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Abstract
Introduction Recently, increasing FcRn binding by Fc engineering has become a promising approach for prolonging the 
half-life of therapeutic monoclonal antibodies (mAbs). This study is the first to investigate the optimization of an allometric 
scaling approach for engineered mAbs based on cynomolgus monkey data to predict human pharmacokinetics.
Methods Linear two-compartmental model parameters (clearance [CL]; volume of distribution in the central compartment 
[Vc]; inter-compartmental clearance [Q]; volume of distribution in the peripheral compartment [Vp]) after the intravenous 
(IV) injection of engineered mAbs (M252Y/S254T/T256E or M428L/N434S mutations) in cynomolgus monkeys and humans 
were collected from published data. We explored the optimal exponent for allometric scaling to predict parameters in humans 
based on cynomolgus monkey data. Moreover, the plasma concentration–time profile of engineered mAbs after IV injection 
in humans was predicted using parameters estimated based on an optimized exponent.
Results For engineered mAbs, a significant positive correlation between cynomolgus monkeys and humans was observed for 
CL, but not for other parameters. Whereas conventional exponents (CL: 0.8, Q: 0.75, Vc: 1.0, Vp: 0.95) previously established 
for normal mAbs showed poor prediction accuracy for CL and Q of engineered mAbs, the newly optimized exponents (CL: 
0.55, Q: 0.6, Vc: 0.95, Vp: 0.95) achieved superior predictability for engineered mAbs. Moreover, the optimized exponents 
accurately predicted plasma mAb concentration–time profiles after IV injection of engineered mAbs in humans.
Conclusions We found that engineered mAbs require specially optimized exponents to accurately predict pharmacokinetic 
parameters and plasma concentration–time profiles after IV injections in humans based on cynomolgus monkey data. This 
optimized approach can contribute to a more accurate prediction of human pharmacokinetics in the development of engi-
neered mAbs.
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Key Points 

It was demonstrated that the allometric scaling approach 
with conventional exponents is not appropriate for 
predicting two-compartment model parameters of engi-
neered monoclonal antibodies (mAbs) in humans.

An allometric scaling approach with optimized expo-
nents was developed that showed good prediction accu-
racy for two-compartment model parameters of engi-
neered mAbs in humans based on cynomolgus monkey 
data.

Plasma concentration–time profiles of engineered mAbs 
after IV injection in humans were accurately predicted 
using the allometric scaling approach with optimized 
exponents.
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1 Introduction

Therapeutic monoclonal antibodies (mAbs) are a promising 
therapeutic modality for the treatment of several diseases. 
Over 100 mAbs have been approved by the US FDA and 
over 800 mAbs are currently in the clinical stage of develop-
ment [1]. Moreover, several unique engineered mAbs—such 
as bispecific antibodies [2], recycling/sweeping antibodies 
[3, 4], local activable antibodies [5], and antibody–drug 
conjugates (ADC) [6]—have been developed. Significant 
advantages of mAbs over other therapeutic modalities are 
high/selective target antigen binding and a long half-life in 
the body. The long half-life is mainly achieved by their large 
molecular weight and neonatal Fc receptor (FcRn)-mediated 
endosomal recycling. Large molecular weight limits glomer-
ular filtration and FcRn-mediated endosomal recycling pre-
vents lysosomal degradation, giving a longer half-life than 
other therapeutic modalities.

While mAbs already have a long half-life in the body, sev-
eral potential ways to extend it even further have been inves-
tigated. One approach is reducing the isoelectric point (pI) 
or increasing negative charge through mutagenesis. The cell 
surface is negatively charged, and mAbs with low pI/nega-
tive charge are repelled by negatively charged cell surfaces, 
which slows the endocytosis rate and prolongs half-life [7, 
8]. Another approach is improving FcRn-mediated endo-
somal recycling efficiency though mutagenesis. Dall'Acqua 
et al. found that M252Y/S254T/T256E (YTE) mutations 
showed 10-fold increased binding to human and cynomol-
gus monkey FcRn at pH 6.0 [9]. They demonstrated that 
YTE mutations successfully increased the half-life by 4-fold 
in cynomolgus monkeys. Also, Zalevsky et al. found that 
M428L/N434S (LS) mutations showed an 11-fold increase 
in binding to human FcRn at pH 6.0 and a 3.2-fold improve-
ment of half-life in cynomolgus monkeys [10]. Furthermore, 
both YTE and LS mutations have been reported to suc-
cessfully prolong the half-life of mAbs in humans without 
increasing immunogenicity risk [11–13]. Since it has already 
been proven in several clinical trials that pharmacokinetics 
of mAbs can be improved by mutations, the application of 
these mutations in the pharmaceutical industry will increase.

