 , 𝑠𝑐𝐶1 , . . . , 𝑠𝑐𝐶𝑁𝐶}, where 𝑠𝑐𝑗𝑘 is string
prototype 𝑘 of class 𝑗, is created.The fuzzy k-nearest neighbor
(FKNN) [23, 37] is used as a classifier.Themembership value𝑢𝑖 of string 𝑠 in class 𝑖 is

𝑢𝑖 (𝑠) = ∑
𝐾
𝑗=1 𝑢𝑖𝑗 (1/𝐿𝑒V (𝑠𝑐𝑞𝑗 , 𝑠))1/(𝑚−1)
∑𝐾𝑗=1 (1/𝐿𝑒V (𝑠𝑐𝑞𝑗 , 𝑠))1/(𝑚−1)

(12)

where 𝑢𝑖𝑗 is the membership value of the 𝑗th prototype from
class 𝑞(𝑠𝑐𝑞𝑗 ) in class 𝑖, 𝑐 is the number of classes, and 𝐾 is the

number of nearest neighbors. The decision rule for the test
string 𝑠 is
𝑠 is assigned to class 𝑖 if 𝑢𝑖 (𝑠) > 𝑢𝑗 (𝑠) for 𝑗 ̸= 𝑖. (13)

Because the class of each prototype is known, we setmember-
ship value to 1 for 𝑠𝑐𝑞𝑗 in class 𝑞 and zero membership values
in all other classes.

3. Experiment Results

We implement three 2-class problems, i.e., the classification
of ALS against healthy patients, HD against healthy patients,
and PD against healthy patients. We also implement one 4-
class classification, i.e., the classification of all three NDDs
diseases (ALS, HD, and PD) against healthy patients. In all
of the experiments, we implement 4-fold cross validation to
evaluate our proposed algorithm. The parameters 𝑚 and 𝜂
are set to 2, and the parameters 𝑎 and 𝑏 are set to 1 and 6,
respectively. These parameters are chosen based on trial and
error method from an extensive experiment. The stopping
criteria of the sgUPFCMed are set to 0.01 with the maximum
number of iterations of 100. To create multiprototype of each
class, the sgUPFCMed is used to cluster each class with 2,
3, 4, and 5 number of clusters. In the testing process, the
FKNN is utilized with 𝐾 = 1, 3, and 5. Tables 2–5 show
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Table 2: The average ± standard deviation of classification rate of ALS versus healthy validation set.
# prototypes (p) of each class k of FKNN

1 3 5
2 93.304±7.767 79.018±8.794 -
3 96.875±6.250 89.732±6.897 69.643±14.725
4 92.857±8.248 92.857±8.248 86.161±11.698
5 89.732±6.897 93.304±7.767 79.018±8.794

Table 3: The average ± standard deviation of classification rate of HD versus healthy validation set.

# prototypes (p) of each class k of FKNN
1 3 5

2 97.222±5.556 88.889±12.830 -
3 91.667±10.638 88.889±9.072 77.778±20.286
4 91.667±10.638 83.333±11.111 83.333±14.344
5 80.556±5.556 83.333±6.415 80.556±16.667

Table 4: The average ± standard deviation of classification rate of PD versus healthy validation set.

# prototypes (p) of each class k of FKNN
1 3 5

2 96.429±7.143 74.553±13.937 -
3 90.179±12.156 83.929±15.636 77.679±11.527
4 90.179±12.156 87.054±17.700 77.679±11.527
5 87.054±10.245 87.054±10.245 80.804±12.231

Table 5: The average ± standard deviation of classification rate of NDDs versus healthy validation set.
# prototypes (p) of each class k of FKNN

1 3 5
2 98.437±3.125 90.625±8.069 -
3 92.188±5.984 90.625±6.250 89.063±9.375
4 90.625±3.608 87.50±7.217 85.938±9.375
5 85.938±9.375 84.375±8.069 82.820±9.375

Table 6: Sensitivity and specificity of ALS, HD, PD, and NDDs detection.

