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HIGHLIGHTS 

 

- 3D regulatory “hubs” in glioblastoma enrich for highly coregulated genes at a single-cell 

level and expand oncogenic regulatory networks.  

- Targeted perturbation of a highly recurrent 3D regulatory hub in GSCs results in altered 

transcriptional states and cellular properties.  

- 3D regulatory hubs across cancer types associate with tumor-specific and universal 

oncogenic programs and worse outcomes. 

- The majority of hyperconnected hubs do not overlap with structural variants, suggesting 

epigenetic mechanisms. 

 

Keywords: glioblastoma, 3D chromatin organization, enhancer-promoter interactions, 

enhancer hubs, clonogenicity, oncogenic program, structural variants, HiChIP, single-cell 

RNA-seq, CRISPRi 

 

eTOC 

Here we profile the 3D enhancer connectomes of primary patient-derived human glioblastoma 

stem cells (GSCs), identify hyperconnected 3D regulatory “hubs”, and examine the impact of 

3D hub perturbation on the transcriptional program and oncogenic properties. 

 

SUMMARY 

Dysregulation of enhancer-promoter communication in the context of the three-dimensional (3D) 

nucleus is increasingly recognized as a potential driver of oncogenic programs. Here, we profiled 

the 3D enhancer-promoter networks of primary patient-derived glioblastoma stem cells (GSCs) in 

comparison with neuronal stem cells (NSCs) to identify potential central nodes and vulnerabilities 

in the regulatory logic of this devastating cancer. Specifically, we focused on hyperconnected 3D 

regulatory hubs and demonstrated that hub-interacting genes exhibit high and coordinated 

expression at the single-cell level and strong association with oncogenic programs that distinguish 

IDH-wt glioblastoma patients from low-grade glioma. Epigenetic silencing of a recurrent 3D 

enhancer hub—with an uncharacterized role in glioblastoma—was sufficient to cause concordant 

downregulation of multiple hub-connected genes along with significant shifts in transcriptional 

states and reduced clonogenicity. By integrating published datasets from other cancer types, we 

also identified both universal and cancer type-specific 3D regulatory hubs which enrich for varying 

oncogenic programs and nominate specific factors associated with worse outcomes. Genetic 
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alterations, such as focal duplications, could explain only a small fraction of the detected 

hyperconnected hubs and their increased activity. Overall, our study provides computational and 

experimental support for the potential central role of 3D regulatory hubs in controlling oncogenic 

programs and properties. 

 

INTRODUCTION 

Despite extensive efforts to develop more efficacious therapies, including those targeted to 

mutational status, glioblastoma (GBM) remains a devastating disease with a five-year survival 

rate of less than five percent.1-4One of the main challenges in treating GBM is the high degree of 

inter-patient and intra-tumoral heterogeneity, due to both genetic alterations and epigenetic 

plasticity.1,5-8Bulk RNA-seq analyses across hundreds of patients have identified three main GBM 

molecular subtypes (MESenchymal, CLAssical and PROneural) that are associated with—but not 

determined by—specific genetic alterations.9 Although widely used, the clinical value of this 

categorization remains unclear. On the other hand, more recent single-cell (sc) RNA-seq of 

primary IDH-wild type (wt) GBM has revealed striking intra-tumoral heterogeneity10 with multiple 

transcriptional states resembling neurodevelopmental cell types such as, neural progenitor cell-

like (NPC), oligodendrocyte progenitor-like (OPC), astrocyte-like (AC) and mesenchymal-like 

(MES).5 Importantly, these states were shown to be largely plastic and interconvertible—rather 

than hierarchic5,10-12—strongly suggesting the presence of a core regulatory logic that is preserved 

among states which enables transcriptional and phenotypic flexibility and increased fitness.  

Patient-derived glioma stem cells (GSCs) constitute a powerful model for studying GBM 

biology since they can be easily isolated, expanded and manipulated in vitro, while preserving the 

ability to repopulate the disease in the context of xenografts (PDX) maintaining phenotypic, 

transcriptional and genotypic characteristics of the original tumor.13-17 Moreover, ex vivo models 

have been developed to better recapitulate the complex host cellular environment of the human 

brain such as the GLICO (GLIoma Cerebral Organoid) model, in which GSCs are grown within 

human cerebral organoids derived from human pluripotent stem cells.18 Using various single-cell 

technologies (scRNA-seq, scATAC-seq and Multiome), it was shown that GLICO more closely 

resembles the parental tumor biological behavior (e.g.cell invasion, proliferation, brain 

parenchymal destruction, tumorigenicity) and transcriptomic and epigenomic landscape 

compared to in vitro cultures or xenografts.12,19 Specifically, with the GLICO model, we observed 

a better representation of the GSC stem cell-like states, including NPC/OPC but also a new radial-

glial-like (oRG) state, detected across different patients, suggesting shared and potentially 

targetable regulatory logic.19 Therefore, both GSC and ex vivo organoid models have enabled 
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important discoveries regarding the transcriptional and epigenetic states of GBM and identified 

critical regulators and oncogenic drivers. However, important gaps remain in our understanding 

of the complex regulatory networks that govern these deadly tumors, including their central 

regulatory nodes and unique vulnebilities. 

Since the invention and broader adoption of chromatin conformation capture methods, the 

three-dimensional structure of the genome has become increasingly appreciated to constitute an 

important method of regulation of gene expression and cell identity.20-24 The precise 

spatiotemporal regulation of gene expression is largely dependent on the activity of target gene 

promoters, which often reside at large linear distances from enhancers.25-29 How enhancers 

specifically modulate genes over tens or hundreds of thousands of base pairs of linear genomic 

distance remains an active area of investigation in the field, but most evidence suggests that 

enhancer function requires physical proximity to target genes.30,31 New technologies such as 

H3K27ac HiChIP32 that enable genome-wide mapping of putative active 3D enhancer and 

promoter interactions have revealed complex and dynamic 3D regulatory networks responsible 

for the spatiotemporal control of gene expression.33 Although most genes are regulated through 

pairwise enhancer-promoter interactions, evidence from various cellular contexts supports the 

existence of highly interacting promoters and enhancers—referred to here as 3D regulatory 

hubs—which are associated with high levels of transcriptional activity and enrichment for genes 

critical for cell identity.34-42 These findings suggest that the construction of 3D enhancer networks 

will enable the identification and targeting of core regulatory modules that dictate oncogenic 

programs and properties in GBM. 

 In this study, we mapped the 3D enhancer-promoter interactomes along with the 

transcriptomes and epigenetic landscapes in four patient-derived GSC samples as well as human 

ESC-derived NSCs as a control. We identified GSC-specific hyperconnected 3D-hubs and 

established that they associate with elevated and coordinated expression of tumor-associated 

programs that successfully distinguish GBM from other brain tumors and predict a worse 

prognosis. Targeted epigenetic silencing of an example hyperconnected, highly recurrent hub—

with a previously uncharacterized role in GBM—resulted in the concordant downregulation of 

multiple hub-connected genes along with significant shifts in the transcriptional program and 

altered clonogenic capacities. Extending our findings to published H3K27ac HiChIP datasets from 

other cancer types, we identified tumor-specific and shared hyperconnected hubs which enrich 

for specialized and universal oncogenic programs and associate with poor survival. Although 

genetic alterations, such as amplifications, could partly explain patient-specific formation of hubs, 

the majority are likely driven by epigenetic mechanisms, such as aberrant expression and/or 
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binding of transcription factors (TFs) and cofactors. In conclusion, our study provides evidence 

for the critical role of 3D regulatory hubs in supporting oncogenic programs essential to 

glioblastoma pathogenesis.  

 

RESULTS 

Heterogeneous patterns of enhancer activity and 3D interactivity support patient-specific 

and subtype-specific programs 

Although previous studies have profiled the transcriptional heterogeneity of GSCs as well as their 

genetic and epigenetic landscape, the 3D enhancer-promoter network that supports their 

tumorigenic programs and properties has only started to be explored.43-46 In this study, we profiled 

four patient-derived GSC samples, wild type for the isocitrate dehydrogenase gene (IDH-wt), 

using H3K27ac HiChIP, H3K27ac ChIP-seq, ATAC-seq, and RNA-seq to construct 3D enhancer-

promoter maps for each patient and identify potential similarities or differences across patients 

and molecular subtypes (Fig. 1A). In parallel, we profiled human ESC-derived stable long- term 

Neuroepithelial Stem cells (or lt-NSCs)47 to distinguish among shared features that likely reflect 

the neuronal identity of both cell types as opposed to GSC-unique features.  

Previous RNA-seq analysis of these patient samples12 enabled their assignment into the 

following molecular subtypes: mesenchymal (728), mesenchymal/proneural (320), 

classical/mesenchymal (810) and classical (1206). Consistent with their original characterization, 

our new RNA-seq analysis showed the expected enrichment for the mesenchymal, classical gene 

and proneural signatures (Fig. S1A) and a clear separation of mesenchymal-like (MES, 320 and 

728) and classical-like (CLA, 810 and 1206) GSC samples (Fig. 1B). All GSC samples were 

clustered far from normal NSCs. In agreement, ATAC-seq and H3K27ac ChIP-seq analysis 

revealed drastic remodeling of the chromatin and enhancer landscapes across samples and 

identified distinct groups of patient-specific, subtype-specific and GSC- or NSC-specific putative 

enhancers (Fig. S1B-D). Using the ROSE algorithm,48,49 we also called super enhancers (SE) in 

each sample and identified 108 SE which were common in all four GSC lines as well as 183 and 

355 unique super enhancers for the classical-like and mesenchymal-like subtypes, respectively. 

These results demonstrate an extensive epigenetic and transcriptional rewiring among patients 

that partly reflects their molecular subtypes.  

We next sought to investigate how these GSC-specific and subtype-specific enhancers 

and promoters communicate with each other in the 3D nucleus. To this end, we generated 

H3K27ac HiChIP data for all four patient samples and the NSC samples in technical replicates 

(Fig. S1E). The H3K27ac HiChIP data was processed by the FitHiChIP2.0 platform50 at a 
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resolution of 10 kb within a maximum range of 2 MB and with at least one anchor overlapping 

with H3K27ac ChIP-seq peaks to generate contact maps around active enhancers and promoters. 

This analysis detected several tens of thousands significant interactions in each cell type, which 

predominantly included connections between promoters (P, 10kb anchors with at least one TSS) 

and/or putative enhancers (E, anchors with at least one H3K27ac peak but no TSS) (Fig. S1F). 

The distributions of loop size (distance between interacting anchors) and connectivity (number of 

distinct interactions that each anchor forms) were similar across samples (Fig. S1G) Consistent 

with the observed inter-patient transcriptional and epigenetic heterogeneity (see Fig. S1A-D), 

which is widely reported in the literature, a significant fraction of the detected HiChIP interactions 

were patient-specific (Fig. S1H). However, we also observed a number of shared loops among 

GSCs of the same molecular subtype (MES: 12,881, CLA: 6,332) and common among all patients 

(3,398) but not in NSCs (Fig. S1H).  

We next tested the association between chromatin looping and gene expression. Genes 

whose promoters were engaged in HiChIP contacts showed significantly higher transcriptional 

levels compared to non-connected genes across all cell lines (Fig. S1I), supporting the active 

regulatory nature of these interactions. Intriguingly, subtype-specific signature genes showed a 

significantly higher connectivity in the respective lines (Fig. S1J), further supporting that cell-type 

specific 3D interactivity and gene activity are tightly linked.  

 

Genes within hyperconnected 3D hubs associate with oncogenic programs, GBM biology 

and worse patient survival  

We next focused on hyperconnected 3D regulatory hubs, defined as 10kb genomic 

regions with the highest degree of connectivity/hubness in each cell line (top 10% when ranked 

by number of connections, ranging from >8 or >11 connections depending on the sample) (Fig. 

S2A). Consistent with the high heterogeneity of the GSC lines as observed by previous molecular 

characterizations (see Figure 1), we find many patient-specific hubs, but also a large overlap of 

hubs between samples of the same molecular subtype and common to all GSC samples (Fig. 

1D). Hyperconnected 3D hubs involve known oncogenic drivers such as EGFR, MYC, MYCN, 

PI3KCA, PTEN and AKT2 (Fig 1D, Fig. S2B) either directly on the hub anchor or connected 

anchors. In accordance, gene ontology analysis for MES-like, CLA-like or common hubs revealed 

a strong enrichment for subtype-specific or universal oncogenic programs and signaling pathways 

(Fig. 1D). Specifically, hubs shared among the CLA-like GSC samples showed significant 

enrichment for PI3K/AKT/mTOR signaling and TNF-alpha signaling via NF-ΚB. On the other 

hand, MES-like hubs involved genes that enriched for subtype-characteristic processes such as 
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epithelial-to-mesenchymal transition and hypoxia, in addition to universal oncogenic programs 

including KRAS signaling and TNF-alpha signaling via NF-ΚB. Finally, genes essential for GSCs 

—as determined by previously published CRISPR screens51—were also characterized by higher 

degree of hubness across all GSC samples but not in NSCs (Fig. S2C) compared to non-essential 

genes, further supporting the biological relevance of hyperconnected hubs. 

Finally, to further validate the significance of our findings for GBM biology and the 

transcriptional programs of primary tumors, we took advantage of the available RNA-seq and 

survival data from the TCGA brain cancer patient cohort.52 Clustering based on the expression of 

hub-connected genes—as detected in our four GSC samples—generated two main groups (“high 

hub” (purple) vs “low hub” expression (green)) that largely separated GBM from low-grade 

gliomas (LGG) with ~90% sensitivity and specificity (Fig.1F-G). Overall, although LGG patients 

had lower mean expression of hub-connected genes compared to the GBM patients across 

clusters, the “misclustered” LGG patients (47 out of 520) showed significantly higher levels—

similar to GBM patients (Fig. 1H). Moreover, the majority of these LGG patients within the “high 

hub” cluster had either IDH-wt status or carried GBM-defining mutations (contains 1 of the 

following: TERT mutation, EGFR amplification/mutation, Trisomy 7 (partial or full)/deletion of 

chromosome 10, CDKN2A deletion), suggesting that they were initially misclassified as LGG. The 

opposite was true for the few GBM patients within the “low hub” cluster. In agreement, GBM and 

LGG patients from the “high hub” expression cluster (purple color) showed significantly worse 

survival compared to the LGG and GBM patients from the “low hub” expression cluster (green), 

respectively (Fig.1I-J). When focusing on IDH-wt patients, we also noticed that patients from the 

“high hub” expressing cluster showed slightly but significantly worse survival (pval=0.033) 

compared to the patients from the “low hub” expression cluster (Fig.1K). Of note, clustering of the 

patients based on the expression of SE-associated genes (by linear proximity), which have been 

previously linked to GSC identity and tumorigenesis43,53 generated more mixed LGG/GBM 

clusters (~67% specificity for GBM patients) and showed no significant association with 

prognosis(Fig. 1L-M). These analyses demonstrate that the common hyperconnected 3D hubs in 

GSC samples harbor genes of high relevance for the biology of IDH-wt GBM and the 

aggressiveness of the disease. Together, these data support that highly interacting 3D hubs might 

operate as regulatory centers of the unique oncogenic programs and properties of GBM.  

  

3D hubs in GBM potentially coordinate and expand known oncogenic transcriptional 

programs 
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Given the widely reported inter-patient tumor heterogeneity in GBM as well as the significant 

heterogeneity that we found in our GSC H3K27ac HiChIP data, we next tested the degree of 

conservation of our hyperconnected hubs using recently published 3D genomics data (n=27 Hi-

C54, n=15 H3K4me3 HiChIP44) from independent patient-derived GSCs or primary GBM samples. 

We consistently found that the common hyperconnected hubs (top 10%) detected in our four GSC 

samples showed significantly higher connectivity compared to low-connected anchors (bottom 

10%) across all independent samples and datasets, regardless of the methods used (Fig. S3A).  

Promoter-centric 3D hubs have been described to confer phenotypic robustness through 

redundant—or synergistic—enhancer regulatory input, as shown for developmental genes55 or 

important oncogenes. For example, the high expression of MYC in various cancer types (where 

there is not a structural variant) seems to depend on interactions with multiple, redundant 

enhancers over large distances (>100kb), as individual enhancer perturbations through CRISPRi 

were insufficient to cause MYC downregulation56-59. As expected, we observed that many of our 

hyperconnected hubs—across samples and 3D genomics methods—are known glioblastoma-

related oncogenes and proto-oncogenes (overlap of COSMIC oncogenes60 with GBM DisGeNET 

gene list)—including MYC. On the other hand, we also observed that many oncogenes are not 

only hyperconnected themselves, but they are also consistently found interacting with 

hyperconnected regulatory regions, which contact multiple other genes (Fig. 2A). In this context, 

3D regulatory hubs could not only promote the higher expression of well-known oncogenes but 

also coordinate the broader activation of larger previously unappreciated transcriptional 

networks31,61-63. To test this hypothesis, we targeted one of our top hyperconnected and highly 

conserved 3D enhancer hubs (hyperconnected in 4/4 GSC H3K27ac HiChIP samples), which has 

a direct interaction with the JUN proto-oncogene in addition to other genes of unknown 

significance to GBM (Fig. 2B). Although JUN is not commonly mutated in GBM, higher JUN 

expression levels are associated with a worse prognosis in GBM64, and CRISPR knock-out 

screens identified JUN as an essential gene for GSC survival in vitro65. To experimentally perturb 

this enhancer, we generated a stable GSC line (320) that harbors a doxycycline (dox)-inducible 

dCas9-KRAB-P2A-GFP cassette (Fig. S3B) and introduced guide RNAs (gRNAs) that target 

either the enhancer hub (red outline) or an intergenic region as a negative control (Fig. 2C). RT-

qPCR analysis just 48 hours after doxycycline induction detected statistically significant 

downregulation of hub-connected genes JUN, FGGY-DT, and FGGY in cells carrying the 

enhancer hub gRNA compared to cells targeted with the negative control gRNA (Fig. 2C), 

providing a proof-of-concept for the role of 3D hubs in coordinating activation of broader 

oncogenic programs.  
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In addition to the inter-patient heterogeneity, GBM (and GSCs) are characterized by intra-

tumoral heterogeneity as documented by scRNA-seq analyses5,11. As our HiChIP analysis is 

performed on bulk populations, we wondered to what degree the detected hyperconnected hubs 

could also reflect co-regulation at a single cell level. To this end, we took advantage of the 

published scRNA-seq data for each of our profiled GSC patient samples12 to test in a more 

systematic manner the degree of gene coregulation in the context of hubs by calculating the 

spearman correlation coefficient (rho value) of single-cell RNA levels for each pair of genes that 

are connected in the same hub (in-hub pairs). We observed a significantly higher spearman 

correlation (rho value) of in-hub gene pairs relative to random control groups of similarly linear 

distanced matched gene-gene pairs (Fig. 2D). These results support that gene pairs within hubs 

have higher probability of coregulation at a single cell-level than expected by chance based on 

their linear distance.  