In drug development, it is important to predict human 
pharmacokinetics in the preclinical stage. For mAbs, linear 
pharmacokinetics in humans was reported to be accurately 
predicted by an allometric scaling approach from cynomol-
gus monkeys [14, 15]. Our group established optimal expo-
nents for predicting linear two-compartmental model param-
eters (clearance [CL]; volume of distribution in the central 
compartment  [Vc]; inter-compartmental clearance [Q]; 
volume of distribution in the peripheral compartment [Vp]) 
in humans from cynomolgus monkeys using an allometric 
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Human Prediction of Pharmacokinetics for Engineered Antibodies

scaling approach [16]. This approach successfully predicted 
plasma mAb concentration–time profiles after intravenous 
(IV) injection in humans for 23 mAbs. Although this allo-
metric scaling approach can be widely used for the predic-
tion of human pharmacokinetics in mAbs development, 
it was only validated using mAbs without mutations that 
increase FcRn binding. Therefore, its applicability to engi-
neered mAbs is uncertain.

In this study, first, we investigated whether the conven-
tional allometric scaling approach could be used to pre-
dict human pharmacokinetics for engineered mAbs. Then, 
we explored optimal exponents in the allometric scaling 
approach for engineered mAbs using reported pharmacoki-
netic data from cynomolgus monkeys and humans. This is 
the first report to comprehensively validate the methodology 
for predicting the pharmacokinetics of engineered mAbs in 
humans.

2  Materials and Methods

2.1  Data Collection

Linear two-compartment model parameters (CL, Q, Vc, and 
Vp) and plasma mAb concentration–time profiles of engi-
neered mAbs with YTE or LS mutations after IV injection in 
cynomolgus monkey and humans were obtained from pub-
lished data. Additionally, information on the immunoglobu-
lin G (IgG) subclass and target antigen was also collected. 
To exclude the effect of target-mediated drug disposition 
(TMDD) on analysis, only mAbs showing linear pharma-
cokinetics without TMDD in both cynomolgus monkeys and 
humans were selected for analysis. However, it should be 
noted that the possibility of involvement of TMDD cannot 
be completely excluded. When body weight information was 
unavailable in published data, 3 kg for cynomolgus monkeys 
and 75 kg for humans were applied for analysis. When CL, 

Fig. 1  Prediction accuracy of two-compartment model parameters 
of engineered mAbs in humans using a conventional allometric scal-
ing approach based on cynomolgus monkeys. A CL, B Q, C Vc, D 
Vp. Solid lines indicate unity. Dashed lines indicate 67% and 150% 

(± 1.5-fold) of unity. CL clearance, mAbs monoclonal antibodies, Q 
inter-compartmental clearance, Vc volume of distribution in the cen-
tral compartment, Vp volume of distribution in the peripheral com-
partment
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Q, Vc, and Vp were available in published data, these values 
were used for analysis. If CL, Q, Vc, and Vp were unavailable, 
parameters were estimated using a two-compartment model 
from plasma mAb concentration–time profiles. These pro-
files were obtained by scanning figures from published data 
using UnGraph 5 (Biosoft). Linear two-compartment model 
parameters for a total of nine engineered mAbs were collected. 
However, among the nine engineered mAbs, the plasma mAb 
concentration–time profiles after IV injection in humans for 
tixagevimab/AZD8895 and cilgavimab/AZD1061 were una-
vailable in published data. Therefore, having excluded these 
two, a total of seven engineered mAbs were used for the analy-
sis of plasma mAb concentration–time profiles.

2.2  Allometric Scaling Approach with Conventional 
Exponents

Our previous study established an allometric scaling approach 
with conventional exponents for normal mAbs [16]. Linear 
two-compartment model parameters of nine engineered mAbs 

in humans were predicted by the allometric scaling approach 
with conventional exponents as shown in the following 
equations.

BW and e represent body weight (/kg) and exponent. Units 
in the above equations were mL/day for CL and Q and mL for 

CLhuman = CLmonkey ×

(

BWhuman

BWmonkey

)eCL

,

Qhuman = Qmonkey ×

(

BWhuman

BWmonkey

)eQ

,

Vc, human = Vc, monkey ×

(

BWhuman

BWmonkey

)eVc

,

Vp, human = Vp, monkey ×

(

BWhuman

BWmonkey

)eVp

.