Sensitivity Specificity
ALS versus healthy 100.00±0.00 93.75±12.50
HD versus Healthy 95.00±10.00 100.00±0.00
PD versus Healthy 93.75±12.50 100.00±0.00
NDDs versus healthy 97.92±4.17 93.75±12.50

the average and the standard deviation of the classification
rate on the validation set for the ALS versus healthy, HD
versus healthy, PD versus healthy, and NDDs versus healthy.
The best validation result from the ALS is 96.875±6.250%
when there are 3 prototypes for each class and 1 nearest
neighbor, while that from the HD is 97.222±5.556% with 2
prototypes for each class and 1 nearest neighbor. The best
result from the PD is 96.429±7.143% with 2 prototypes and 1
nearest neighbor. For all three NDDs classes versus healthy
patient, the best result is again 2 prototypes and 1 nearest
neighbor with the classification rate of 98.437±3.125%. The
sensitivity and specificity of the best model in ALS, HD,

PD, and NDDs are shown in Table 6. Figures 5–8 show
time series that are closest to prototypes of the best model
of the ALS, HD, PD, and NDDs classification experiment,
respectively. We can see that the shape of each prototype is
not exactly similar to the others. Although, there are some
overlapping between prototypes of the disease gait signal
and the healthy gait signal, the detection system can provide
a good classification rate. For example, in Figure 6, the
prototypes of HD gait signals are overlapped with that of the
healthy control prototypes.

However, the shapes are different. The string sequences
will be different as well. Hence, the classification result
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Table 7: Comparison of the proposed method with the existing methods.

Method Classification error rate (%)
ALS versus Healthy (2-class problem)
Our proposed method 96.88±6.25
Symbolic entropy [7] 82
Radial basis function (RBF) neural networks (All-training-all-testing) [8] 93.1
Radial basis function (RBF) neural networks (Leave-one-out) [8] 89.66
Least squares support vector machine (Leave-one-out) [9] 82.8
Radial basis function (RBF) support vector machines [10] 96.79
Meta-classifier [11] 96.1326
HD versus Healthy (2-class problem)
Our proposed method 97.22±5.56
Symbolic entropy [7] 95
Radial basis function (RBF) neural networks (All-training-all-testing) [8] 100
Radial basis function (RBF) neural networks (Leave-one-out) [8] 83.33
Radial basis function (RBF) support vector machines [10] 90.23
Meta-classifier [11] 88.674
PD versus Healthy (2-class problem)
Our proposed method 96.43±7.14
Symbolic entropy [7] 89
Radial basis function (RBF) neural networks (All-training-all-testing) [8] 100
Radial basis function (RBF) neural networks (Leave-one-out) [8] 87.1
Radial basis function (RBF) support vector machines [10] 89.33
Meta-classifier [11] 90.3581
NDDs versus Healthy (4-class problem)
Our proposed method 98.44±3.13
Radial basis function (RBF) neural networks [8] 93.75
K∗ classifier [12] 99.17
DECORATE [12] 94.69
Random Forest [12] 94.69
Radial basis function (RBF) support vector machines [10] 90.63
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Figure 5: Closest time series to the prototypes of ALS and healthy
patient.

is close to 100%. We also compare our results indirectly
with the existing methods as shown in Table 7. We can
see that our results are better than the numeric algorithms
in all the cases except PD and HD classification in 2-
class problem and NDDs in 4-class problem. However, the
algorithm in [8] was implemented using all-train-all-test
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Figure 6: Closest time series to the prototypes of HD and healthy
patient.

whereas our result is based on the validation set only. The
algorithm in [12] used several features while our system
only uses left-foot stride-to-stride interval. Moreover, our
system can provide the shapes of prototypes that might
be more understandable to user than the numeric algo-
rithms.
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Figure 7: Closest time series to the prototypes of PD and healthy
patient.
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Figure 8: Closest time series to the prototypes of NDDs and healthy
patient.

4. Conclusions

In this paper, the NDDs, i.e., Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), and Huntington Dis-
ease (HD), detection system is introduced. In particular,
the NDDs left-foot gait time series (left-foot stride-stride
interval) is transformed into a sequence of strings. The
string grammar unsupervised possibilistic fuzzy C-medians
(sgUPFCMed) first introduced in this paper is utilized to
generate prototypes of each disease.Then the fuzzy k-nearest
neighbor is used as a classifier in the testing process.We found
that the best validation results of the 2-class problem, i.e.,
ALS versus healthy patient, HD versus healthy, and PD versus
healthy, are 96.88±6.25%, 97.22±5.56%, and 96.43±7.14%,
respectively. For the 4-class problem (three NDDs versus
healthy), the best classification rate is 98.44±3.13%. From the
indirect comparison, we found that our algorithm performs
better than the existing algorithms on average. In addition,
our system can provide the prototype signal that is more
understandable to human than the previousmethods that are
based on numeric algorithm.

Data Availability
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