As our hyperconnected 3D hubs usually contain more than one gene pair, we next 

checked the degree of coregulation among all genes within each hub by calculating the mean 

spearman correlation of all connected gene-gene pairs. Stratification of hubs based on this score 

revealed a broad distribution of coregulation scores (Fig. 2E and Fig. S3C). Genes within top 

coregulated hubs showed highly correlated scRNA-seq counts and similar distribution of 

expression across cell subpopulations in the UMAP, suggesting that this hub is either active or 

inactive as a unit in the different cellular states. Importantly, genes that were either skipped or 

outside of the hub showed low correlation with hub-connected genes and different distribution of 

expression on the UMAP, as shown for the example of the TMPO-APAF1 hub in the GSC#320 

sample (Fig. 2F). Among the most highly coregulated hyperconnected hubs in each GSC sample, 

we found known oncogenes (COSMIC database used as reference), such as TCF3, EGFR, 

MTOR, MET, MYCN, JUN and CDK6, connected to many other genes of lesser or unknown 

importance in cancer (Fig. 2E and Fig. S3C). For example, the TCF3 gene in the #1206 GSC 

sample was part of a highly interacting and coregulated hub involving 5 additional genes (MEX3D, 

MBD3, UQCR11, TCF3, REXO1, and KLF16) which showed similar distribution of expression 

across cell subpopulations in the UMAP (Fig. 2G).  On the other hand, genes within hubs with low 

coregulation scores exhibited more random expression patterns across subpopulations such as 

in the example of the JUND hub in GSC#1206 (Fig. 2G). Of note, hubs with high mean correlation 

scores—compared to the ones with low coregulation—had a significantly higher number of 

connected genes and higher proportion of promoter interactions compared to enhancers (Fig. 

S3D and S3E). This suggests that spatial clustering of multiple gene promoters might facilitate 

their coordinated expression, as recently shown in other contexts.66-68 Together, these results 
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strongly support that highly interacting 3D regulatory hubs can function as centers of 

transcriptional coregulation promoting robust expression of well-known oncogenes/drivers in 

concordance with a broader activation of complex transcriptional programs.  

 

Silencing of a highly recurrent 3D hub with an unknown role in glioblastoma alters the 

transcriptional programs and cellular properties of GSCs  

Our integrative analysis supports a strong link between highly connected 3D regulatory 

hubs and co-activation of multiple GBM-associated genes and pathways, suggesting a potentially 

central role for hubs in modulating oncogenic programs and properties. Therefore, we 

hypothesized that targeting specific 3D hyperconnected hubs could disrupt the regulatory logic of 

GSCs and their oncogenic properties. To functionally test this hypothesis, we focused on 3D 

enhancer hubs that (i) show high degree of 3D connectivity across our GSC samples and low or 

no connectivity in NSCs and (ii) highly recurrent H3K27ac signal in an independent cohort43 of 

n=44 patient-derived GSCs compared to n=10 normal NSCs (iii) did not contain known oncogenic 

drivers or genes that have been previously associated with GBM (Fig. 3A and Fig. S4A). We also 

prioritized hubs that overlapped with GSC-specific super enhancers. Among our top candidates 

was an intronic enhancer (Chr 3:67,241,590-168,608,307) located ~10kb away from the GOLIM4 

transcriptional start site, which forms complex interaction networks with up to six different genes 

(GOLIM4, SERPINI1, PDCD10, WDR49, ZBBX, LINC01997) in all four GSC lines but not in NSCs 

(Fig. 3A). Consistently, it shows strong enhancer activity in the independent cohort of GSC 

samples, while is inactive in NSCs (Fig. S4A). Although none of the genes within this hub have 

been directly linked to GBM pathogenesis, some of the target genes have been shown to be 

involved in cell proliferation, epithelial-to-mesenchymal transition, and tumor growth in other 

cancer types.69-73 

To experimentally perturb this enhancer, we used the stable, dox-inducible CRISPRi GSC 

line (320, MES-subtype) that we generated to test the JUN hub that harbors a doxycycline (dox)-

inducible dCas9-KRAB-P2A-GFP cassette (Fig. S3B) and introduced guide RNAs (gRNAs) that 

target either the GOLIM4 enhancer hub or a nearby inactive, intergenic region as a negative 

control (Fig. 3B). RT-qPCR analysis 48 hours after doxycycline induction detected a significant 

downregulation of all hub-connected genes in cells carrying the GOLIM4 hub gRNA (HUB 

CRISPRi) compared to cells targeted with the negative control gRNA (neg ctrl) (Fig. 3B). 

Importantly, the nearby gene PLD1, which is not connected to the hub or other housekeeping 

genes, such as RPL13, remained unaffected. To confirm these results in an independent patient 
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sample, we generated a second stable dox-inducible dCas9-KRAB-P2A-GFP system in the 810 

line and observed significant downregulation of hub-connected genes (Fig. S4B). 

We next investigated the global transcriptional consequences of GOLIM4 hub perturbation 

on GSCs at the single cell level using the GLICO model18 in which our stable CRISPRi GSCs 

were co-cultured with normal hESC-derived brain cerebral organoids for seven days in the 

presence of doxycycline (Fig. 3C). By imaging the presence and distribution of GFP (dCas9-

KRAB) signal as a qualitative assessment of the ability of GSCs to invade GLICO, we did not 

observe any large differences between the GOLIM4 HUB CRISPRi and the Neg Ctrl (Fig. 3C). 

After GLICO dissociation and sorting of dCas9-KRAB GFP-expressing GSCs (Fig. S4C), we 

performed scRNA-seq using the Illumina 10X platform. Upon standard filtering, scaling, and log-

normalization with Seurat,74 we clustered ~4,330 high quality cells through a shared nearest 

neighbor (SNN) modularity optimization-based algorithm and performed dimensionality reduction 

through Uniform Manifold and Projection (UMAP) (Fig. 3D-F). As expected, we found a significant 

downregulation of GOLIM4 hub-connected genes in the HUB CRISPRi cells compared to the neg 

ctrl (Fig. 3F). The UMAP of cells separated by condition showed a clear transcriptional shift in the 

HUB CRISPRi cells manifested as a preferential gain of cells in cluster 5 and loss of cells in cluster 

6 (Fig. 3D-F). These shifts could not be explained by differences in cell cycle stage (Fig. S4D). 

Moreover, these changes did not reflect shifts in the Neftel et al. meta-module cell state 

assignment (MES, OPC, NPC and AC-like),5 as revealed by calculating and assigning individual 

cell meta-module scores using the AddModuleScore Seurat function (Fig. S4E, see Methods). In 

agreement with the mesenchymal nature of the parental 320 GSC line, both samples (HUB 

CRISPRi and neg ctrl) were predominantly characterized by cells in the MES-like state (>75%), 

including the differential 5 and 6 clusters. Overall, all detected states showed nearly identical 

proportions in both conditions except for the OPC-state, which was slightly increased in HUB 

CRISPRi sample (~3% as opposed to ~1.5% in the control cells) (Fig. S4E). To understand the 

nature of the global transcriptional changes between HUB CRISPRi and neg ctrl samples, we 

focused on the differentially expressed genes (p.adj. <0.05) between clusters 5 vs. 6 (n=916). 

Gene ontology analysis for these genes showed significant enrichment for oncogenic programs 

such as MYC targets, mTORC1 signaling, and oxidative phosphorylation (Fig. 3G). These results 

indicate that persistent silencing (7 days of induction) of a single hyperconnected hub in GSCs is 

sufficient to shift the global transcriptional program of GSCs leading to downregulation of 

oncogenic pathways involved in aggressive disease. 

To interrogate the degree to which GOLIM4 hub perturbation in GSCs leads to altered 

functional properties, we measured the impact on GSC clonogenicity using extreme limiting 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


dilution assays. These experiments consistently documented that HUB CRISPRi GSCs had a 

significantly lower clonogenic capacity compared to negative controls and required >5 times 

higher input cells per well to form new spheres (Fig. 3H). The reduced clonogenicity upon GOLIM4 

hub perturbation was also confirmed in the independent 810 Hub CRISPRi sample (Fig. S4F). 

Together, these findings demonstrate that epigenetic silencing of a single multiconnected 3D 

regulatory hub is sufficient to perturb not only the activity of hub-connected genes but also the 

transcriptional network and cellular properties of GSCs. This provides proof of concept for the role 

of 3D hubs as potential centers of the GSC regulatory logic as well as highlights its potential to 

nominate novel regulatory nodes central to transcriptional programs and cellular behavior.  

 

3D regulatory hubs across cancer types enrich for oncogenic programs and associate with 

worse outcomes  

We next investigated the presence and nature of 3D regulatory hubs across different 

cancer types in addition to GBM by analyzing published H3K27ac HiChIP cancer datasets with 

sufficient quality to call enhancer-promoter interactions and more than one patient sample or cell 

line per cancer type. This analysis covered seven cancer types (GBM, Melanoma (M), 

Endometrial Carcinoma (EC), Breast Cancer (BC), Ewing Sarcoma (ES), HepatoCellular 

Carcinoma (HCC) and Small-cell Lung Cancer (SCLC)) for a total number of 19 samples (12 

cancer cell lines, 7 primary tumor/derived samples) (Fig. S5A-B). K-means clustering of 

hyperconnected hubs per cancer type (top 10% by number of connections, common in at least 

2/3 samples), revealed six distinct groups, which either represented cancer type-specific hubs or 

hubs with high connectivity across multiple cancer types (MULTI) (Fig. 4A). Gene ontology 

analysis of all hub-connected genes per cluster showed that MULTI-cancer hubs were strongly 

associated with universal oncogenic pathways and signatures such as the p53 pathway, MYC 

targets, PI3K/AKT/mTOR Signaling, G2-M checkpoint, and E2F targets (Fig. 4B). On the other 

hand, cancer type-specific hubs enriched for more specialized processes, such as UV response 

for the melanoma-specific cluster, estrogen response for the endometrial cluster, and fatty acid 

metabolism, interferon alpha response, and adipogenesis programs for the hepatocellular 

carcinoma regulatory networks (Fig. 4B). In agreement with our findings in GSC samples, these 

analyses suggest that hyperconnected hubs in each cancer type associate with critical genes for 

the regulation of the identity and oncogenic properties of the tumor. 

Consistent with the gene ontology analysis of the multi-cancer hub cluster, we observed 

that hubs with high interactivity across samples involved prominent oncogenes such as MYC (Fig. 

4C). Although these genes appear multiconnected in all samples, the specific 3D interaction 
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networks vary substantially among patients and cancer types (Fig. 4C). Based on the high 

coregulation scores of genes within GSC hubs, we could postulate that hubs with distinct 

interactions patterns foster different gene coregulation networks in each patient and cancer type, 

leading to changes beyond the higher expression of well-known oncogene/drivers. For example, 

the MYC promoter hub interacts with dozens of enhancers but also with different combinations of 

gene promoters across all cancer types (MYC, CASC11, LINC00824, LRATD2, PVT1, TMEM75, 

CASC19, CASC8, CCAT2, POU5F1B, PCAT1, PRNCR1, LINC00861, CCDC26) (Fig. 4C). Aside 

from MYC itself, none of the interacting genes appear on Hallmark MYC targets gene lists (V1 

and V2),75 suggesting the potential value in using 3D enhancer-promoter interactivity data to gain 

a deeper understanding and uncover previously unappreciated genes involved in canonical 

cancer signaling pathways.  

Finally, to test the potential prognostic value of the identified hub clusters, we used TCGA 

patient survival data and observed that higher expression of melanoma-specific and endometrial 

carcinoma-specific hub-connected genes associated with statistically significant worse prognosis 

in the respective patient cohorts (Fig. 4D). Overall, in extending our study to include seven 

different cancer types, we found highly conserved but also cancer-specific hyperconnected 3D 

regulatory hubs and established important links with oncogenic programs and cell identity as well 

as with more aggressive disease.  

 

Both genetic alterations and epigenetic factors associate with 3D regulatory hubs in GSCs 

We next investigated potential genetic and epigenetic mechanisms that could be 

associated with highly interacting 3D regulatory hubs across patients. Structural variants (SVs), 

such as duplications, deletions, or translocations, have all been reported to alter local 3D 

chromatin organization and nearby gene and enhancer activity either by amplifying the regulatory 

input on target genes and/or by enabling aberrant communication with new enhancers (enhancer 

hijacking).76-81 In agreement, we noticed that several hyperconnected hubs in the GSC samples 

occurred within highly amplified genomic regions (e.g. EGFR, MYCN), as detected by low 

genomic coverage sequencing in the respective samples (Fig. S5C), potentially reflecting the high 

copy number of these regions, which have been shown to frequently form extrachromosomal DNA 

in cancer.82-84 Intriguingly, the EGFR hub and other hubs associated with SVs in some GSC 

samples showed high degree of connectivity also in the samples that had no obvious genomic 

alterations (Fig. S5C). In fact, most of the hyperconnected hubs -when visually inspected in IGV- 

show no evidence of SVs in the respective samples (e.g. JUN, FOXG1, PDGFR, MYC) (Fig. S5C). 

To more systematically address the degree to which SVs can explain patient-specific or GSC 
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subtype-specific hub formation, we applied the EagleC pipeline85 (See Methods) on all HiChIP 

data across cancer types to call SVs at 10, 25 and 50kb resolution in each sample. EagleC was 

successful in detecting CNVs across all lines (Fig. S5D), including the previously detected EGFR 

(specifically in 810 and 1206 samples) (Fig. 4E) and MYCN amplification (in 1206 sample). A 

large fraction (40-100%) of EagleC-predicted SVs overlapped with hyperconnected hubs in the 

respective sample. These overlaps included some high-confidence, candidate driver SVs, as 

previously nominated using Whole Genome Sequencing data from a larger cohort of 

ICGC/PCAWG cancer patients by the CSVDriver pipeline, which uses a generalized additive 

model to identify regions with SV breakpoints that occur more frequently than random expectation 

indicating positive selection (Fig. S5E).86 Importantly, the vast majority (76-98% across samples) 

of hyperconnected hubs did not overlap with any predicted SV in the respective samples (Fig. 

4F). These analyses indicate that genetic alterations associate with (and might drive formation of) 

some hyperconnected hubs involving important oncogenes but cannot explain the majority of 

detected hubs. 

 The poor overlap of hubs with genetic alterations prompted us to consider epigenetic 

mechanisms of hub organization. For example, aberrant expression and/or binding of specific TFs 

or cofactors might nucleate the assembly of 3D hubs possibly through biomolecular condensation 

as previously described in various contexts.31,87-90 To gain insights into the candidate protein 

factors that might drive hub formation, we performed association analysis using published ChIP-

seq datasets through the EnrichR (ChIP-X Enrichment Analysis, ChEA).91 A large number of 

lineage-specific TFs, architectural factors (YY1 and CTCF) and co-activators, such as BRD4 and 

SMARCA4, appeared significantly enriched either across all hubs or in selected hub clusters (Fig. 

4G). Some of them have been previously proposed to mediate enhancer-promoter interactions 

(e.g CTCF, YY1, FOXP and RUNX proteins)92-95 or spatial clustering of ecDNA hubs through 

biomolecular condensation (BRD4)82 in the nucleus of GBM or other cancer lines. In some cases, 

the enriched factors have known links to the biology of the specific tumor, such as the EGR1 in 

the Ewing sarcoma96 hub cluster, MITF in melanoma97 or the HNF1A98 and FOXP1,99 which were 

enriched in HCC hubs. Intriguingly, for many of the hub-enriched protein factors, their encoding 

genes were also parts of hyperconnected hubs in the respective tumors, suggesting a positive 

feedback loop. The potential centrality of these factors in promoting oncogenic properties was 

also supported by the significant association of their high expression levels with worse prognosis, 

as exemplified by RUNX2 and FOXA1 in GBM (IDH-wt) (Fig. 4H). Together, these analyses 

nominate potential mechanisms of hub formation in glioblastoma both by genetic alterations and 

by epigenetic factors.  
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DISCUSSION  

Cell-type specific transcriptional programs are dictated by the activity of enhancer elements and 

the way they regulate their target genes in the 3D nucleus. Dysregulation of enhancer function or 

enhancer-promoter communication through genetic and epigenetic mechanisms are emerging as 

important processes in oncogenic transformation and progression.100-105 In this study, we 

generated a comprehensive atlas of the enhancer landscapes and 3D interactomes in patient 

derived-GSC samples to gain insights into the regulatory logic of this deadly and heterogeneous 

cancer and identify potential central nodes of gene regulation. Based on the integration of bulk 

and single cell RNA-seq data from the same patients, the association analyses using other 

published datasets and independent patient cohorts, and the proof-of-concept perturbation 

experiments, our findings strongly support that hyperconnected 3D regulatory hubs can function 

as central regulatory nodes of tumorigenic programs by connecting and coregulating multiple 

cancer-associated genes and pathways.   