Fig. 2  Prediction accuracy of two-compartment model parameters 
of engineered mAbs in humans using an optimized allometric scal-
ing approach based on cynomolgus monkeys. A CL, B Q, C Vc, D 
Vp. Solid lines indicate unity. Dashed lines indicate 67% and 150% 

(± 1.5-fold) of unity. CL clearance, mAbs monoclonal antibodies, Q 
inter-compartmental clearance, Vc volume of distribution in the cen-
tral compartment, Vp volume of distribution in the peripheral com-
partment
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Vc, and Vp. Conventional exponents for CL, Q, Vc, and Vp in 
the allometric scaling approach were 0.8, 0.75, 1.0, and 0.95, 
respectively.

2.3  Optimization of Exponents for Engineered 
mAbs

To establish an optimized allometric scaling approach for 
engineered mAbs from cynomolgus monkey to humans, 
optimal exponents for CL, Q, Vc, and Vp were explored. 
In the allometric scaling approach equation as shown in 
Sect. 2.2, exponents were examined in 0.05 increments from 
0.5 to 0.8 for CL and Q and from 0.8 to 1.1 for Vc and Vp. 
Then, prediction accuracy for each exponent was evaluated 
by comparing predicted values with observed values.

2.4  Prediction of Plasma mAb Concentration–Time 
Profiles After IV Injection in Humans

Next, to evaluate the utility of optimal exponents, the plasma 
mAb concentration–time profiles of engineered mAbs after 
IV injection in humans were predicted from cynomolgus 
monkey data using allometric scaling approaches with both 
conventional and optimized exponents. The plasma mAb 
concentration–time profiles in humans predicted by the two 
approaches were compared with observed values.

2.5  Analysis

All fittings and simulations for plasma mAb concentra-
tion–time profiles were performed using SAAMII software 
(The Epsilon Group, Charlottesville, VA, USA). Relative 
weight (1/y^2) was used in all fittings. All figures and sta-
tistical analyses were prepared using GraphPad Prism 9 
(GraphPad Software, San Diego, CA, USA). Correlation 
of linear two-compartment model parameters between cyn-
omolgus monkeys and humans was statistically analyzed. 
Pearson correlation coefficient r value was significant when 
p < 0.05.

3  Results

3.1  Pharmacokinetic Parameters of Engineered 
mAbs in Cynomolgus Monkeys and Humans

A total of five mAbs with YTE mutations and four mAbs 
with LS mutations were selected for analysis (Table 1). 
All mAbs were reported to show linear pharmacokinetics 
in cynomolgus monkeys and humans. The IgG subclass of 
all mAbs was IgG1. The geometric means of CL for nine 
engineered mAbs in cynomolgus monkeys and humans 
were 3.86 and 0.91 mL/day/kg, respectively. These values 

were significantly lower than those previously reported in 
normal mAbs (6.14 mL/day/kg in cynomolgus monkeys 
and 3.32 mL/day/kg in humans) [16], demonstrating the 
effect of mutations to increase FcRn binding in both cyn-
omolgus monkeys and humans. On the other hand, Vc and 
Vp for engineered mAbs were similar to those for normal 
mAbs in both cynomolgus monkey and humans as previ-
ously reported [16]. Although Q in cynomolgus monkeys 
was similar between normal mAbs and engineered mAbs, Q 
in humans for engineered mAbs was slightly lower than that 
for normal mAbs. While there was a significant positive cor-
relation of CL between cynomolgus monkeys and humans 
(p < 0.05, r = 0.81), no significant correlation of Q, Vc, and 
Vp was observed.

3.2  Prediction of Two‑Compartment Model 
Parameters of Engineered mAbs in Humans

First, two-compartment model parameters (CL, Q, Vc, and 
Vp) of nine engineered mAbs in humans were predicted 
from that in cynomolgus monkeys using the allometric 
scaling approach with conventional exponents. As shown in 
Fig. 1, although Vc and Vp were reasonably predicted using 
exponents of 1.0 and 0.95 within a 1.5-fold difference of 
observed values (78% for Vc and 89% for Vp within 1.5-fold 
of observed values), CL and Q showed a clear tendency to 
be over-predicted using exponents of 0.8 and 0.75 (11% for 
CL and 56% for Q within 1.5-fold of observed values). This 
result suggests that the translational rule of pharmacokinet-
ics from cynomolgus monkeys to humans between normal 
mAbs and engineered mAbs was different. Therefore, to 
establish an optimized allometric scaling approach for engi-
neered mAbs, optimal exponents for CL, Q, Vc, and Vp were 
explored by assessing the predictability of each parameter 
as shown in Fig. 2. As a result, the optimal exponents for 
CL, Q, Vc, and Vp were estimated to be 0.55, 0.6, 0.95, and 
0.95, respectively. Prediction accuracy for CL, Q, Vc, and Vp 
using optimal exponents within 1.5-fold of observed values 
was 78%, 100%, 89%, and 89%, respectively. While optimal 
exponents for Vc and Vp were similar to conventional expo-
nents, those for CL and Q were lower than that of conven-
tional exponents. Furthermore, no significant difference of 
prediction accuracy for CL, Q, Vc, and Vp between YTE and 
LS mutations was observed. 