H3K27ac HiChIP or similar approaches have been successfully applied to capture the 

complexity of 3D regulatory interactions and assign enhancers to their putative target genes either 

in the context of normal development or in cancer, including GBM.21-24,32,106,107 Here, by profiling 

new patient-derived GSC in comparison with normal NSCs and by re-analyzing published HiChIP 

in other cancer types, we focused on the identification of hyperconnected 3D hubs which have 

been previously associated with cell identity programs and significantly higher transcriptional 

levels compared to low connected genes.33,87,108 In agreement with the high inter-patient 

heterogeneity of GBMs,1,5,9 the identified hubs were largely patient-specific but showed a 

substantially higher overlap among samples with similar molecular subtypes (MES vs CLA). We 

also identified a few hundred of shared hyperconnected hubs across GSC samples, a fraction of 

which was also conserved across cancer types. Importantly, genes within 3D hubs seemed to 

share four key properties: (i) high transcriptional levels compared to low connected genes, (ii) 

high degree of coregulation, (iii) strong enrichment for oncogenic programs, and (iv) —often—

significant association with worse patient outcomes. Based on these properties, we speculated 

that targeting 3D hubs could have profound effects on the cancer regulatory logic and oncogenic 

properties. Indeed, our proof-of-concept perturbation of a highly recurrent, previously 

uncharacterized hub in GSCs led to concordant downregulation of all hub-connected genes, a 

significant transcriptional reprogramming beyond the hub-- including downregulation of multiple 

pathways associated with worse prognosis, and substantially reduced clonogenic properties. 
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Future high throughput perturbations of hyperconnected hubs followed by single-cell analysis (e.g 

PERTURB-seq)109 combined with machine learning models will enable a deeper understanding 

of the key features and functions of hubs and a more accurate prediction of the downstream 

effects on the oncogenic program and properties.  

 Although the higher transcriptional activity and the coregulation potential within hubs have 

been reported before in other contexts, here we provide for the first time, genome-wide evidence 

of coregulation at the single cell level. We have previously demonstrated that hub-connected 

genes have higher probability of coregulation during cell fate transitions (e.g reprogramming or 

early embryonic lineages) compared to non-hub gene pairs within the same TADs or in linear 

proximity based on bulk expression changes.24,31 In other studies, individual multi-connected loci 

(e.g the alpha globin locus in mammals and housekeeping promoters in Drosophila) have been 

dissected to show co-activation of interacting genes.34,66,110,111 Our approach integrated genome-

wide 3D enhancer-promoter interactivity data with matched scRNA-seq to systematically 

characterize the correlation of expression levels among hub-interacting gene pairs in comparison 

with pairs of genes that are not connected to the same hub but are in similar linear distances. 

Hub-connected gene pairs showed significantly higher correlation at a single cell level. Top 

coregulated hubs included critical master regulators and oncogenes connected with many 

putative enhancers and other genes of lesser or unknown roles in GBM or cancer. The high 

degree of coregulation within hubs combined with the fact that hyperconnected hubs form variable 

networks of interactions in different patients and tumors provide a new basis for the high plasticity 

and heterogeneity of cancer programs. The concordant (hyper)activation of different, seemingly 

unrelated genes reveals new, complex oncogenic networks which could lead to the discovery of 

novel interconnections and interdependencies in each patient or cancer subtype, enabling better 

predictions of treatment response or resistance and the development of combinatorial therapies.  

Disruption of 3D genomic architecture through structural variants has long been theorized 

to be a potential mechanism of oncogenic transformation and progression,76,78,112 and we did 

determine that several regions of predicted structural variants (40-100%) overlapped with 

hyperconnected hubs. However, the vast majority (76-98%) of our hyperconnected 3D hubs do 

not overlap with predicted structural variants suggesting that although structural variation is a 

potential mechanism of de novo hub formation, there are other driving mechanisms such as 

epigenetic factors. Through applying ChEA across our larger set of seven cancer types, we were 

able to nominate transcription factors, architectural factors, and co-activators which are 

significantly enriched across all hubs or selectively per cancer type, some of which have been 

previously proposed to mediate enhancer-promoter interactions. More work will be required to 
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determine mechanisms of de novo hub formation and dissect the complex interplay between 

somatic mutations, complex structural variants, and epigenetic mechanisms regulating oncogenic 

programs.  

Together these findings support that hyperconnected 3D hubs might operate as regulatory 

centers of oncogenic programs in glioblastoma and other tumors. Therefore, identifying and 

targeting complex 3D hubs or the factors that support their organization and function could enable 

a deeper understanding of genes and pathways that are central to tumorigenic programs and 

nominate novel actionable therapeutic targets.  

 

LIMITATIONS OF THE STUDY 

Since the cell of origin of GBM still remains uncertain45,113,114 there is no perfect comparison for 

determining 3D enhancer-promoter rewiring during gliomagenesis and for identifying cancer-

specific 3D hubs. The comparison of 3D interactomes between GSCs and NSCs theoretically 

enables the identification of shared features that likely associate with the “original” primitive 

neuroectodermal cell program versus GSC-unique features but does not guarantee that the latter 

represents true rewiring during oncogenesis. On the other hand, the number of GSC samples that 

we characterized is unlikely to capture all relevant 3D networks and hubs, especially given the 

high inter-patient heterogeneity in GBM. To partially overcome this limitation, we utilized published 

datasets from other GSC lines to prioritize hubs with highly recurrent enhancer activity (e.g 

GOLIM4 hub) as well as TCGA patient data to validate the relevance of our detected hubs on 

GBM biology. Another important consideration when interpreting bulk genomics data from GBM 

is the high intra-patient heterogeneity of these tumors. This heterogeneity makes it difficult to 

interpret whether the hyperconnected 3D hubs have the same interaction network in all cells or 

represent the sum of simpler “structures” and interactions across different subpopulations. The 

variable mean scores of gene coregulation within hubs as revealed by meta-analysis of scRNA-

seq data could partly reflect this heterogeneity, where hubs with high correlation coefficient among 

hub-connected genes are likely “constitutive hubs” in all cells in the sample, while hubs with low 

mean coregulation could be mixture of smaller, distinct hubs in cell subpopulations. Finally, 

although our hub analysis across cancer types reveals only a small overlap with SV called by 

EagleC, it is likely that smaller, or more complex or subclonal SVs are missed with this approach.  
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FIGURE LEGENDS  

Figure 1. Genes within hyperconnected 3D hubs associate with oncogenic programs, GBM 

biology and worse patient survival 

 

(A) Schematic illustration of our experimental strategy, including GBM patient-derived sample 

IDs, molecular subtypes, strategy for NSC generation and list of datasets collected for this study 
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(MES = mesenchymal subtype, CLA = classical subtype). (B) Principal Component Analysis 

(PCA) of all replicates based on their RNA-seq profiles. Only the top 10% most variable genes 

across samples were considered. (C) Plot showing the median normalized RNA-seq levels 

(expressed in transcripts per million, TPM) of genes with different degrees of H3K27ac HiChIP 

connectivity across samples. 10kb anchors were ranked based on their connectivity in deciles 

from lower to highest (1 to 10) and the median expression of all genes associated with each decile 

are displayed (D) Top: Schematic of 3D regulatory hub definition, Left: Venn diagram displaying 

numbers of 3D hyperconnected hubs (top 10% by number of connections) that are either unique 

for each molecular subtype (common between GSC samples of the same subtype) or shared 

across all GSC samples or NSCs. Right:  Gene Ontology (EnrichR, Molecular Signature Database 

Hallmark 2020) of interacting genes within MES-specific (teal color) or CLA-specific (peach color) 

hubs. (E) IGV example of common GSC 3D regulatory hub (highlighted in gray) SOX9 along with 

the H3K27ac ChIP-seq signals and the H3K27ac HiChIP arcs for each sample. (F) Heatmap 

depicting hierarchical clustering of a TCGA brain tumor patient cohort (n=673) based on the 

expression of common GSC hubs connected genes (from panel (D)). The different colored bars 

at the top indicate (top) the different clusters (purple: high hub expression vs green: low-hub 

expression), (second) the original TCGA classification of the patients into GBM (red) and Low-

Grade Glioma (LGG, blue), (third) the patients status as IDH-wt (black) or IDH-mutant (grey) and 

(bottom) the absence (light color) or presence (dark color) of at least one GBM mutant variant 

(TERT mutation, EGFR amplification/mutation, Trisomy 7 (partial or full)/deletion of chromosome 

10, CDKN2A deletion) is also shown.  (G) Bar plot depicting the percentages of GBM, LGG, IDH-

wt, and GBM mutant patients within each 3D hub gene expression cluster from (F). (H) Boxplots 

showing the distribution and median expression of 3D hub genes per cluster split by tumor type 

(as originally assigned by TCGA). (I-K) Kaplan-Meier survival curves of (I) LGG patients (as 

originally classified by TCGA) or (J) GBM patients (as originally classified by TCGA) or (K) TCGA 

IDH-wt patients, each time clustered based on their expression of 3D hyperconnected GSC hub 

genes. Patients were split into quartiles based on their mean expression of hub-connected genes, 

and only patients with known survival outcomes were included. The numbers of patients in each 

cluster are shown on the top. P values from log-rank test are reported. (L) Heatmap depicting 

hierarchical clustering of expression of super-enhancer linear proximal genes (within 10kb) of 

TCGA cohort of GBM (red) and Low Grade Glioma (LGG, blue) patients.  (M) Bar plot depicting 

the percentages of GBM, LGG, IDH-wt, and GBM mutant patients within each SE-cluster from 

(L). 
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Figure 2. 3D hubs in GBM coordinate and expand known oncogenic transcriptional 

programs. 

(A) Heatmap displaying the relative connectivity (z-score) of (proto)oncogene-interacting hubs 

across samples from this study and two additional GSC/GBM 3D datasets. (B) IGV track depicting 

H3K27ac HiChIP arcs of a 3D enhancer hub (outlined in red) interacting with JUN and other genes 

across multiple GSC samples. (C) Top: Schematic showing all gene promoters that are connected 

to the JUN hub (shown in (B)) and the location (denoted by lightening bolt) of the guide RNAs 

used for CRIPSRi targeting of the JUN enhancer hub. Bottom: Relative mRNA levels of all JUN-

connected genes upon CRISPRi silencing of JUN hub (48h) expressed relative (percentage) to 

the negative control values. Dots indicate independent replicates and experiments (n=3). Error 

bars indicate mean+/-standard deviation (s.d.). Asterisks indicate significance (*<0.05, **<0.005) 

as calculated by Student t-test. (D) Boxplots showing the distribution and median Spearman 

correlation values (rho) for gene-gene pairs connected to the same hub (in hub) compared to 

random, non-hub pairs with matched linear distances (Random) per sample. P-values were 

calculated by Wilcoxon rank test.  (E) Ranking of 3D hubs in GSC#1206 based on the mean 

spearman correlation scores of all hub-connected gene pairs per hub. The red dashed line 

indicates the inflection point of the curve. Oncogenes according to the COSMIC cancer gene 

census are annotated. Red circles highlight the TCF3 hub (highly coregulated) and the JUND 

hubs (low coregulation score) which are shown in (G). (F) Left: Scatterplots of the scRNAseq 

counts and the respective Spearman correlation scores between each pair of hub-connected 

genes (black) and non-hub connected/skipped genes (gray) in a highly coregulated hub (by mean 

spearman correlation rho) in GSC #320. Right: UMAP of GSC#320 with kernel density estimator 

projection of corresponding individual hub genes (black) and skipped genes (gray) from left 

scatterplots.  (G) UMAP of GSC#1206 scRNA-seq data with kernel density estimator projection 

of individual hub-connected genes of the (left) highly coregulated TCF3 hub or (right) the low-

coregulated JUND hub according to the stratification shown in panel (E).  

 

Figure 3. Targeting of a recurrent 3D hub with unknown role in glioblastoma causes 

transcriptional shifts and reduced clonogenicity. 

(A) HiGlass visualization of the GOLIM4 3D enhancer hub (highlighted in yellow) showing the 

H3K27ac HiChIP contact matrices along with the respective HiChIP arcs and the H3K27ac ChIP-

seq peaks for all GSC and NSC samples. Of note, this region is not active nor connected in NSCs. 

(B) Top: Schematic showing all gene promoters that are connected to the GOLIM4 hub and the 

location (denoted by lightening bolt) of the guide RNAs used for CRIPSRi targeting either the 
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GOLIM4 enhancer hub (HUB CRISPRi) or a nearby, intergenic negative control region (neg ctrl). 

Bottom: Relative mRNA levels of all GOLIM4-connected genes (black) or non-hub control genes 

(grey) upon CRISPRi silencing of GOLIM4 hub (48h) expressed as percentage relative to the 

negative control values. Dots indicate independent replicates and experiments (n=5). Error bars 

indicate mean+/-standard deviation (s.d.). Asterisks indicate significance (*<0.05, **<0.005) as 

calculated by Student t-test. (C) Schematic of the cerebral organoid glioma model system 

(GLICO)17 where hESC-derived cerebral organoid are co-cultured with our CRISPRi targeted 

GSC cells in the presence of doxycycline (for dCas9-KRAB expression) for seven days prior to 

imaging and FACS of GFP+ cells for scRNA-seq analysis. (D) Left: Combined UMAP and 

clustering of all HUB CRISPRi and negative control GFP+ sorted cells following the experimental 

strategy shown in C. Right: Bar graph showing the percentage of cells representing each cluster 

per condition. CRISPRi cells in red, neg ctrl in blue. Dashed line represents expected proportion 

of neg ctrl samples per cluster if evenly distributed between clusters. (E) UMAPs with clustering 

displaying scRNA-seq data of either HUB CRISPRi cells (left) or neg ctrl cells (right). The two 

most differential clusters (5 and 6) are highlighted in circles. (F) Top: UMAP with projections of 

kernel density estimators of expression of GOLIM4 hub-connected genes. Bottom: Violin plots 

comparing the distribution of scRNA-seq levels of each hub-connected gene between the HUB 

CRIPSRi sample and the negative control. Asterisks indicate significance (pvalue<0.001) based 

on Wilcoxon test. (G) Gene ontology analysis (EnrichR, Molecular Signature Database Hallmark 

2020) for genes scored as significantly perturbed (p adj. < 0.05) upon GOLIM4 hub silencing. The 

comparison focused on differentially expressed genes between clusters 5 and 6. (H) Extreme 

limited dilution assays comparing HUB CRISPRi GSCs with negative control GSC after 12 days 

in doxycycline (n= 24 replicates per dilution per condition, n=5 independent experiments). P value 

was calculated based on the difference between groups as calculated for the binomial generalized 

linear model fit for each condition. 

 

Figure 4. 3D hubs across cancer types enrich for cancer-specific and universal oncogenic 

programs and only partly associate with structural variants 

(A)  Heatmap depicting k-means clustering of all hyperconnected 3D regulatory hubs based on 

their scaled and normalized connectivity values across samples and cancer types. BC: Breast 

Cancer, EC: Endometrial Carcinoma, ES: Ewin Sarcoma, M: Melanoma, GSC: Glioblastoma, 

SCLC: Small Cell Lung Carcinoma and HCC: Hepatocellular Carcinoma. (B) Gene Ontology 

(EnrichR, Molecular Signature Database Hallmark 2020) of all hub-connected genes per cancer 
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type for each respective cluster. OR: Odds Ratio observed vs expected. (C) Example of the multi-

cancer MYC promoter hub showing high heterogeneity of interactions (shown as HiChIP arcs) 

across samples. (D) Kaplan-Meier survival curves showing that TCGA melanoma and 

endometrial carcinoma patients with high mean expression of genes connected to the respective 

M- or ES- hub clusters as defined in (A) have significantly worse outcomes.  Patients with very 

high/low expression were derived using the 1st and 4th quartiles, respectively. P values from 

logrank test are reported. (E) Normalized H3K27ac HiChIP contact matrices for the EGFR locus 

across GSC samples with EagleC detected SVs denoted by dashed circles. The ChIP Input of 

each sample is displayed below their respective sample matrix. (F) Bar graph displaying numbers 

and percentages of 3D hyperconnected hubs that overlap with EagleC predicted SV in each 

sample. Overlapping SV predictions were merged and counted as one. (G) Dot plot showing the 

results of ChIP Enrichment Analysis (ChEA by EnrichR) for select protein factors that are 

significantly enriched on hub-connected genes specific for each k-means cluster as defined in 

(A). OR: Odds Ratio observed vs expected. (H) Kaplan-Meier survival curves showing association 

of ChEA-nominated factors RUNX2 (left) or FOXA1 (right) expression levels with survival 

outcomes of TCGA GBM patients (IDH-wt only). Patients with very high/low expression were 

derived using 1st and 4th quartiles. p values from logrank test are reported. 

 

SUPPLEMENTAL FIGURE LEGENDS 

Supplementary Figure 1 (S1) 

(A) Heatmap with hierarchical clustering displaying the expression of Verhaak et al. subtype 

signature genes per sample. Scale represents z-score of normalized RNA-seq counts. RNA-seq 

was performed in two independent replicates per sample. (B) PCA of all replicates based on their 

ATAC-seq profiles. ATAC-seq was performed in two independent replicates per sample. (C) PCA 

of all replicates based on their H327ac ChIP-seq signal. H3K27ac ChIP-seq was performed in 

two independent replicates per sample. (D) K-means clustering of H3K27ac ChIP-seq peaks for 

all samples. (E) PCA of all replicates based on their H3K27ac HiChIP profiles. The analysis was 

focused on the top 10% most variable 100kb windows. (F) Bar plot depicting respective 

percentages of H3K27ac HiChIP loop types per sample (PX = promoter— “X” loop, PP = 

promoter-promoter loop, EX = enhancer – “X” loop, EP = enhancer—promoter loop, EE = 

enhancer—enhancer loop). (G)  Left: H3K27ac HiChIP contacts per 10 kb anchor per sample. 

Right: Boxplots showing the distribution and median H3K27ac HiChIP loop size (in kb) per 

sample. (H) UPSET plot of H3K27ac HiChIP loops. Number of loops per sample, subtype-specific 
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loops, and GSC-specific loops as noted. (I) Boxplots showing the distribution and median 

normalized RNA-seq levels (TPM) of H3K27ac HiChIP looped vs. non-looped genes per sample. 

(J) Boxplots showing the distribution and median H3K27ac HiChIP connectivity (number of 

distinct interactions per 10kb anchor) around signatures genes of the Mesenchymal or Classical 

subtypes (per Verhaak et al.) across all samples. 

 

Supplementary Figure 2 (S2)  

(A) Histogram showing the distribution of H3K27ac HiChIP anchor connectivity per sample. Top 

10% of hubs by number of connections (hyperconnected hubs) highlighted with cutoff number of 

connections per sample noted. (B) IGV examples of subtype specific GSC 3D regulatory hubs 

(highlighted in gray) along with the H3K27ac ChIP-seq signals and the H3K27ac HiChIP arcs for 

each GSC sample and NSCs. (C) Boxplots showing the distribution and median H3K27ac HiChIP 

connectivity (number of distinct interactions per 10kb anchor) around GBM essential genes as 

determined by CRISPR screen in Richards et al. (genes with mean Bayes Factor score >10 

included in analysis) across all samples. (D) Bar plot depicting percentages of patients with 

specific characteristics (e.g IDH-wt or ODH-mut or GBM-mut) with the high-hub expressing 

(purple) or low hub-expressing cluster (green) based on Fig.1F. Patients are split based on the 

original TCGA classification as GBM or LGG. 

 

Supplementary Figure 3 (S3)  

(A) Boxplots showing the distribution and the mean connectivity of the most (top decile) and least 

(bottom decile) connected 3D hubs, as detected in our 4 GSC samples, across two independent 

published 3D genomics datasets in GSC/GBM samples (Xie et al., 2024; Chakraborty et al., 

2023). The numbers of samples from each study are shown at the top. (B) Representative live 

cell images of parental 320 sample and doxycycline-inducible CRISPRi-GFP expression in 

CRISPRi sample with flow cytometry quantification of GFP expression levels. (C) Ranking of 3D 

hubs per GSC sample based on the mean spearman correlation scores of all hub-connected gene 

pairs per hub. The red dashed line indicates the inflection point of the curve. Oncogenes according 

to the COSMIC cancer gene census are annotated. (D) Boxplots depicting the distribution and 

median promoter-enhancer ratio of hyperconnected 3D hubs separated into top 10% vs. bottom 

10% mean hub Spearman correlation rho scores per sample. (E) Boxplots showing the 

distribution and median number of connected genes of hyperconnected 3D hubs separated into 

top 10% vs. bottom 10% mean hub Spearman correlation rho scores per sample. P-values were 

calculated by Wilcoxon rank test. 
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Supplementary Figure 4 (S4)  

(A) Left: Genome browser view of H3K27ac ChIP-seq profiles for GSC and NSC samples in the  

Mack et al., 2019 data set with the targeted intergenic GOLIM4 enhancer highlighted in grey.  

Right: boxplot showing the distribution and median of corresponding H3K27ac ChIP-seq signal of 

the targeted GOLIM4 enhancer. (B)  Relative mRNA levels of all GOLIM4-connected genes 

(black) or non-hub control genes (grey) upon CRISPRi silencing of GOLIM4 hub (48h) in the 810 

sample expressed as percentage relative to the negative control values. Dots indicate 

independent experiments, each with n = 2. Error bars indicate mean+/-standard deviation (s.d.). 

Asterisks indicate significance (*<0.05, **<0.005) as calculated by Student t-test.   (C) Flow 

cytometry quantification of GFP+ cells from cerebral organoid co-culture (GLICO) experiments. 

(D) Violin plot showing distribution of cell cycle phase scores of GFP+ cells from scRNA-seq 

GLICO experiment. (E) UMAP of scRNA-seq data with projection of Neftel et al. meta module 

single cell states with pie chart and table with percentages of cells per state (MES = 

mesenchymal-like, OPC = oligodendrocyte-progenitor-like, AC = astrocyte-like, NPC = neural-

progenitor-like). (F) Extreme limited dilution assays comparing HUB CRISPRi GSCs with negative 

control GSC after 14 days in dox (n= 24 replicates per dilution per condition). P value was 

calculated based on difference between groups as calculated for the binomial generalized linear 

model fitted for each condition.  

 

Supplementary Figure 5 (S5) 

 (A) Table of H3K27ac HiChIP cancer samples included in multi-cancer analysis with 

abbreviations used in figures and sample characteristics. (B) PCA of all cancer samples based 

on their H3K27ac HiChIP profiles. The analysis was focused on the top 100K loops per sample. 

(C) Genome browser view of H3K27ac HiChIP arcs, H3K27ac ChIP-seq peaks and ChIP input 

per sample type for the EGFR and JUN 3D hyperconnected hubs across GSC and NSC samples. 

(D) Bar plots of EagleC-detected SV per sample with breakdown by SV type. Overlapping SV 

predictions were merged and counted as one. (E) Table of predicted “driver” SV by CSVDriver 

(Martinez-Fundichely et al., 2022) in larger ICGC/PCAWG cohort with overlap of SVs detected 

from Figure 4 profiled HiChIP samples.  

 

RESOURCE AVAILABILITY 

Lead contact 
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Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Effie Apostolou (efa2001@med.cornell.edu) 

 

METHOD DETAILS 

Cell Culture 

Patient-Derived GSCs. 

Patient-derived GSCs were obtained from the Fine lab and previously characterized into 

molecular subtypes as described in Pine et al., 2020. 12 Briefly, following informed consent, tumors 

classified as GBM based on WHO criteria were obtained from patients undergoing treatment at 

Weill Cornell Medicine/New York-Presbyterian Hospital in accordance with an Institutional Review 

Board-approved tissue-acquisition clinical protocol. Following surgical removal, tumors were 

dissociated and cultured in Neurobasal medium A (NBE medium, Thermo Fisher Scientific) 

supplemented with N2 (Thermo Fisher Scientific), B27 (Thermo Fisher Scientific), human 

recombinant bFGF and EGF (25 ng/mL each, R&D Systems), heparin (Sigma), Penicilin-

Streptomycin solution (LifeTech), and L-glutamine (200 mM/100X. LifeTech). Mycoplasma 

screening was performed using the ABM Mycoplasma PCR detection kit (Applied Biological 

Materials Inc).  

 

Human long-term Neuroepithelial Stem Cells (ltNSCs) 

Human long-term Neuroepithelial Stem Cells (ltNSCs) were generated as  previously described.47 

Briefly, embryonic stem cells (H1 or H9) were dissociated using accutase and seeded on Matrigel 

(1:25 in DMEM/F12 HEPES) coated dishes at a density of 10k/cm2 in E8 medium supplemented 

with 5 µM XAV 939 and 10 µM Y27632. The next day, the medium was switched to 

Neurobasal:DMEM/F12 HEPES 1:1 supplemented with 1xGlutaMAX, 1:200 N2 supplement, 

1:100 B27 supplement (-RA), 0.1 mM ascorbic acid, 2 µM DMH-1, 1 µM dorsomorphin, 250 nM 

LDN193189, 12.5 µM SB431542, 4 µM CHIR99021 and 0.5 µM purmorphamine. Prior to cells 

approaching 90% confluency, cells were split 1:3 onto Matrigel coated dishes (1:50 in DMEM/F12 

HEPES) in the presence of 10 µM Y27632. On day 7 after start of differentiation, the media was 

switched to Neurobasal:DMEM/F12 1:1 supplemented with 1xGlutaMAX, 1:200 N2 supplement, 

1:100 B27 supplement (-RA), 0.1 mM ascorbic acid, 4 µM CHIR99021 and 0.5 µM 

purmorphamine. Cells were split 1:3 upon 90% confluency onto Matrigel coated dishes (1:50 in 

DMEM/F12 HEPES) using 0.05% trypsin-EDTA and trypsin inhibitor (0.5 mg/ml in PBS). On day 

13, medium was switched to N2 medium (DMEM/F12 w/o HEPES, 1.6 glucose g/L, 100 μg/ml 

transferrin, 25 μg/ml insulin, 20 nM progesterone, 100 μM putrescine, 30 nM sodium selenite) 
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supplemented with 20 ng/ml FGF2, 10 ng/ml EGF and 1 µM CHIR99021. On day 16, FGF2 

concentration was reduced to 10 ng/ml and cells were split at 90% confluency onto poly-L-

ornithine(PO)/laminin(Ln) coated dishes at a density of 295k/cm2. To remove any possible neural 

crest cell contaminants, cells were subjected to MACS using the Neural Crest Stem Cell 

Microbeads together with LS-columns following the manufacturers protocol when passaging for 

first three passages. For maintenance, ltNSC were cultured in N2 medium supplemented with 10 

ng/ml FGF2, 10 ng/ml EGF and 1 µM CHIR99021 on PO/Ln coated dishes and re-seeded using 

trypsin and trypsin inhibitor upon confluency. 

 

Lentiviral production and infection 

293T cells were transfected with overexpression constructs along with packaging (psPAX2, 

Addgene, 12260) and envelope vectors (VSV-G, Addgene, 1488) using PEI reagent (PEI MAX; 

Polyscience, 24765-2). The supernatant was collected at 48h and 72h and concentrated using 

polyehtylglycol (Sigma, P4338). For infection, GSC samples were dissociated and infected in 

medium containing 5 μg ml−1 polybrene (Millipore, TR-1003-G) for 6 hours.  

 

CRISPRi 

GSCs were first infected with lentiviruses harboring pLenti CMV rtTA3 Blast (Addgene, 26429) 

and underwent blasticidin selection for 5 days. GSCs were next infected with the TRE-KRAB-

dCas9-IRES-GFP vector (Addgene, 85556).115 GFP+ cells were selected by three consecutive 

rounds of FACS sorting. The resulting GSCs were then infected with a lentivirus harboring the 

pLKO5.GRNA.EFS.PAC vector (Addgene, 57825)116 containing a guide RNA targeting the region 

of interest. For each region of interest, guide RNAs were designed to target the center of 

prominent ATAC-seq peaks of the region interest using CRISPOR.117 Cells were selected with 

puromycin (LifeTech, K210015) for 5 days, expanded, and underwent an additional FACS sorting 

for GFP+ prior to collection of RNA for RT-qPCR analysis, clonogenicity assays and cerebral 

organoid co-culture experiments.  

 

Clonogenicity Assay 

Clonogenicity was measured by in vitro extreme limiting dilution assay, as previously reported.118 

Briefly, GSC samples were dissociated into a single cell suspension and decreasing numbers of 

cells per well (50, 25, 16, 11, 7, 5, 3, 2, and 1) were plated (24 replicates per condition) into U-

bottom 96-well plates with the addition of doxycycline. Doxycycline and media were replenished 

every other day. The presence and number of colonies in each well were recorded 12 days after 
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plating and doxycycline induction. Extreme limiting dilution analysis was performed using software 

available at http://bioinf.wehi.edu.au/software/elda.  

 

Co-Culture of GSCs and Cerebral Organoids (GLICO model) 

12 GLICOs from 4.5-month-old cerebral organoids were made as previously described18 for the 

320 dCAS9-KRAB negative guide sample and the 320 dCAS9-KRAB GOLIM4 enhancer sample 

using 100K GSCs each. Briefly, organoids were plated one per well in a 96-well U-bottom plate, 

excess medium was removed and 100,000 GSCs in 150 uL of NBE were added to each well. 

After GLICO formation through stationary co-culture incubation at 37°C for 24h, 1ug/ml of 

doxycycline was added to the GLICO media and replenished with fresh media after 96h. Pictures 

were taken with fluorescent microscope at 72h. After 1 week, GLICOs were dissociated and 

single-cell and GFP+/DAPI- cells were sorted. Cells from both samples were submitted for 10x 

scRNAseq. 

 

RNA sequencing and library preparation 

Total RNA was prepared with TRIzol (Life Technologies, cat. no. 15596018) following the 

manufacturer’s instructions. Libraries were generated by the Weill Cornell Genomics core facility 

using an Illumina TruSeq stranded total RNA kit (cat. no. 20020596) and sequenced on an 

Illumina Novaseq6000 platform on PE50 mode.  

 

ATAC-seq 

ATAC-seq was performed as previously described.119 In brief, a total of 50,000 cells were used 

as input for the protocol. In order to minimize PCR bias an aliquot of each ATAC-seq library was 

first subjected to five cycles of amplification to determine by quantitative PCR the suitable number 

of cycles required for optimal library amplification. Samples were then subjected to a dual size 

selection (0.55x–1.5x) using SPRIselect beads (Beckman Coulter, B23317). Fragment 

distribution of libraries was assessed with an Agilent Bioanalyzer and, finally, the ATAC libraries 

were sequenced on an Illumina Nextseq2000 platform on PE100 mode. 

 

H3K27ac ChIP-seq 

ChIP-seq was performed as previously described.31 In brief, 5 million cells per replicate in each 

cell line was crosslinked with 1% formaldehyde and quenched with 125mM glycine for 5 min at 

room temperature. The cell pellets were washed twice in PBS and resuspended in 400 μl lysis 

buffer (10 mM Tris pH 8, 1 mM EDTA and 0.5% SDS). The cells were sonicated in a Bioruptor 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

http://bioinf.wehi.edu.au/software/elda
https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


device (30 cycles of 30 s on/off; high setting) and spun down at the maximum speed for 10 min at 

4 °C. The supernatants were diluted five times with dilution buffer (0.01% SDS, 1.1% Triton X-

100, 1.2 mM EDTA, 16.7 mM Tris pH 8 and 167 mM NaCl) and incubated overnight with an 

H3K27ac antibody with rotation at 4 °C (Abcam, ab4729). Protein G Dynabeads (Thermo 

Scientific) pre-blocked with BSA protein (100 ng per 10 μl Dynabeads) were added (10 μl blocked 

Dynabeads per 10 × 106 cells) the following day and incubated for 2–3 h at 4 °C. Samples were 

washed twice in low-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 150 mM NaCl and 

20 mM Tris pH 8), twice in high-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 500 mM 

NaCl and 20 mM Tris pH 8), twice in LiCl buffer (0.25 M LiCl, 1% NP-40, 1% deoxycholic acid 

(sodium salt), 1 mM EDTA and 10 mM Tris pH 8) and once in TE buffer. The DNA was then eluted 

from the beads by incubating with 150 μl elution buffer (1% SDS and 100 mM NaHCO3) for 20 min 

at 65 °C (in a thermomixer at high speed). The supernatants were collected and reverse 

crosslinked by incubation overnight at 65 °C in the presence of proteinase K. After RNase A 

treatment for 1 h at 37 °C, the DNA was purified using a Zymo kit.  10-30ng of the 

immunoprecipitated material was used for ChIP-seq library preparation using the KAPA Hyper 

prep kit (KAPA Biosystems) and applying 7-8 cycles of amplification. Libraries were then 

subjected to a dual size selection (0.6x–0.8x) using SPRIselect beads (Beckman Coulter, 

B23317) and sequenced on an Illumina Nextseq2000 platform on PE50 mode.  

 

H3K27ac HiChIP 

HiChIP experiments were performed in duplicates for samples GSC320, GSC728, GSC810, 

GSC1206 and NSC using the Arima-HiC+ kit (Arima, A101020). The protocol was performed with 

5M cells (per sample) and using an H3K27ac antibody (Abcam, ab4729 was used for GSC320 

and GSC728; active motif, 91193 was used for samples GSC810, GSC1206 and NSC) according 

to the manufacturer’s instructions with few modifications. The efficiencies of the two H3K27ac 

antibodies were tested by ChIP-seq in GSC1206 and NSC, and both antibodies resulted in similar 

distribution and number of peaks. To improve the sonication efficiency, a modified lysis buffer was 

used containing 10 mM Tris pH 8, 1 mM EDTA and 0.5% SDS. Before overnight incubation with 

the antibody, the sample was diluted in a buffer to bring it back to the original composition of the 

Arima R1 buffer (10 mM Tris pH 8, 140 mM NaCl, 1 mM EDTA, 1% triton, 0.1% SDS, 0.1% sodium 

deoxycholate). Libraries were generated using the Swift Accel-NGS 2S Plus DNA Library Kit 

(Swift Biosciences, 21024) according to the manufacturer’s instructions and performing between 

8 and 14 cycles of PCR amplification. The samples were quantified by Qubit and sent for 
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Bioanalyzer to check the quality and final size of the library. All HiChIP libraries were sequenced 

using the Illumina Nextseq 2000 on PE50 mode. 

 

Computational Methods 

RNA-seq analysis 

Paired-end read alignment to the human genome (hg38 version) was performed with TopHat2120 

(version 2.11) with default setting and ‘-r 200 –mate-std-dev 100’ option. Samtools121 was used 

for filtering and sorting aligned reads before annotation to “Homo_sapiens.GRCh38.104” gene 

version with htseq-count122 and ‘-m intersection-nonempty’ option. Only protein-coding and long-

non-coding RNA transcripts were used for annotation and downstream differential expression 

analysis was performed with R package DESeq123 where we set a log2 fold change of 1 and P-

adjusted of <10.01 as a cut off for calling deferentially expressed genes. Average TPM values 

were calculated for all replicates and genes with TPM above 1 were considered as expressed.  

 

ChIP-seq analysis 

Paired-end reads were aligned to human genome (hg38 version) with bowtie2124 (version 2.3.4.1) 

and ‘–local –very-sensitive-local’ option active. Picard tools 

(http://broadinstitute.github.io/picard/), Samtools121 and Bedtools125 were used for filtering 

duplicate reads (‘MarkDuplicate’ option), low quality reads (MAPQ<20), chrM and blacklisted 

regions and converting files into sam, bam, bed bigWig format. All filtered reads were used to call 

both narrow and broad peaks with MACS2126 and default options. All peaks within 147 bp (one 

nucleosome) were merged into one peak for each experiment and only common peak between 

replicates were considered as peaks in each experiment.  