3.3  Prediction of Plasma mAb Concentration–Time 
Profiles After IV Injection in Humans

Using an allometric scaling approach with both conventional 
and optimized exponents, plasma mAb concentration–time 
profiles for seven engineered mAbs after IV injection in 
humans were predicted based on those in cynomolgus 
monkeys. As shown in Figs. 3 and 4, the allometric scaling 
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approach with conventional exponents tended to under-
predict plasma mAb concentration in humans. Prediction 
accuracy within a 2-fold difference of observed values was 
68.9% in the allometric scaling approach with conventional 
exponents. As shown in Fig. 3, plasma concentrations in the 
elimination phase tended to be especially more under-pre-
dicted by the allometric scaling approach with conventional 
exponents. In contrast, the optimized allometric scaling 
approach accurately predicted plasma mAb concentrations. 
It predicted 98.6% of plasma mAb concentrations within a 
2-fold difference of observed values. Optimized allometric 
scaling showed significantly higher prediction accuracy than 
the conventional approach.

4  Discussion

The effect of mutations to increase the FcRn binding of 
mAbs in humans was first demonstrated in 2013 [11]. Mot-
avizumab-YTE showed a half-life of around 80 days whereas 
motavizumab without YTE mutations showed a half-life 
of only 20–30 days in humans. Based on this impressive 
report, several engineered mAbs with mutations to increase 
FcRn binding were evaluated in clinical studies [17–19]. 
In particular, these mutations have been frequently applied 
to therapeutic anti-virus antibodies [20–22]. In fact, the 
targets of all the engineered mAbs used in this study were 
viruses, such as respiratory syncytial virus (RSV), human 
immunodeficiency virus (HIV), and severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). This is because 
long-term efficacy is essential for both the treatment and 
prophylaxis of virus infection. While several engineered 
mAbs have been developed and evaluated in clinical studies, 
a methodology for predicting the pharmacokinetics of engi-
neered mAbs in humans has never been validated. There-
fore, in this study, we investigated the optimal exponents 

for predicting linear two-compartment model parameters 
(CL, Q, Vc, and Vp) of engineered mAbs in humans from 
cynomolgus monkeys.

An allometric scaling approach from cynomolgus mon-
keys has been reported to be valuable for predicting the 
pharmacokinetics of mAbs in humans [14, 15]. This is 
because cynomolgus monkey FcRn and human FcRn show 
similar binding affinity to mAbs with human IgG sequence 
in the constant region [23]. This similarity of FcRn binding 
between cynomolgus monkeys and humans has also been 
reported for engineered mAbs that had significantly stronger 
FcRn binding affinity than normal mAbs [24]. Therefore, 
cynomolgus monkey data was used for analysis in this study. 
As shown in Fig. 5, CL of engineered mAbs between cyn-
omolgus monkeys and humans showed significant positive 
correlation (p < 0.05, r = 0.81). Previously, a positive cor-
relation of CL for normal mAbs between cynomolgus mon-
keys and humans has been reported [25, 26]. This significant 
correlation suggests that CL of engineered mAbs in humans 
can be predicted from cynomolgus monkeys with the appro-
priate scaling factor. CL is the most important parameter 
of the four because CL determines the entire exposure of 
mAbs. Therefore, prediction accuracy of CL in humans is 
crucial for predicting pharmacokinetics in humans. In a 
previous report, the prediction accuracy of CL, Q, Vc, and 
Vp for normal mAbs using the allometric scaling approach 
with conventional exponents was 71%, 54%, 88%, and 75% 
within 1.5-fold of observed values [16]. The observed pre-
diction accuracy for engineered mAbs using the allometric 
scaling approach with optimized exponents in this study was 
higher than previous reported for normal mAbs using the 
allometric scaling approach with conventional exponents. 
Furthermore, 98.6% of plasma mAb concentrations were 
accurately predicted within a 2-fold difference of observed 
values while the allometric scaling approach with conven-
tional exponents achieved only 68.9% prediction accuracy. 
Additionally, the allometric scaling approach with optimized 
exponents showed high prediction accuracy across a wide 
range, from low to high plasma concentrations (from distri-
bution phase to elimination phase). In contrast, the allomet-
ric scaling approach with conventional exponents showed 
a lower prediction accuracy (elimination phase) with low 
plasma concentrations than with high plasma concentrations 
(distribution phase). This result suggests that whole plasma 
mAb concentration–time profiles for engineered mAbs after 
IV injection in humans can be accurately predicted from 
cynomolgus monkeys using the optimized allometric scal-
ing approach.