 

ATAC-seq analysis 

We used the same pipeline and steps as in ChIP-seq for ATAC-seq datasets with the addition of 

‘-I 10 ×2000’ in bowtie2124 when aligning reads to human genome and correction of Tn5 insertions 

at each read end of the filtered paired end reads by shifting +4 bp or −5 bp from the positive and 

negative strands, respectively.  

 

HiChIP analysis 

HiC-Pro pipeline (version 3.0.0)127 was used for processing paired-end files with default setting. 

Aligned filtered reads were assigned to MboI restriction fragments and valid read pairs 

(interactions) were used for generating binned interaction matrices with Juicer-tools128 and loop 
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calling at 10kb resolution with FitHiChIP (release 9.0)50 and coverage bias regression and 

“Peak2All” option active where peaks form ChIP-seq for each experiment were used as input 

alongside valid-pairs. Interactions with a distance of more than 10-kb between the start of both 

anchors and p-adjusted <0.05 were considered significant and called loops. For each loop we 

classified each anchor into ‘promoter’, if a TSS was present within the 10kb, ‘enhancer’, if there 

was a H3k27ac peak and no TSS and ‘X’, if none TSS and H3k27ac peak was present. Multi-

connected anchors (n>=2) were considered as ‘hubs’ and hubs were annotated as ‘promoter’, 

‘enhancer; and ‘X’ depending on the type of the multi-connected anchor.  

 

scRNAseq coregulation analysis 

Previously published scRNAseq data of 320, 728, 810 and 1206 GSCs were re-analyzed 

(accessible from PRJNA595375).17 The Cell Ranger 2.0.1 pipeline was used to align reads to the 

GRCh38 human reference genome and produce count matrices for downstream preprocessing 

and analysis using the Seurat v4.0 R package.74 For quality control, cells with fewer than 500 or 

more than 6000 genes detected, or greater than 15% mitochondrial gene expression were 

removed. Expression values were library size corrected to 10,000 reads per cell and log1p 

transformed. Next, for each sample mean expression in single cells of set of genes in the top 

(CON10) or bottom (CON1) deciles of hubs ranked by connectivity. For gene-gene correlation 

analysis, zero-preserving imputation of the data using ALRA was performed.129 Next, spearman 

correlation between imputed expression values of within hub gene-gene pairs and compared 

correlation rho values to a set of 5000 random gene-gene pairs drawn from the same distribution 

of genomic distances as the query gene-gene pairs sets were calculated.  

 

scRNA-seq Processing and analysis 

scRNA-seq data resulting from the GFP+ FACS sorted cells from the GLICO cerebral organoid 

co-culture CRISPRi experiment were processed with the10x Genomics Chromium Single Cell 

Platform, and count matrices were generated using their Cell Ranger pipeline version 3.0 with the 

GRCh38 reference genome used to align and quantify the reads (10x Genomics). scRNA-seq 

data were preprocessed and largely analyzed using Seurat version 4.3.0.64 For quality control, 

genes detected in less than 3 cells and cells with fewer than 200 genes were excluded. Cells with 

percentage of mitochondrial genes outside of 5 M.A.D. were removed. Doublet detection was 

conducted via DoubletFinder version 2.0.3, and doublets were removed.130 Expression values 

were further library size corrected to 10,000 reads per cell and log1p transformed.  After quality 

control, we used the standard analysis pipeline of the R package Seurat including using the 
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FindVariableFeatures (nfeatures = 2500), RunPCA, FindNeighbors (dims= 1:50), 

FindClusters(resolution = 0.5) , and the RunUMAP (dims = 1:50) functions. Projections of cell 

cycle scores on the UMAP were calculated via the CellCycleScoring function in Seurat. UMAP 

projections of kernel density estimators of individual hub-connected genes were conducted via 

Nebulosa version 1.8.0.131 Differentially expressed genes were determined per cluster and for 

clusters 5 vs. 6 using the Seurat FindAllMarkers function with default parameters. Gene ontology 

of differentially expressed genes was conducted via EnrichR (MSigDB Hallmark 2020) with a 

background of all expressed genes.132 For Neftel et al. meta-module cell state assignment, 

individual cell meta-module scores were calculated for NPC-like, OPC-like, MES-like, and AC-like 

signatures given in Neftel et al., 2019 (NPC1 and NPC2 and MES1 and MES2 signatures were 

combined into respective NPC and MES signatures) using the AddModuleScore Seurat function. 

Each cell was assigned to their maximum score. 

 

Enrichment Analysis 

Gene ontology, pathway and transcription factor and or motif analysis were performed with the 

use of EnrichR132 and LOLA133 R packages. For each enrichment analysis, we defined a 

‘background’ peak or gene group tailored for the group of genes or peaks tested. For motif 

analysis with LOLA all accessible regions were merged to form a common ‘background’ atlas, 

while for EnrichR for each gene set tested we generated the appropriate background as described 

in each ‘figure legend’.  

 

Cancer dataset collection 

Both GEO134 and SRA135 databases were used to screen for HiChIP H3k27ac cancer datasets. 

We selected at least two datasets of high quality from the above databases for breast (n=3), 

melanoma (n=3), ewing sarcoma (n=2), endometrial (n=2), small cell lung (n=2) and 

hepatocellular (n=3) carcinoma which we analyzed together with our GBM HiChIP datasets using 

the same pipeline. For datasets with no matched H3k27ac ChIP-seq experiments we utilized 

“PeakInferHiChIP.sh” which infers peaks from the HiChIP dataset with default parameters and 

the output of this algorithm was used in FitHIChIP as a peak file to call loops.  

 

Structural Variant Analysis 

HiChIP data was processed using the HiCPro pipeline127 to generate valid pairs as previously 

described. Valid pairs were converted to cool format using the hicpro2higlass.sh script. Structural 

variants were predicted using cool files at 5k,10k and 50k resolution with the EagleC85 function 
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‘predictSV’ using default settings (--prob-cutoff-5k 0.8 --prob-cutoff-10k 0.8 --prob-cutoff-50k 

0.99999). CNV normalized cool files were then processed using the command ‘assemble-

complexSVs’ to generate SV assemblies at 10k resolution. Neoloops were called with the 

command ‘neoloop-caller’ using SV assemblies at 10k resolution and CNV normalized cool files 

at 5k,10k and 50k resolution as input. Plots were generated using visualization scripts included in 

the EagleC and NeoLoopFinder pipelines. In addition, using CSVDriver73 we evaluated whether 

our analyzed regions of interest are located within significantly rearranged genomic regions 

potentially evidence of tumoral positive selection observed in their respective cancer types. This 

method investigates the tissue-specific covariates of the somatic breakpoint empirical proximity 

curve to understand the pattern of significantly breakpoint clustering. 

 

Survival Analysis 

Survival analysis was performed in R with ‘survminer’ and ‘survival’ R packages and all clinical 

and expression data were collected from TCGA (https://www.cancer.gov/tcga) and GDC 

portal.136 Patients with matched RNA and clinical data that contained information regarding their 

survival status were used for survival analysis. We matched our GBM HiChIP with TCGA’s GBM-

LGG dataset and for all cancer type apart from Ewing sarcoma since there were no data and 

small cell lung carcinoma due to the lack of available expression data, we extracted information 

from following studies: 1. SKCM (melanoma), 2. LIHC (hepatocellular), 3. UCEC (endometrial) 4. 

BRCA (breast) 5. GMM & LGG (glioblastoma). For each ‘gene signature’ that we tested we 

stratified patients’ expression profile based on mean expression levels of our gene signature into 

4 equally sized groups and performed log-rank test to compare survival outcome between the top 

and bottom 25% patient groups for each individual cancer type. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

R language was used for all statistical analysis and comparisons among groups in this 

manuscript. Two-tailed Wilcoxon rank sum test was used to compare medians between two 

groups and two-tailed Student’s t-test for comparison of the means. K-means was used to find 

group of peaks or hubs with similar patterns across our datasets. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

REFERENCES 

 

1. Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., Zheng, S., 
Chakravarty, D., Sanborn, J.Z., Berman, S.H., et al. (2013). The somatic genomic landscape of 
glioblastoma. Cell 155, 462-477. 10.1016/j.cell.2013.09.034. 

2. Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., 
Brandes, A.A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus concomitant and 
adjuvant temozolomide for glioblastoma. N Engl J Med 352, 987-996. 10.1056/NEJMoa043330. 

3. Tan, A.C., Ashley, D.M., López, G.Y., Malinzak, M., Friedman, H.S., and Khasraw, M. (2020). 
Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 70, 299-
312. 10.3322/caac.21613. 

4. White, K., Connor, K., Clerkin, J., Murphy, B.M., Salvucci, M., O'Farrell, A.C., Rehm, M., O'Brien, 
D., Prehn, J.H.M., Niclou, S.P., et al. (2020). New hints towards a precision medicine strategy for 
IDH wild-type glioblastoma. Ann Oncol 31, 1679-1692. 10.1016/j.annonc.2020.08.2336. 

5. Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R., Silverbush, D., 
Shaw, M.L., Hebert, C.M., et al. (2019). An Integrative Model of Cellular States, Plasticity, and 
Genetics for Glioblastoma. Cell 178, 835-849 e821. 10.1016/j.cell.2019.06.024. 

6. Barbaro, M., Fine, H.A., and Magge, R.S. (2021). Scientific and Clinical Challenges within Neuro-
Oncology. World Neurosurg 151, 402-410. 10.1016/j.wneu.2021.01.151. 

7. Sottoriva, A., Spiteri, I., Piccirillo, S.G., Touloumis, A., Collins, V.P., Marioni, J.C., Curtis, C., Watts, 
C., and Tavare, S. (2013). Intratumor heterogeneity in human glioblastoma reflects cancer 
evolutionary dynamics. Proc Natl Acad Sci U S A 110, 4009-4014. 10.1073/pnas.1219747110. 

8. Liau, B.B., Sievers, C., Donohue, L.K., Gillespie, S.M., Flavahan, W.A., Miller, T.E., Venteicher, A.S., 
Hebert, C.H., Carey, C.D., Rodig, S.J., et al. (2017). Adaptive Chromatin Remodeling Drives 
Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 20, 233-246.e237. 
10.1016/j.stem.2016.11.003. 

9. Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., 
Golub, T., Mesirov, J.P., et al. (2010). Integrated genomic analysis identifies clinically relevant 
subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. 
Cancer Cell 17, 98-110. 10.1016/j.ccr.2009.12.020. 

10. Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill, D.P., 
Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights intratumoral 
heterogeneity in primary glioblastoma. Science 344, 1396-1401. 10.1126/science.1254257. 

11. Chaligne, R., Gaiti, F., Silverbush, D., Schiffman, J.S., Weisman, H.R., Kluegel, L., Gritsch, S., 
Deochand, S.D., Gonzalez Castro, L.N., Richman, A.R., et al. (2021). Epigenetic encoding, 
heritability and plasticity of glioma transcriptional cell states. Nat Genet 53, 1469-1479. 
10.1038/s41588-021-00927-7. 

12. Pine, A.R., Cirigliano, S.M., Nicholson, J.G., Hu, Y., Linkous, A., Miyaguchi, K., Edwards, L., 
Singhania, R., Schwartz, T.H., Ramakrishna, R., et al. (2020). Tumor Microenvironment Is Critical 
for the Maintenance of Cellular States Found in Primary Glioblastomas. Cancer Discov 10, 964-
979. 10.1158/2159-8290.Cd-20-0057. 

13. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N.M., Pastorino, S., Purow, B.W., 
Christopher, N., Zhang, W., et al. (2006). Tumor stem cells derived from glioblastomas cultured in 
bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do 
serum-cultured cell lines. Cancer Cell 9, 391-403. 10.1016/j.ccr.2006.03.030. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Fael Al-Mayhani, T.M., Ball, S.L., Zhao, J.W., Fawcett, J., Ichimura, K., Collins, P.V., and Watts, C. 
(2009). An efficient method for derivation and propagation of glioblastoma cell lines that 
conserves the molecular profile of their original tumours. J Neurosci Methods 176, 192-199. 
10.1016/j.jneumeth.2008.07.022. 

15. Seidel, S., Garvalov, B.K., and Acker, T. (2015). Isolation and culture of primary glioblastoma cells 
from human tumor specimens. Methods Mol Biol 1235, 263-275. 10.1007/978-1-4939-1785-
3_19. 

16. Yadav, N., and Purow, B.W. (2024). Understanding current experimental models of glioblastoma-
brain microenvironment interactions. J Neurooncol 166, 213-229. 10.1007/s11060-023-04536-8. 

17. Ernst, A., Hofmann, S., Ahmadi, R., Becker, N., Korshunov, A., Engel, F., Hartmann, C., Felsberg, J., 
Sabel, M., Peterziel, H., et al. (2009). Genomic and expression profiling of glioblastoma stem cell-
like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer 
Res 15, 6541-6550. 10.1158/1078-0432.CCR-09-0695. 

18. Linkous, A., Balamatsias, D., Snuderl, M., Edwards, L., Miyaguchi, K., Milner, T., Reich, B., Cohen-
Gould, L., Storaska, A., Nakayama, Y., et al. (2019). Modeling Patient-Derived Glioblastoma with 
Cerebral Organoids. Cell Rep 26, 3203-3211 e3205. 10.1016/j.celrep.2019.02.063. 

19. Pine, A.R., Cirigliano, S.M., Singhania, R., Nicholson, J., da Silva, B., Leslie, C.S., and Fine, H.A. 
(2023). Microenvironment-Driven Dynamic Chromatin Changes in Glioblastoma Recapitulate 
Early Neural Development at Single-Cell Resolution. Cancer Res 83, 1581-1595. 10.1158/0008-
5472.Can-22-2872. 

20. Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. 
Science 295, 1306-1311. 10.1126/science.1067799. 

21. Lupianez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., 
Opitz, J.M., Laxova, R., et al. (2015). Disruptions of topological chromatin domains cause 
pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012-1025. 
10.1016/j.cell.2015.04.004. 

22. Won, H., de la Torre-Ubieta, L., Stein, J.L., Parikshak, N.N., Huang, J., Opland, C.K., Gandal, M.J., 
Sutton, G.J., Hormozdiari, F., Lu, D., et al. (2016). Chromosome conformation elucidates 
regulatory relationships in developing human brain. Nature 538, 523-527. 10.1038/nature19847. 

23. Kragesteen, B.K., Spielmann, M., Paliou, C., Heinrich, V., Schöpflin, R., Esposito, A., Annunziatella, 
C., Bianco, S., Chiariello, A.M., Jerković, I., et al. (2018). Dynamic 3D chromatin architecture 
contributes to enhancer specificity and limb morphogenesis. Nat Genet 50, 1463-1473. 
10.1038/s41588-018-0221-x. 

24. Murphy, D., Salataj, E., Di Giammartino, D.C., Rodriguez-Hernaez, J., Kloetgen, A., Garg, V., Char, 
E., Uyehara, C.M., Ee, L.S., Lee, U., et al. (2024). 3D Enhancer-promoter networks provide 
predictive features for gene expression and coregulation in early embryonic lineages. Nat Struct 
Mol Biol 31, 125-140. 10.1038/s41594-023-01130-4. 

25. Karr, J.P., Ferrie, J.J., Tjian, R., and Darzacq, X. (2022). The transcription factor activity gradient 
(TAG) model: contemplating a contact-independent mechanism for enhancer-promoter 
communication. Genes Dev 36, 7-16. 10.1101/gad.349160.121. 

26. Zuin, J., Roth, G., Zhan, Y., Cramard, J., Redolfi, J., Piskadlo, E., Mach, P., Kryzhanovska, M., 
Tihanyi, G., Kohler, H., et al. (2022). Nonlinear control of transcription through enhancer-
promoter interactions. Nature 604, 571-577. 10.1038/s41586-022-04570-y. 

27. Ren, X., Wang, M., Li, B., Jamieson, K., Zheng, L., Jones, I.R., Li, B., Takagi, M.A., Lee, J., Maliskova, 
L., et al. (2021). Parallel characterization of cis-regulatory elements for multiple genes using 
CRISPRpath. Sci Adv 7, eabi4360. 10.1126/sciadv.abi4360. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, Z., Lee, L.K., 
Stuart, R.K., Ching, C.W., et al. (2009). Histone modifications at human enhancers reflect global 
cell-type-specific gene expression. Nature 459, 108-112. 10.1038/nature07829. 

29. Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., 
Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac separates active from 
poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107, 21931-21936. 
10.1073/pnas.1016071107. 

30. Zhang, Y., Wong, C.H., Birnbaum, R.Y., Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., Poh, H.M., 
Wong, E., et al. (2013). Chromatin connectivity maps reveal dynamic promoter-enhancer long-
range associations. Nature 504, 306-310. 10.1038/nature12716. 

31. Di Giammartino, D.C., Kloetgen, A., Polyzos, A., Liu, Y., Kim, D., Murphy, D., Abuhashem, A., 
Cavaliere, P., Aronson, B., Shah, V., et al. (2019). KLF4 is involved in the organization and 
regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol 21, 
1179-1190. 10.1038/s41556-019-0390-6. 

32. Mumbach, M.R., Satpathy, A.T., Boyle, E.A., Dai, C., Gowen, B.G., Cho, S.W., Nguyen, M.L., Rubin, 
A.J., Granja, J.M., Kazane, K.R., et al. (2017). Enhancer connectome in primary human cells 
identifies target genes of disease-associated DNA elements. Nat Genet 49, 1602-1612. 
10.1038/ng.3963. 

33. Uyehara, C.M., and Apostolou, E. (2023). 3D enhancer-promoter interactions and multi-
connected hubs: Organizational principles and functional roles. Cell Rep 42, 112068. 
10.1016/j.celrep.2023.112068. 

34. Batut, P.J., Bing, X.Y., Sisco, Z., Raimundo, J., Levo, M., and Levine, M.S. (2022). Genome 
organization controls transcriptional dynamics during development. Science 375, 566-570. 
10.1126/science.abi7178. 

35. Li, J., Hsu, A., Hua, Y., Wang, G., Cheng, L., Ochiai, H., Yamamoto, T., and Pertsinidis, A. (2020). 
Single-gene imaging links genome topology, promoter-enhancer communication and 
transcription control. Nat Struct Mol Biol 27, 1032-1040. 10.1038/s41594-020-0493-6. 

36. Lim, B., and Levine, M.S. (2021). Enhancer-promoter communication: hubs or loops? Curr Opin 
Genet Dev 67, 5-9. 10.1016/j.gde.2020.10.001. 

37. Oudelaar, A.M., Davies, J.O.J., Hanssen, L.L.P., Telenius, J.M., Schwessinger, R., Liu, Y., Brown, 
J.M., Downes, D.J., Chiariello, A.M., Bianco, S., et al. (2018). Single-allele chromatin interactions 
identify regulatory hubs in dynamic compartmentalized domains. Nat Genet 50, 1744-1751. 
10.1038/s41588-018-0253-2. 

38. Miguel-Escalada, I., Bonàs-Guarch, S., Cebola, I., Ponsa-Cobas, J., Mendieta-Esteban, J., Atla, G., 
Javierre, B.M., Rolando, D.M.Y., Farabella, I., Morgan, C.C., et al. (2019). Human pancreatic islet 
three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. 
Nat Genet 51, 1137-1148. 10.1038/s41588-019-0457-0. 

39. Petrovic, J., Zhou, Y., Fasolino, M., Goldman, N., Schwartz, G.W., Mumbach, M.R., Nguyen, S.C., 
Rome, K.S., Sela, Y., Zapataro, Z., et al. (2019). Oncogenic Notch Promotes Long-Range 
Regulatory Interactions within Hyperconnected 3D Cliques. Mol Cell 73, 1174-1190.e1112. 
10.1016/j.molcel.2019.01.006. 

40. Madsen, J.G.S., Madsen, M.S., Rauch, A., Traynor, S., Van Hauwaert, E.L., Haakonsson, A.K., 
Javierre, B.M., Hyldahl, M., Fraser, P., and Mandrup, S. (2020). Highly interconnected enhancer 
communities control lineage-determining genes in human mesenchymal stem cells. Nat Genet 
52, 1227-1238. 10.1038/s41588-020-0709-z. 

41. Chandra, A., Yoon, S., Michieletto, M.F., Goldman, N., Ferrari, E.K., Abedi, M., Johnson, I., 
Fasolino, M., Pham, K., Joannas, L., et al. (2023). Quantitative control of Ets1 dosage by a multi-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


enhancer hub promotes Th1 cell differentiation and protects from allergic inflammation. 
Immunity 56, 1451-1467.e1412. 10.1016/j.immuni.2023.05.004. 

42. Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., and Ren, B. 
(2016). A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the 
Human Genome. Cell Rep 17, 2042-2059. 10.1016/j.celrep.2016.10.061. 

43. Mack, S.C., Singh, I., Wang, X., Hirsch, R., Wu, Q., Villagomez, R., Bernatchez, J.A., Zhu, Z., 
Gimple, R.C., Kim, L.J.Y., et al. (2019). Chromatin landscapes reveal developmentally encoded 
transcriptional states that define human glioblastoma. J Exp Med 216, 1071-1090. 
10.1084/jem.20190196. 

44. Chakraborty, C., Nissen, I., Vincent, C.A., Hagglund, A.C., Hornblad, A., and Remeseiro, S. (2023). 
Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma 
orchestrates gene expression underlying neurogliomal synaptic communication. Nat Commun 
14, 6446. 10.1038/s41467-023-41919-x. 

45. Mathur, R., Wang, Q., Schupp, P.G., Nikolic, A., Hilz, S., Hong, C., Grishanina, N.R., Kwok, D., 
Stevers, N.O., Jin, Q., et al. (2024). Glioblastoma evolution and heterogeneity from a 3D whole-
tumor perspective. Cell 187, 446-463 e416. 10.1016/j.cell.2023.12.013. 

46. Xie, T., Danieli-Mackay, A., Buccarelli, M., Barbieri, M., Papadionysiou, I., D’Alessandris, Q.G., 
Übelmesser, N., Vinchure, O.S., Lauretti, L., Fotia, G., et al. (2023). Extreme structural 
heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional 
programs. bioRxiv, 2023.2004.2020.537702. 10.1101/2023.04.20.537702. 

47. Koch, P., Opitz, T., Steinbeck, J.A., Ladewig, J., and Brüstle, O. (2009). A rosette-type, self-
renewing human ES cell-derived neural stem cell with potential for in vitro instruction and 
synaptic integration. Proc Natl Acad Sci U S A 106, 3225-3230. 10.1073/pnas.0808387106. 

48. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., 
and Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at 
key cell identity genes. Cell 153, 307-319. 10.1016/j.cell.2013.03.035. 

49. Loven, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner, J.E., Lee, T.I., and 
Young, R.A. (2013). Selective inhibition of tumor oncogenes by disruption of super-enhancers. 
Cell 153, 320-334. 10.1016/j.cell.2013.03.036. 

50. Bhattacharyya, S., Chandra, V., Vijayanand, P., and Ay, F. (2019). Identification of significant 
chromatin contacts from HiChIP data by FitHiChIP. Nat Commun 10, 4221. 10.1038/s41467-019-
11950-y. 

51. Richards, L.M., Whitley, O.K.N., MacLeod, G., Cavalli, F.M.G., Coutinho, F.J., Jaramillo, J.E., 
Svergun, N., Riverin, M., Croucher, D.C., Kushida, M., et al. (2021). Gradient of Developmental 
and Injury Response transcriptional states defines functional vulnerabilities underpinning 
glioblastoma heterogeneity. Nat Cancer 2, 157-173. 10.1038/s43018-020-00154-9. 

52. Cancer Genome Atlas Research, N., Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., 
Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The Cancer 
Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113-1120. 10.1038/ng.2764. 

53. Zhuang, H.H., Qu, Q., Teng, X.Q., Dai, Y.H., and Qu, J. (2023). Superenhancers as master gene 
regulators and novel therapeutic targets in brain tumors. Exp Mol Med 55, 290-303. 
10.1038/s12276-023-00934-0. 

54. Xie, T., Danieli-Mackay, A., Buccarelli, M., Barbieri, M., Papadionysiou, I., D'Alessandris, Q.G., 
Robens, C., Ubelmesser, N., Vinchure, O.S., Lauretti, L., et al. (2024). Pervasive structural 
heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional 
programs. Nat Commun 15, 3905. 10.1038/s41467-024-48053-2. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


55. Osterwalder, M., Barozzi, I., Tissieres, V., Fukuda-Yuzawa, Y., Mannion, B.J., Afzal, S.Y., Lee, E.A., 
Zhu, Y., Plajzer-Frick, I., Pickle, C.S., et al. (2018). Enhancer redundancy provides phenotypic 
robustness in mammalian development. Nature 554, 239-243. 10.1038/nature25461. 

56. Jha, R.K., Kouzine, F., and Levens, D. (2023). MYC function and regulation in physiological 
perspective. Front Cell Dev Biol 11, 1268275. 10.3389/fcell.2023.1268275. 

57. Lancho, O., and Herranz, D. (2018). The MYC Enhancer-ome: Long-Range Transcriptional 
Regulation of MYC in Cancer. Trends Cancer 4, 810-822. 10.1016/j.trecan.2018.10.003. 

58. Dave, K., Sur, I., Yan, J., Zhang, J., Kaasinen, E., Zhong, F., Blaas, L., Li, X., Kharazi, S., Gustafsson, 
C., et al. (2017). Mice deficient of Myc super-enhancer region reveal differential control 
mechanism between normal and pathological growth. Elife 6. 10.7554/eLife.23382. 

59. Bahr, C., von Paleske, L., Uslu, V.V., Remeseiro, S., Takayama, N., Ng, S.W., Murison, A., 
Langenfeld, K., Petretich, M., Scognamiglio, R., et al. (2018). A Myc enhancer cluster regulates 
normal and leukaemic haematopoietic stem cell hierarchies. Nature 553, 515-520. 
10.1038/nature25193. 

60. Tate, J.G., Bamford, S., Jubb, H.C., Sondka, Z., Beare, D.M., Bindal, N., Boutselakis, H., Cole, C.G., 
Creatore, C., Dawson, E., et al. (2019). COSMIC: the Catalogue Of Somatic Mutations In Cancer. 
Nucleic Acids Res 47, D941-D947. 10.1093/nar/gky1015. 

61. Choi, J., Lysakovskaia, K., Stik, G., Demel, C., Söding, J., Tian, T.V., Graf, T., and Cramer, P. (2021). 
Evidence for additive and synergistic action of mammalian enhancers during cell fate 
determination. Elife 10. 10.7554/eLife.65381. 

62. Fanucchi, S., Shibayama, Y., Burd, S., Weinberg, M.S., and Mhlanga, M.M. (2013). Chromosomal 
contact permits transcription between coregulated genes. Cell 155, 606-620. 
10.1016/j.cell.2013.09.051. 

63. Heist, T., Fukaya, T., and Levine, M. (2019). Large distances separate coregulated genes in living 
Drosophila embryos. Proc Natl Acad Sci U S A 116, 15062-15067. 10.1073/pnas.1908962116. 

64. Roura, A.J., Szadkowska, P., Poleszak, K., Dabrowski, M.J., Ellert-Miklaszewska, A., Wojnicki, K., 
Ciechomska, I.A., Stepniak, K., Kaminska, B., and Wojtas, B. (2023). Regulatory networks driving 
expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and 
the pre-existing epigenetic modifications. Clin Epigenetics 15, 29. 10.1186/s13148-023-01446-4. 

65. MacLeod, G., Bozek, D.A., Rajakulendran, N., Monteiro, V., Ahmadi, M., Steinhart, Z., Kushida, 
M.M., Yu, H., Coutinho, F.J., Cavalli, F.M.G., et al. (2019). Genome-Wide CRISPR-Cas9 Screens 
Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma 
Stem Cells. Cell Rep 27, 971-986.e979. 10.1016/j.celrep.2019.03.047. 

66. Corrales, M., Rosado, A., Cortini, R., van Arensbergen, J., van Steensel, B., and Filion, G.J. (2017). 
Clustering of Drosophila housekeeping promoters facilitates their expression. Genome Res 27, 
1153-1161. 10.1101/gr.211433.116. 

67. Zhang, J., Chen, H., Li, R., Taft, D.A., Yao, G., Bai, F., and Xing, J. (2019). Spatial clustering and 
common regulatory elements correlate with coordinated gene expression. PLoS Comput Biol 15, 
e1006786. 10.1371/journal.pcbi.1006786. 

68. Agelopoulos, M., Foutadakis, S., and Thanos, D. (2021). The Causes and Consequences of Spatial 
Organization of the Genome in Regulation of Gene Expression. Front Immunol 12, 682397. 
10.3389/fimmu.2021.682397. 

69. Lin, B., Liu, C., Shi, E., Jin, Q., Zhao, W., Wang, J., and Ji, R. (2021). MiR-105-3p acts as an 
oncogene to promote the proliferation and metastasis of breast cancer cells by targeting 
GOLIM4. BMC Cancer 21, 275. 10.1186/s12885-021-07909-2. 

70. Bai, Y., Cui, X., Gao, D., Wang, Y., Wang, B., and Wang, W. (2018). Golgi integral membrane 
protein 4 manipulates cellular proliferation, apoptosis, and cell cycle in human head and neck 
cancer. Biosci Rep 38. 10.1042/BSR20180454. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


71. Matsuda, Y., Miura, K., Yamane, J., Shima, H., Fujibuchi, W., Ishida, K., Fujishima, F., Ohnuma, S., 
Sasaki, H., Nagao, M., et al. (2016). SERPINI1 regulates epithelial-mesenchymal transition in an 
orthotopic implantation model of colorectal cancer. Cancer Sci 107, 619-628. 10.1111/cas.12909. 

72. Chen, P.Y., Chang, W.S., Lai, Y.K., and Wu, C.W. (2009). c-Myc regulates the coordinated 
transcription of brain disease-related PDCD10-SERPINI1 bidirectional gene pair. Mol Cell 
Neurosci 42, 23-32. 10.1016/j.mcn.2009.05.001. 

73. Qu, C., Dai, C., Guo, Y., Qin, R., and Liu, J. (2020). Long non-coding RNA PVT1-mediated miR-
543/SERPINI1 axis plays a key role in the regulatory mechanism of ovarian cancer. Biosci Rep 40. 
10.1042/BSR20200800. 

74. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., 
Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. 
Cell 177, 1888-1902 e1821. 10.1016/j.cell.2019.05.031. 

75. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015). The 
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417-425. 
10.1016/j.cels.2015.12.004. 

76. Xu, Z., Lee, D.S., Chandran, S., Le, V.T., Bump, R., Yasis, J., Dallarda, S., Marcotte, S., Clock, B., 
Haghani, N., et al. (2022). Structural variants drive context-dependent oncogene activation in 
cancer. Nature 612, 564-572. 10.1038/s41586-022-05504-4. 

77. Okonechnikov, K., Camgoz, A., Chapman, O., Wani, S., Park, D.E., Hubner, J.M., Chakraborty, A., 
Pagadala, M., Bump, R., Chandran, S., et al. (2023). 3D genome mapping identifies subgroup-
specific chromosome conformations and tumor-dependency genes in ependymoma. Nat 
Commun 14, 2300. 10.1038/s41467-023-38044-0. 

78. Dubois, F., Sidiropoulos, N., Weischenfeldt, J., and Beroukhim, R. (2022). Structural variations in 
cancer and the 3D genome. Nat Rev Cancer 22, 533-546. 10.1038/s41568-022-00488-9. 

79. Akdemir, K.C., Le, V.T., Chandran, S., Li, Y., Verhaak, R.G., Beroukhim, R., Campbell, P.J., Chin, L., 
Dixon, J.R., and Futreal, P.A. (2020). Disruption of chromatin folding domains by somatic genomic 
rearrangements in human cancer. Nat Genet 52, 294-305. 10.1038/s41588-019-0564-y. 

80. Northcott, P.A., Lee, C., Zichner, T., Stütz, A.M., Erkek, S., Kawauchi, D., Shih, D.J., Hovestadt, V., 
Zapatka, M., Sturm, D., et al. (2014). Enhancer hijacking activates GFI1 family oncogenes in 
medulloblastoma. Nature 511, 428-434. 10.1038/nature13379. 

81. Liu, E.M., Martinez-Fundichely, A., Diaz, B.J., Aronson, B., Cuykendall, T., MacKay, M., Dhingra, P., 
Wong, E.W.P., Chi, P., Apostolou, E., et al. (2019). Identification of Cancer Drivers at CTCF 
Insulators in 1,962 Whole Genomes. Cell Syst 8, 446-455.e448. 10.1016/j.cels.2019.04.001. 

82. Wu, S., Turner, K.M., Nguyen, N., Raviram, R., Erb, M., Santini, J., Luebeck, J., Rajkumar, U., Diao, 
Y., Li, B., et al. (2019). Circular ecDNA promotes accessible chromatin and high oncogene 
expression. Nature 575, 699-703. 10.1038/s41586-019-1763-5. 

83. Zhu, Y., Gujar, A.D., Wong, C.H., Tjong, H., Ngan, C.Y., Gong, L., Chen, Y.A., Kim, H., Liu, J., Li, M., et 
al. (2021). Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify 
chromosomal transcription. Cancer Cell 39, 694-707.e697. 10.1016/j.ccell.2021.03.006. 

84. Morton, A.R., Dogan-Artun, N., Faber, Z.J., MacLeod, G., Bartels, C.F., Piazza, M.S., Allan, K.C., 
Mack, S.C., Wang, X., Gimple, R.C., et al. (2019). Functional Enhancers Shape Extrachromosomal 
Oncogene Amplifications. Cell 179, 1330-1341.e1313. 10.1016/j.cell.2019.10.039. 

85. Wang, X., Luan, Y., and Yue, F. (2022). EagleC: A deep-learning framework for detecting a full 
range of structural variations from bulk and single-cell contact maps. Sci Adv 8, eabn9215. 
10.1126/sciadv.abn9215. 

86. Martinez-Fundichely, A., Dixon, A., and Khurana, E. (2022). Modeling tissue-specific breakpoint 
proximity of structural variations from whole-genomes to identify cancer drivers. Nat Commun 
13, 5640. 10.1038/s41467-022-32945-2. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


87. Di Giammartino, D.C., Polyzos, A., and Apostolou, E. (2020). Transcription factors: building hubs 
in the 3D space. Cell Cycle 19, 2395-2410. 10.1080/15384101.2020.1805238. 

88. Tatavosian, R., Kent, S., Brown, K., Yao, T., Duc, H.N., Huynh, T.N., Zhen, C.Y., Ma, B., Wang, H., 
and Ren, X. (2019). Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble 
through phase separation. J Biol Chem 294, 1451-1463. 10.1074/jbc.RA118.006620. 

89. Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, II (2018). Mediator and RNA 
polymerase II clusters associate in transcription-dependent condensates. Science 361, 412-415. 
10.1126/science.aar4199. 

90. Zamudio, A.V., Dall'Agnese, A., Henninger, J.E., Manteiga, J.C., Afeyan, L.K., Hannett, N.M., Coffey, 
E.L., Li, C.H., Oksuz, O., Sabari, B.R., et al. (2019). Mediator Condensates Localize Signaling 
Factors to Key Cell Identity Genes. Mol Cell 76, 753-766 e756. 10.1016/j.molcel.2019.08.016. 

91. Lachmann, A., Xu, H., Krishnan, J., Berger, S.I., Mazloom, A.R., and Ma'ayan, A. (2010). ChEA: 
transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. 
Bioinformatics 26, 2438-2444. 10.1093/bioinformatics/btq466. 