This study is the first to recognize that the optimal expo-
nents of allometric scaling for engineered mAbs are different 
than those for normal mAbs. If allometric scaling with con-
ventional exponents is applied to engineered mAbs to predict 
human pharmacokinetics, the plasma concentration–time 

Fig. 3  Predicted and observed plasma concentration–time profiles 
after IV injection in humans using conventional and optimized allo-
metric scaling approaches. Closed squares indicate observed plasma 
concentration. Dotted lines indicate predicted plasma concentration–
time profiles using a conventional allometric scaling approach. Solid 
lines indicate predicted plasma concentration–time profiles using an 
optimized allometric scaling approach. A Motavizumab-YTE/MEDI-
524-YTE, 0.3  mg/kg. B Motavizumab-YTE/MEDI-524-YTE, 3  mg/
kg. C Motavizumab-YTE/MEDI-524-YTE, 15  mg/kg. D Motavi-
zumab-YTE/MEDI-524-YTE, 30 mg/kg. E Amubarvimab/BRII-196, 
750  mg. F Amubarvimab/BRII-196, 1500  mg. G Amubarvimab/
BRII-196, 3000 mg. H Romlusevimab/BRII-198, 750 mg. I Romlu-
sevimab/BRII-198, 1500  mg. J Romlusevimab/BRII-198, 3000  mg. 
K Sotrovimab/VIR-7831, 500  mg. L VRC01-LS, 20  mg/kg. M 
VRC07-523LS, 5  mg/kg. N VRC07-523LS, 20  mg/kg. O VRC07-
523LS, 40  mg/kg. P Elipovimab/GS-9722, 150  mg. Q Elipovimab/
GS-9722, 500 mg. R Elipovimab/GS-9722, 1000 mg

◂



 K. Haraya, T. Tachibana 

profile in humans will be under-predicted, as shown in 
Figs. 3 and 4, leading to the inefficient clinical development 
of engineered mAbs. This is due to over-prediction of CL 
and Q by the allometric scaling approach with conventional 
exponents. However, the reason for this difference between 
normal mAbs and engineered mAbs is still unknown. As 
described earlier, both normal mAbs and engineered mAbs 

are reported to show similar FcRn binding affinity in cyn-
omolgus monkeys and humans. Also, endogenous serum 
IgG concentration has been reported to be around 10–20 mg/
mL in both cynomolgus monkeys and humans [27, 28], sug-
gesting that endogenous IgG-mediated FcRn competition 
would be similar. A mechanistic investigation of this phe-
nomenon needs to be conducted in a future study.

Fig. 4  Relationship of predicted and observed plasma monoclonal 
antibody (mAb) concentrations. Solid lines indicate unity. A Plasma 
concentrations in humans predicted using a conventional allometric 

scaling approach. B Plasma concentrations in humans predicted using 
an optimized allometric scaling approach

Fig. 5  Distribution (A–D) and correlation (E–H) of two-compart-
ment model parameters of engineered mAbs in cynomolgus mon-
keys and humans. Distribution of CL (A), Q (B), Vc (C), Vp (D) in 
cynomolgus monkeys (closed triangles) and humans (closed circles). 
Correlation of CL (E), Q (F), Vc (G), Vp (H) between cynomolgus 

monkeys and humans. CL clearance, mAbs monoclonal antibodies, Q 
inter-compartmental clearance, Vc volume of distribution in the cen-
tral compartment, Vp volume of distribution in the peripheral com-
partment
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5  Conclusion

This study established an optimized allometric scaling 
approach for predicting the pharmacokinetics of engineered 
mAbs in humans. Recently, other than YTE and LS muta-
tions, several mutations to increase FcRn binding have been 
reported and evaluated in preclinical and clinical studies 
[29–31]. Also, YTE mutations were reported to be applied 
in ADC [32] and Fc-fusion protein [33] to prolong half-life. 
The optimized allometric scaling approach could be widely 
used for mAbs and other therapeutic modalities which con-
tain mutations to increase FcRn binding and can contribute 
to the efficient development of such therapeutics.
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