92. Weintraub, A.S., Li, C.H., Zamudio, A.V., Sigova, A.A., Hannett, N.M., Day, D.S., Abraham, B.J., 
Cohen, M.A., Nabet, B., Buckley, D.L., et al. (2017). YY1 Is a Structural Regulator of Enhancer-
Promoter Loops. Cell 171, 1573-1588.e1528. 10.1016/j.cell.2017.11.008. 

93. Beagan, J.A., Duong, M.T., Titus, K.R., Zhou, L., Cao, Z., Ma, J., Lachanski, C.V., Gillis, D.R., and 
Phillips-Cremins, J.E. (2017). YY1 and CTCF orchestrate a 3D chromatin looping switch during 
early neural lineage commitment. Genome Res 27, 1139-1152. 10.1101/gr.215160.116. 

94. Ong, C.T., and Corces, V.G. (2014). CTCF: an architectural protein bridging genome topology and 
function. Nat Rev Genet 15, 234-246. 10.1038/nrg3663. 

95. Barutcu, A.R., Hong, D., Lajoie, B.R., McCord, R.P., van Wijnen, A.J., Lian, J.B., Stein, J.L., Dekker, 
J., Imbalzano, A.N., and Stein, G.S. (2016). RUNX1 contributes to higher-order chromatin 
organization and gene regulation in breast cancer cells. Biochim Biophys Acta 1859, 1389-1397. 
10.1016/j.bbagrm.2016.08.003. 

96. Sorensen, P.H., Lessnick, S.L., Lopez-Terrada, D., Liu, X.F., Triche, T.J., and Denny, C.T. (1994). A 
second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family 
transcription factor, ERG. Nat Genet 6, 146-151. 10.1038/ng0294-146. 

97. Kim, E., Zucconi, B.E., Wu, M., Nocco, S.E., Meyers, D.J., McGee, J.S., Venkatesh, S., Cohen, D.L., 
Gonzalez, E.C., Ryu, B., et al. (2019). MITF Expression Predicts Therapeutic Vulnerability to p300 
Inhibition in Human Melanoma. Cancer Res 79, 2649-2661. 10.1158/0008-5472.CAN-18-2331. 

98. Zhu, J.N., Jiang, L., Jiang, J.H., Yang, X., Li, X.Y., Zeng, J.X., Shi, R.Y., Shi, Y., Pan, X.R., Han, Z.P., and 
Wei, L.X. (2017). Hepatocyte nuclear factor-1beta enhances the stemness of hepatocellular 
carcinoma cells through activation of the Notch pathway. Sci Rep 7, 4793. 10.1038/s41598-017-
04116-7. 

99. Zhang, Y., Zhang, S., Wang, X., Liu, J., Yang, L., He, S., Chen, L., and Huang, J. (2012). Prognostic 
significance of FOXP1 as an oncogene in hepatocellular carcinoma. J Clin Pathol 65, 528-533. 
10.1136/jclinpath-2011-200547. 

100. Xu, J., Song, F., Lyu, H., Kobayashi, M., Zhang, B., Zhao, Z., Hou, Y., Wang, X., Luan, Y., Jia, B., et al. 
(2022). Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature 611, 387-398. 
10.1038/s41586-022-05365-x. 

101. Kloetgen, A., Thandapani, P., Ntziachristos, P., Ghebrechristos, Y., Nomikou, S., Lazaris, C., Chen, 
X., Hu, H., Bakogianni, S., Wang, J., et al. (2020). Three-dimensional chromatin landscapes in T 
cell acute lymphoblastic leukemia. Nat Genet 52, 388-400. 10.1038/s41588-020-0602-9. 

102. Spielmann, M., Lupiáñez, D.G., and Mundlos, S. (2018). Structural variation in the 3D genome. 
Nat Rev Genet 19, 453-467. 10.1038/s41576-018-0007-0. 

103. Leder, P. (1985). Translocations among antibody genes in human cancer. IARC Sci Publ, 341-357. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


104. Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P. (1982). 
Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt 
lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79, 7837-7841. 
10.1073/pnas.79.24.7837. 

105. Peng, A., Peng, W., Wang, R., Zhao, H., Yu, X., and Sun, Y. (2022). Regulation of 3D Organization 
and Its Role in Cancer Biology. Front Cell Dev Biol 10, 879465. 10.3389/fcell.2022.879465. 

106. Chakraborty, C., Nissen, I., Vincent, C.A., Hägglund, A.C., Hörnblad, A., and Remeseiro, S. (2023). 
Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma 
orchestrates gene expression underlying neurogliomal synaptic communication. Nat Commun 
14, 6446. 10.1038/s41467-023-41919-x. 

107. Chen, P.B., Fiaux, P.C., Zhang, K., Li, B., Kubo, N., Jiang, S., Hu, R., Rooholfada, E., Wu, S., Wang, 
M., et al. (2022). Systematic discovery and functional dissection of enhancers needed for cancer 
cell fitness and proliferation. Cell Rep 41, 111630. 10.1016/j.celrep.2022.111630. 

108. Zhao, J., and Faryabi, R.B. (2023). Spatial promoter-enhancer hubs in cancer: organization, 
regulation, and function. Trends Cancer 9, 1069-1084. 10.1016/j.trecan.2023.07.017. 

109. Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C.P., Jerby-Arnon, L., Marjanovic, N.D., Dionne, D., 
Burks, T., Raychowdhury, R., et al. (2016). Perturb-Seq: Dissecting Molecular Circuits with 
Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 167, 1853-1866 e1817. 
10.1016/j.cell.2016.11.038. 

110. Hay, D., Hughes, J.R., Babbs, C., Davies, J.O.J., Graham, B.J., Hanssen, L., Kassouf, M.T., Marieke 
Oudelaar, A.M., Sharpe, J.A., Suciu, M.C., et al. (2016). Genetic dissection of the alpha-globin 
super-enhancer in vivo. Nat Genet 48, 895-903. 10.1038/ng.3605. 

111. Levo, M., Raimundo, J., Bing, X.Y., Sisco, Z., Batut, P.J., Ryabichko, S., Gregor, T., and Levine, M.S. 
(2022). Transcriptional coupling of distant regulatory genes in living embryos. Nature 605, 754-
760. 10.1038/s41586-022-04680-7. 

112. Harewood, L., Kishore, K., Eldridge, M.D., Wingett, S., Pearson, D., Schoenfelder, S., Collins, V.P., 
and Fraser, P. (2017). Hi-C as a tool for precise detection and characterisation of chromosomal 
rearrangements and copy number variation in human tumours. Genome Biol 18, 125. 
10.1186/s13059-017-1253-8. 

113. Couturier, C.P., Ayyadhury, S., Le, P.U., Nadaf, J., Monlong, J., Riva, G., Allache, R., Baig, S., Yan, X., 
Bourgey, M., et al. (2020). Single-cell RNA-seq reveals that glioblastoma recapitulates a normal 
neurodevelopmental hierarchy. Nat Commun 11, 3406. 10.1038/s41467-020-17186-5. 

114. Fan, X., Xiong, Y., and Wang, Y. (2019). A reignited debate over the cell(s) of origin for 
glioblastoma and its clinical implications. Front Med 13, 531-539. 10.1007/s11684-019-0700-1. 

115. Fulco, C.P., Munschauer, M., Anyoha, R., Munson, G., Grossman, S.R., Perez, E.M., Kane, M., 
Cleary, B., Lander, E.S., and Engreitz, J.M. (2016). Systematic mapping of functional enhancer-
promoter connections with CRISPR interference. Science 354, 769-773. 
10.1126/science.aag2445. 

116. Heckl, D., Kowalczyk, M.S., Yudovich, D., Belizaire, R., Puram, R.V., McConkey, M.E., Thielke, A., 
Aster, J.C., Regev, A., and Ebert, B.L. (2014). Generation of mouse models of myeloid malignancy 
with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32, 941-
946. 10.1038/nbt.2951. 

117. Concordet, J.P., and Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 
genome editing experiments and screens. Nucleic Acids Res 46, W242-W245. 
10.1093/nar/gky354. 

118. Hu, Y., and Smyth, G.K. (2009). ELDA: extreme limiting dilution analysis for comparing depleted 
and enriched populations in stem cell and other assays. J Immunol Methods 347, 70-78. 
10.1016/j.jim.2009.06.008. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


119. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of 
native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding 
proteins and nucleosome position. Nat Methods 10, 1213-1218. 10.1038/nmeth.2688. 

120. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-
Seq. Bioinformatics 25, 1105-1111. 10.1093/bioinformatics/btp120. 

121. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and 
Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-
2079. 10.1093/bioinformatics/btp352. 

122. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 31, 166-169. 10.1093/bioinformatics/btu638. 

123. Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. 
Genome Biol 11, R106. 10.1186/gb-2010-11-10-r106. 

124. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 
9, 357-359. 10.1038/nmeth.1923. 

125. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic 
features. Bioinformatics 26, 841-842. 10.1093/bioinformatics/btq033. 

126. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, 
R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-based analysis of ChIP-Seq (MACS). Genome 
Biol 9, R137. 10.1186/gb-2008-9-9-r137. 

127. Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and 
Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome 
Biol 16, 259. 10.1186/s13059-015-0831-x. 

128. Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S., Huntley, M.H., Lander, E.S., and Aiden, E.L. 
(2016). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell 
Syst 3, 95-98. 10.1016/j.cels.2016.07.002. 

129. Linderman, G.C., Zhao, J., Roulis, M., Bielecki, P., Flavell, R.A., Nadler, B., and Kluger, Y. (2022). 
Zero-preserving imputation of single-cell RNA-seq data. Nat Commun 13, 192. 10.1038/s41467-
021-27729-z. 

130. McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in 
Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337 e324. 
10.1016/j.cels.2019.03.003. 

131. Alquicira-Hernandez, J., and Powell, J.E. (2021). Nebulosa recovers single-cell gene expression 
signals by kernel density estimation. Bioinformatics 37, 2485-2487. 
10.1093/bioinformatics/btab003. 

132. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan, A. 
(2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC 
Bioinformatics 14, 128. 10.1186/1471-2105-14-128. 

133. Sheffield, N.C., and Bock, C. (2016). LOLA: enrichment analysis for genomic region sets and 
regulatory elements in R and Bioconductor. Bioinformatics 32, 587-589. 
10.1093/bioinformatics/btv612. 

134. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res 30, 207-210. 
10.1093/nar/30.1.207. 

135. Leinonen, R., Sugawara, H., and Shumway, M. (2011). The sequence read archive. Nucleic Acids 
Res 39, D19-21. 10.1093/nar/gkq1019. 

136. Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A., and Staudt, L.M. 
(2016). Toward a Shared Vision for Cancer Genomic Data. N Engl J Med 375, 1109-1112. 
10.1056/NEJMp1607591. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

F

Figure 1

hESC

NSCGSC

Patient-derived GSCs hESC-derived
NSCs

MES: 320, 728
CLA: 810, 1206

RNA-seq
ATAC-seq

H3K27ac ChIP-seq
H3K27ac HiChIP

Hyperconnected 3D Regulatory Hubs (Top 10%)

345

398

2,479

177
138

807 82
MES CLA

NSC

Hub

B

10
0

12
0

Connectivity (Deciles)

320
728
810
1206
NSC

80
60

40
20

0

SOX9
FOSL2EGFR

CDK6
JUN

MYC

ANXA1

AKT2

42 6 8 10

Ex
pr

es
sio

n 
le

ve
ls 

(T
PM

)

0 0.5 1 1.5 2 2.5 3 3.5 4

TNF-alpha Signaling via NF-kB

Epithelial Mesenchymal Transition

KRAS Signaling Up

-log10(p adj.)
0 0.5 1 1.5 2

PI3K/AKT/mTOR Signaling

TNF-alpha Signaling via NF-kB

Gene/TSS

Other anchor

TGFB1

C

D

Connectivity
and gene expression

320a
320b

728a
728b

810a
810b

1206a
1206b

NSC1

NSC2

−100

−50

0

50

−100 −50 50 100
PC1 − 30.8%

PC
2 

− 
25

.1
%

0

MES

CLA

RNA-seq

Al
l p

at
ien

ts 
(n

=6
73

)

TCGA patients clustering based 
on 3D hub gene expression

Gene Ontology: Hub Connected Genes
(Subtype-Specific Hubs)

E

TCGA clustering based on 
SE-proximal gene expression

Cluster
LGG/GBM
IDH-status
GBM mut

G L

GBM
LGG

High Hub Expression
Low Hub Expression

%
 o

f p
at

ie
nt

s 
pe

r c
lu

st
er

100

0

25

50

75

G
BM LG

G

ID
H

-w
t

G
BM

-m
ut

GBM
LGG

High SE Expression
Low SE Expression

Cluster
LGG/GBM
IDH-status
GBM mut

Al
l p

at
ien

ts 
(n

=6
73

)

%
 o

f p
at

ie
nt

s 
pe

r c
lu

st
er

0

25

50

75

100

Patient characteristics
per hub cluster

G
BM LG

G

ID
H

-w
t

G
BM

-m
ut

Patient characteristics
per SE cluster

40
60

80
10

0
m

ea
n 

ex
pr

es
si

on
 p

er
 p

at
ie

nt

p =  0.015 
p =  4.04e-08 

Mean expression
of hub genes

G
BM LG

G

G
BM LG

G

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000

Time (days)
0 500 1000 1500 2000 2500

Time (days)

TCGA-LGG patients
survival per hub cluster

TCGA-GBM patients
survival per hub cluster

n=28
n=96

n=112
n=12

pval=0.00016 pval=0.0095

*** ***

0 1000 2000

Time (days)
3000 4000

n=56
n=166

0.00

0.25

0.50

0.75

1.00

IDH-wt patients
survival per hub cluster

SOX9 Locus: Chr 17:71,004,145-73,382,187

BRD4NOTCH3 AKAP8

SOX9CASC17 LINC00673 SLC39A11

0-7

0-7

0-7

0-7

H3K27ac HiChIP

H3K27ac ChIP-seqN
SC

M
ES

C
LA

0-7

Common GSC 3D hub: 

H3K27ac HiChIP

H3K27ac ChIP-seq

H3K27ac HiChIP

H3K27ac ChIP-seq

H3K27ac HiChIP

H3K27ac ChIP-seq

H3K27ac HiChIP

H3K27ac ChIP-seq

pval=0.033

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Su
rv

iv
al

 P
ro

ba
bi

lit
y

M

H I J K

*

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chr1:58,301,038-60,923,971

JUN LINC01135 LINC02777 FGGY-DT FGGY

JUN-Connected 3D Regulatory Hub

H3K27ac HiChIP arcs

GSC 320

GSC 728

GSC 810

GSC 1206

LINC011135JUN FGGY-DTLINC02777

HUB

CRISPRi

FGGY

* ** *

TMPO TMPO-AS1

IKBIP APAF1

SLC25A3 (skipped) UHRF1BP1L (skipped)

TMPO

TMPO-AS1

SLC25A3
(skipped)

IKBIP

APAF1

UHRF1BP1L
(skipped)

TMPO

TMPO-A
S1

SLC
25

A3

(sk
ipp

ed
) IKBIP

APAF1

UHRF1B
P1L

(sk
ipp

ed
)

1 0.82 0.09 0.8 0.71 0.3

1 0.7 0.75 0.71 0.07

1 0.19 -0.03 0.02

1 0.67 0.31

1 0.22

1

Highly Coregulated Hub (GSC 320): 
Chr 12:98910001-98920000, mean rho 0.78

#320

Oncogenes within highly coregulated hubs
MEX3D MBD3

UQCR11 TCF3

REXO1 KLF16

TCF3 hub: Chr 19: 16500001-1660000
high coregulation (mean rho: 0.7185) 

JUND Hub: Chr 19: 18280001-18290000
low coregulation (mean rho: 0.004318)

JUND GDF15

LSM4 PGPEP1

RAB3A SSBP4

ZEB1
EGFR

MYCN

TCF3

FUBP1
NSD3

MAML2
CREB1

FGFR1

BCL3
BRD4

JUND

TRRAP

m
ea

n 
ge

ne
 p

ai
r c

or
re

la
tio

n 
(rh

o)
 p

er
 h

ub

0

0.2

0.4

0.6

0.8

(GSC 1206)

y = 0.38052167

#1206 #1206

EGFR
SOX2
ZEB1
MYC
JUN
MYCN
QKI
MET
CALR
FGFR1
BCL6
CDK6
PABPC1
RUNX1
STAT3

Connectivity of oncogene-containing hubs
across samples

GSC H3K27ac
HiChIP, this study

GBM HiC, 
Xie et al., 2024

GSC H3K4me3 HiChIP,  
Chakraborty et al., 2023

1
0.8
0.6
0.4
0.2
0 Co

nn
ec

tio
ns

 (z
-s

co
re

)

To
p 

10
%

 G
SC

 3
D 

hu
bs

 in
te

ra
ct

in
g 

wi
th

 o
nc

og
en

es
 

 
Sp

ea
rm

an
 c

or
re

la
tio

n 
rh

o

0

1

-1

p = 4.7e-11 p = 9.5e-11 p < 2.22e-16 p < 2.22e-16

Gene pair coregulation within 3D hubs

in hub random
320 728 810 1206

in hub random in hub random in hub random

Figure 2 

A B

C

D

F

E G

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


320

HUB CRISPRi

dose (number of cells)
0 10 20 30 40 50

-2
-1

0

Lower
Estimate
Upper

6.48
5.22
4.20

35.87
27.90
21.70

p value = 4.43e-22

810

B

WDR49 GOLIM4ZBBX

neg
 ctrl

LINC01997 PLD1PDCD10 SERPINI1

HUB

CRISPRi

N
or

m
al

iz
ed

 to
 n

eg
at

iv
e 

co
nt

ro
l (

%
)

ZBBX SERPINI2 WDR49 PDCD10 GOLIM4

SERPINI1 LRRC77P

NSC

320

728

810

Neg Ctrl

neg ctrl

HUB CRISPRi

1206

D

E
xp

re
ss

io
n 

le
ve

ls

GOLIM4 SERPINI1 PDCD10

HUB CRISPRi neg ctrl

-3
-4

lo
g 

fra
ct

io
n 

no
nr

es
po

nd
in

g

G
Gene Ontology

 (MSigDB Hallmark 2020, cluster 5 vs. 6, n = 916)

0
1
2
3
4
5
6
7

GSC

Cerebral Organoid
Co-culture

rtTA/TRE-
dCAS9-KRAB-

P2A-GFP

Transduction
Selection

neg ctrl
GOLIM4 enh

H
U

B C
R

ISPR
i

Doxycycline
Induction

7 days

neg ctrl

H3K27ac ChIP-seq

H3K27ac ChIP-seq

H3K27ac ChIP-seq

H3K27ac ChIP-seq

H3K27ac ChIP-seq

H3K27ac HiChIP

H3K27ac HiChIP

H3K27ac HiChIP

H3K27ac HiChIP

0-6

0-6

0-6

0-6

0-6

GOLIM4 3D Enhancer Hub: Chr 3:168020001-168030000
A

W
DR49

GOLI
M

4

ZBBX
PLD

1

PDCD10

SERPIN
I1

RPL1
3

C

E

F

HUB CRISPRi neg ctrl

*** *** ***

scRNA-seq of GFP+ cells

H

Figure 3 

0

1

2

3

4

5

6

7

proportion per cluster
neg.ctrl vs HUB CRISPRi

0.25 0.50 0.75 1.000

0 10 20 30

Myc Targets
mTORC1 Signaling

Oxidative Phosphorylation

Unfolded Protein Response

Epithelial Mesenchymal Transition

-log10(p adj.)
40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
B

C
1

B
C

2
B

C
3

E
C

1
E

C
2

E
S

1
E

S
2

M
1

M
2

M
3

G
S

C
-3

20
G

S
C

-7
28

G
S

C
-8

10
G

S
C

-1
20

6
S

C
LC

1
S

C
LC

2
H

C
C

1
H

C
C

2

H
C

C
3

Chr 8:125,729,039-129,731,690

XR_928630.3 LRATD2 PCAT1 PCAT2 CASC21 CAS11 MYC PVT1 MIR1208 LINC03824 LINC00976

GSDMC

CCDC26

MYC (Multi-cancer Hub)Gene Ontology

C

p = 0.0390.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000
Time (days)

High Expression
Low Expression

Melanoma

p = 0.041
0 1000 2000 3000

Time (days)

Endometrial Carcinoma

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Adipogenesis

Fatty Acid
Metabolism

Interferon Alpha
Response

Complement

TNFα Signaling
via NF-kB

UV Response

Estrogen 
Response

PI3K/AKT/mTOR 
Signaling

MYC Targets

G2-M Checkpoint

DNA Repair

E2F Targets

M
U

LT
I

E
C E
S M

G
B

M
H

C
C

p53 Pathway 

KRAS Signaling

EMT

Angiogenesis

2

4

6

OR

-log(p adj.)
2.5

5.0

7.5

10

M
ulti

H
C

C
G

B
M

M
E

S
E

C

320

728

810

1206

EGFR Locus: 
Chr7:53,888,303-56,576507

8%

92%

12%

88%

16%

84%

24%

76%

4%

96%

4%

96%

12%

88%

8%

92%

8%

92%

14%

86%

4%

96%

2%

98%

4%

96%

8%

92%

10%

90%

6%

94%

8%

92%

4%

96%

2%

98%

0

1,000

2,000

3,000

4,000

5,000

BC1
BC2

BC3
EC1

EC2
ES1

ES2

GSC-81
0

GSC-12
06

GSC-32
0

GSC-72
8
HCC1

HCC2
HCC3

SCLC
1

SCLC
2

Hubs overlapping with EagleC predicted SV

B D

E F G

H

H
C

C
3

High Expression
Low Expression

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

YES
NO

MEL1
MEL2

MEL3

nu
m

be
r o

f h
yp

er
co

nn
ec

te
d 

hu
bs

BC3

BC2

BC1

EC2

EC1

ES2

ES1

M3

M2

M1

GSC-1206

GSC-810

GSC-728

GSC-320

SCLC2

SCLC1

HCC3

HCC2

HCC1 of (M)-hubbed genes

of (EC)-hubbed genes

EagleC 
detected SVs

EagleC 
detected SV

Clustering of hubs across cancer types

no
rm

al
iz

ed
 c

on
ne

ct
iv

ity
 a

cr
os

s 
sa

m
pl

es

10

25

-log(p adj.)

ChEA

MYC

ESR1

CTCF

YY1

FOXP1

CCND1

EGR1
ELK3

MITF

SMARCA4
BRD4

RUNX2

FOXA1

ATF3
OLIG2

E2F1

HNF1A

M
U

LT
I

EC ES M
G

BM H
C

C

5 0

100

1.5

2.0

2.5

3.0

OR

-1.0
0

Figure 4

ChIP Input

ChIP Input

ChIP Input

ChIP Input

Scaled Connections

++
+
++

+

+

+

+++

0 500 1000 1500 2000 2500

p = 0.032

GBM (IDH-wt) Patient Clustering
based on RUNX2 expression

Time (days)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y n = 41 

n = 40 

++++
+

+

+

+
+

+

+

+
+

+
+

0 500 1000 1500 2000 2500

GBM (IDH-wt) Patient Clustering
based on FOXA1 expression 

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y n = 41 

n = 40 

p = 0.016

Time (days)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


320a

320b

728a

728b

810a
810b

1206a

1206b

NSC1
NSC2

−200

−100

0

100

200

0 200 400

PC1 − 47.9%
PC

2 
− 

22
.3

%

320a
320b

728a
728b

810b

NSC1
NSC2

−200

−100

0

100

200

−200 −100 0 100

PC1 − 41.6%

P
C

2 
− 

21
.9

%

810a 1206b

1206a

A
Figure S1

H3K27ac HiChIP Loops

ATAC-seq H3K27ac ChIP-seq

PP EX EP EE

Categories of HiChIP loops (%)320 728 810 1206 NSC

M
ES

C
LA

N
SC

G
SC

32
0

72
8

N
um

be
r o

f L
oo

p 
O

ve
rla

ps

F

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Lo

op
 S

iz
e 

(k
b)

C
on

ne
ct

iv
ity

H

0

5

10

lo
g2

(T
P

M
)

32
0 L

oo
pe

d

32
0 N

ot 
Lo

op
ed

72
8 N

ot 
Lo

op
ed

72
8 L

oo
pe

d
81

0 L
oo

pe
d

81
0 N

ot 
Lo

op
ed

12
06

 Lo
op

ed

12
06

 N
ot 

Lo
op

ed
NSC Lo

op
ed

NSC N
ot 

Lo
op

ed

*** *** *** *** ***

0

20

40

60

80

100

120

320 728 810 1206 NSC

320, n = 96289
728, n = 51551
810, n = 44949

1206, n = 66019
NSC, n = 33139

Number of Loops:

NSC
810
728

1206
320

MES
n = 12,881

CLA
n = 6,332

GSC, n = 3,398

32
0

32
0

72
8

72
8

81
0

81
0

12
06

12
06

NS
C

NS
C

Pr
on

eu
ra

l
Cl

as
sic

al
M

es
en

ch
ym

al

FGFR3
PDGFA
EGFR
AKT2
NES

ILR4
CHI3L1
TRADD
TLR2/4
RELB

DLL3
NKX2-2
SOX2
ERBB3
OLIG2

MES subtype NSC CLA subtype

z-
sc

or
e

G
en

e 
si

gn
at

ur
es

  (
Ve

rh
aa

k 
et

 a
l.)

B C

D E

320 728 810 1206 NSC

20 40 60 80 100

320

728

810

1206

NSC

H3K27ac ChIP-seq

320a
320b

728a

728b

810a
810b

1206a

1206b

NSC1
NSC2

−20

0

20

PC1 − 55.5%

P
C

2 
− 

21
.5

%

−30 300

H3K27ac HiChIP

G I

Classical
Signature Genes

32
0

72
8

81
0

12
06

N
SC

0

5

10

15

20

Mesenchymal
Signature Genes

****
** **

32
0

72
8

81
0

12
06

N
SC

0

5

10

15

20

 C
on

ne
ct

iv
ity

J

PX

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


H
3K

27
ac

 H
iC

hI
P 

C
on

ne
ct

iv
ity

2

4

6

8

10

12

14

***

ns
*

*

ns

GBM Essential Genes

Ess. Ctrl Ess. Ctrl Ess.Ctrl Ess.CtrlEss.Ctrl
320 728 810 1206 NSC

AKT2 C19orf47 PLD3 PRX SERTAD1

AKT2 Locus, Chr 19:40,229,259-40,447,766
Classical Subtype hub: 

LINC01504 XR_929925.2 TMC1 LINC01474 ANXA1 XR_929929.2 XR_929939.1

Mesenchymal Subtype hub:
ANXA1 Locus: Chr 9:72,242,624-73,841,267

0-7

0-7

0-7

0-7

0-10

0-10

0-10

0-10

0-7

0-7

0-7

0-7

0-7

0-10

H3K27ac HiChIP

H3K27ac ChIP-seqNS
C

M
ES

CL
A

0-7

H3K27ac HiChIP

H3K27ac ChIP-seq

H3K27ac HiChIP

H3K27ac ChIP-seq

H3K27ac HiChIP

H3K27ac ChIP-seq

H3K27ac ChIP-seq

%
 o

f p
at

ie
nt

s 
pe

r c
lu

st
er

0

25

50

75

100

Patient characteristics
 per cluster

ID
H-w

t

ID
H-w

t

GBM-m
ut

GBM-m
ut

LGG GBM

Figure S2
A B

C D

Fr
eq

ue
nc

y
0

50
0

10
00

15
00

20
00

25
00

30
00

Fr
eq

ue
nc

y
0

50
0

10
00

15
00

20
00

25
00

Fr
eq

ue
nc

y
0

50
0

10
00

15
00

20
00

25
00

1

1

1

Fr
eq

ue
nc

y
0

50
0

10
00

15
00

20
00

1 5 10

11

15 >20

11

1 5 10 15 >20

5 10

11
15 >20

>20155 10

8

5 10 15 >20

9

Fr
eq

ue
nc

y
0

50
0

10
00

15
00

20
00

25
00

320

728

810

1206

HiChIP Anchor Connectivity

NSC

Contacts per anchor

Top 10% highly
connected hubs

11

Top 10% highly
connected hubs

Top 10% highly
connected hubs

Top 10% highly
connected hubs

Top 10% highly
connected hubs

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3

0

10

20 p = 0.00161

p = 0.004124
p = 0.001708

ns

Top
Bottom

0.5

0

1.0

810 1206 320 728

pr
om

ot
er

-e
nh

an
ce

r r
at

io

p = 0.02698

p = 0.01745

p < 2.2e-16

BMPR1A
RAP1GDS1
DDX5

MAML2
IL7R

TET1
BIRC6

SIX1
ETV5

PLCG1
DEK

ZEB1STAT3
PPM1D

BRD4

ZEB1
EGFR

MYCN

TCF3

FUBP1
NSD3

MAML2
CREB1

TRRAP
FGFR1

BCL3
BRD4

A

y = 0.228520476

m
ea

n 
ge

ne
 p

ai
r c

or
re

la
tio

n 
(rh

o)
 p

er
 h

ub

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Oncogenes within highly coregulated hubs
320

1206

y = 0.38052167

# 
of

 c
on

ne
ct

ed
 g

en
es

810 1206 320 728

Top
Bottom

ns

EGFR

BRD4
JUN
DDX5 KMT2D

TCF3 TRRAP y = 0.25

0

0.2

0.4

0.6

0.8

MTOR

ERBB3

HIF1A

B

810

C

Parental GSC (320)

-dox +dox 48hr

Inducible CRISPRi GSC (320)
rtTA/TRE-dCAS9-KRAB-P2A-GFP

D

m
ea

n 
ge

ne
 p

ai
r c

or
re

la
tio

n 
(rh

o)
 p

er
 h

ub
m

ea
n 

ge
ne

 p
ai

r c
or

re
la

tio
n 

(rh
o)

 p
er

 h
ub

E

10
15

20

10
15

20

 HiC 
Xie et al., 2024

H3K4me3 HiChIP  
Chakraborty et al., 2023

Bottom
Decile

Top
Decile

Bottom
Decile

Top
Decile

GSC Hub Connectivity Across 
3D GBM/GSC Data Sets

0
5

0
5

n=27 GBM n=15 GSC

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Figure S4

dose (number of cells)

Lower
Estimate
Upper

80.8
65.4
52.9

195.7
157.5
126.8

Neg Ctrl HUB CRISPRi

p value = 1.68e-08

B

E

Hub 
CRISPRi

neg ctrl

Cell Cycle Phase

F

GOLIM4

G
S

C
 S

am
pl

es
N

S
C

HUB CRISPRi

neg ctrl

MES AC NPC OPC
neg ctrl 80.97% 5.24% 12.29% 1.51%
HUB CRISPRi 79.47% 5.93% 11.51% 3.09%

C

MES like
AC like

NPC like
OPC like

GSC NSC
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5
4.

0
lo

g1
0(

E
nh

)

n=44 n=10

lo
g 

fra
ct

io
n 

no
nr

es
po

nd
in

g

0
-1

-2
-3

-4

0 100 200 300 400

HUB CRISPRi
Neg Ctrl

neg ctrl Hub CRISPRi

H
3K

27
ac

 C
hI

P
-s

eq

GFP+GSCs within organoids (7d post dox)

H3K27ac levels
of GOLIM4 hub

hub (chr3:168020001-168030000)

Transcriptional states

Ex
pr

es
si

on
 le

ve
ls

no
rm

al
iz

ed
 to

 n
eg

 c
trl

D

GOLIM4

SERPINI1

PDCD10

WDR49

RPL13

PLD1

150

100

50

0

S Phase Score G2M Phase Score

neg ctrlHub 
CRISPRi

HUB CRISPRi in 810 GSC

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/


B
Cell Line Cancer Type Primary vs. Metastatic Site GEO Accession Number
T-47D breast cancer (BC1) metastatic GSE227242
MDA-MB-453 breast cancer (BC2) metastatic GSE157381
MCF7 breast cancer (BC3) metastatic GSE157382
Ishikawa endometrial cancer (EC1) primary GSE227242
BC1 endometrial cancer (EC2) primary GSE137936
A673 ewing sarcoma (ES1) primary GSE133227
TC71 ewing sarcoma (ES2) primary GSE133228
WM-266-4 melanoma (M1) metastatic GSE188401
M14 melanoma (M2) metastatic GSE156772
COLO829 melanoma (M3) primary GSE188401
s320-- patient-derived GSC sample glioblastoma-Mesenchymal subtype (GSC-MES1) primary This study
s728-- patient-derived GSC sample glioblastoma-Mesenchymal subtype (GSC-MES2) primary This study
s810-- patient-derived GSC sample glioblastoma-Classical subtype (GSC-CLA1) primary This study
s1206-- patient-derived GSC sample glioblastoma-Classical subtype (GSC-CLA2) primary This study
NCI-H889 small cell lung cancer (SCLC1) primary GSE206351
NCI-H524 small cell lung cancer (SCLC2) primary GSE206352
HCC-- 3 patient tumors hepatocellular carcinoma (HCC1-3) primary GSE212055

C

BC1

BC2
BC3

EC1

EC2

ES1

ES2

M1

M2

M3

GSC 1206 (CLA)

GSC 728 (MES)

GSC 810 (CLA)
SCLC1

HCC1

HCC2

HCC3

−200

−100

0

100

200

−200 0 200
PC1 − 10.8%

PC
2 

− 
8.

7% SCLC2

GSC 320 (MES)

D

Figure S5

A

0

10

20

BC1
BC2

BC3
EC1

EC2
ES1

ES2
M1 M2

M3

GSC-M
ES1

GSC-M
ES2

GSC-C
LA

1

GSC-C
LA

2

SCLC
1

SCLC
2

HCC1
HCC2

HCC3

Type
DEL

DUP

INV

MULTIPLE

EagleC-predicted SVs per sample

E

H3K27ac HiChIP

M
er

ge
d 

SV
 C

al
ls

Cancer Coordinates CSVDriver q value
Number of ICGC/PCAWG 
samples with driver SV

EagleC Called SV in 
HiChIP samples

EC chr17:39351121-39668789 0.017221417 9 of 47 EC1
M chr9:1450925-23034109 0.044365523 37 of 106 M1
GBM chr12:57616876-58018264 0.009325549 12 of 111 none
GBM chr12:58811764-59367054 0.040329062 6 of 111 none
GBM chr4:53869185-55340148 0.030469502 11 of 111 728
GBM chr7:55078620-55608352 1.82E-05 24 of 111 320, 810, 1206

EGFR: Chr7:53,673,724-56,832,188
Hub: Chr7:54750001-54760000

0-7

0-7

0-7

0-7

0-7

0-3

0-3

0-3

0-3

0-3

NSC

320

728

810

1206

NSC

NSC

320

728

810

1206

320

728

810

1206

H
3K

27
ac

 H
iC

hI
P

 a
rc

s
H

3K
27

ac
 C

hI
P

-s
eq

C
hI

P
 In

pu
t

JUN: Chr1:58,004,233-59,940,868
Hub: Chr1:58780001-58790000

NSC

320

728

810

1206

NSC

NSC

320

728

810

1206

320

728

810

1206

0-7

0-7

0-7

0-7

0-7

0-3

0-3

0-3

0-3

0-3

VSTM2A EGFR LANCL2ELDR SEPTIN14 JUNMYSM1 FGGY-DT FGGY

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.20.629544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629544
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Breves et al_biorxiv 122024_final
	Breves et al FINAL FIGURES
	Figure 1_CC_final_EA (1) copy copy
	Fig 2_biorxiv copy final
	Figure 3_bioxriv copy
	Figure 4_biorxiv copy
	Figure S1_final_copy
	Figure S2 final copy
	Figure S3_bioxriv copyfinal copy
	Figure S4_bioxriv copyfinal
	Figure S5 bioxriv copy


