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Abstract

A subset of oncogenic human papillomaviruses (HPVs) is the main cause

of genital cancers, most importantly cervical cancer and an increasing

number of head and neck cancers. Despite the availability of prophylactic

vaccines against the most prevalent oncogenic HPV types, HPV-induced

malignancies are still a major health and economic burden. Besides con-

ventional treatment with surgery, chemotherapy and radiation,

immunotherapy is emerging as an efficient adjuvant option. Here, we

review relevant studies and ongoing clinical trials using immune check-

point inhibitors, therapeutic vaccines, gene editing approaches and adop-

tive T cell therapies, with special focus on engineered TCR T cells, which

are showing encouraging results and could lead to significant improve-

ment in the treatment of HPV+-infected cancer patients.

Keywords: cervical cancer; Engineered TCR T cells; human papillo-

mavirus; immunotherapy.

INTRODUCTION

Human papillomaviruses (HPV) are small, non-enveloped

DNA viruses that belong to the family of Papillomaviri-

dae, which consists of 52 genera and nearly 200 virus

types. The most extensively studied are those of the genus

Alphapapillomavirus, which is divided into high-risk

types (HR-HPVs), most importantly HPV16 and HPV18,

classified as carcinogenic (IARC Group 1), and low-risk

HPV types that cause mild dysplasia and benign

tumours.1,2 The genome of the HPVs is circular, double-

stranded molecule of approximately 8 kb, divided into

three regions: long control region (LCR) involved in the

regulation of viral gene expression; early (E) region

encoding non-structural proteins needed for viral replica-

tion and survival; and finally, late (L) region encoding

two structural capsid proteins. Most HR-HPV infections

regress spontaneously; however, in about 10% of cases

the immune system fails to clear the infection, which per-

sists and may cause malignant transformation. In such

cases, the viral DNA can get randomly integrated into the

host genome,3,4 usually causing disruption of the E2 gene,

which otherwise encodes as a transcriptional repressor of

the early gene promoter in the LCR, leading to deregu-

lated expression of the main HR-HPV oncogenes – E6

and E7.5–7 These two proteins target several intracellular
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signalling pathways involved in cell cycle regulation,

apoptosis, maintenance of genomic integrity and DNA

repair.8–12

According to data from GLOBOCAN 2018,13 persis-

tent infection with HR-HPV types is linked to approxi-

mately 4.5% of all cancer cases globally. HR-HPVs are

recognized as the main causative agent of cervical, anal,

vulvar, vaginal and penile cancers. Moreover, they are

linked to an increasing number of head and neck can-

cers as well.14 Three prophylactic vaccines have been

approved to date (quadrivalent Gardasil�, nonavalent

Gardasil-9� and bivalent Cervarix�) made of virus-like

particles of the most frequent HR-HPV types, the latter

also including two LR-HPV types that cause genital

warts. It has been estimated that the non-valent vaccine

could potentially prevent up to 90% of HPV-related

cancers.15 However, there is still a need for effective

therapies to treat advanced cases. Cervical cancer is the

fourth most common type of cancer and the fourth

leading cause of cancer mortality among women world-

wide.13 Recently, immune-directed therapies applied to

advanced HPV-positive cancers have shown significant

success. Here, we review various immunotherapeutic

approaches applied to HPV-associated cancer patients in

clinical trials, with special focus on engineered TCR T

cells. Our review follows the flow chart shown in Fig-

ure 1.

IMMUNE CHECKPOINT INHIBITORS

Inhibitors targeting two negative immune regulatory

pathways of T cells, the programmed death receptor 1

(PD-1) and its ligand (PD-L1) and the cytotoxic T-lym-

phocyte-associated protein 4 (CTLA-4), have been

assessed in clinical trials as having high therapeutic

potential.16 There are several ongoing clinical trials with

anti-PD-1/ PD-L1 and anti-CTLA-4. Immune checkpoint

inhibitors can be used solely or in combination with

chemotherapy, chemoradiation and antiangiogenic agents.

Ongoing clinical trials related to anti-PD-1/ PD-L1 and

anti-CTLA-4 for HPV (+) cancers are summarized in

Tables 1 and 2, respectively.

Anti-PD-1/PD-L1 monoclonal antibodies

Nivolumab, a fully human antibody against PD-1, has

been tested as a monotherapy in patients suffering from

recurrent or metastatic cervical cancer (NCT02257528).

The results of this study showed that solely administra-

tion of nivolumab was safe but had low antitumour

effect.17 However, the initial results of another phase I/ II

clinical study (NCT02488759) have shown that the effi-

cacy of nivolumab monotherapy is promising in meta-

static vaginal, vulvar and cervical cancers.18 The efficiency

and safety of nivolumab plus chemoradiation
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Figure 1. Immunotherapeutic approaches for the treatment of HPV-associated cancers
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(NCT03298893) and in combination with paclitaxel

(NCT04282109) are being studied in patients suffering

from locally advanced cervical cancer or recurrent head

and neck squamous cell carcinoma (HNSCC), respec-

tively. The results of these studies have not been reported

yet, but the combo therapies are expected to be more

effective than nivolumab alone.

Pembrolizumab is a humanized antibody targeting PD-

1 that has shown promising outcomes in a clinical phase

II study as monotherapy of metastatic solid tumours

including cervical and vulvar cancers. The antitumour

activity of pembrolizumab in patients with PD-L1-posi-

tive advanced cervical cancer was stable, and the toxicity

was manageable (NCT02628067).19 Based on these find-

ings, the US Food and Drug Administration has acceler-

ated the approval of pembrolizumab for PD-L1-positive

advanced cervical cancer suffering from progression in

the course of chemotherapy or afterwards. Furthermore,

in a phase III clinical trial, pembrolizumab monotherapy

also showed encouraging results in PD-L1-positive recur-

rent or metastatic HNSCC. The published results also

support that pembrolizumab in combination with 5-fluo-

rouracil and platinum chemotherapy can be considered as

a first-line treatment for HNSCC.20

In yet another phase III clinical trial, the safety and

antitumour activity of pembrolizumab is being studied in

combination with platinum-based chemotherapy in

patients with recurrent, persistent or metastatic cervical

cancer (NCT03635567). The study is planned to be com-

pleted on November 2022, and it is expected to provide

valuable information on the suitability of this therapeutic

regime as the first-line treatment of recurrent or meta-

static cervical cancer. In a phase II study, durvalumab,

anti-PD-L1, is being combined with a personalized

Table 1. Ongoing clinical trials of anti-PD-1/PD-L1 for the treatment of HPV-associated cancers

Agent(s) Type

Clinical

phase

Start

date

Completion

date

Clinical trial

reference

Nivolumab Anti-PD-1 II May

2015

Mar. 2019a NCT02257528

Nivolumab /ipilimumab /daratumumab /

relatlimab

Anti-PD-1 /Anti-CTLA-4 /Anti-CD 38 /

Anti-LAG-3

I/II Oct.

2015

May 2022 NCT02488759

Nivolumab /cisplatin /radiotherapy Anti-PD-1 /chemotherapy I/II Nov.

2017

April 2020 NCT03298893

Nivolumab /cisplatin /radiotherapy Anti-PD-1 /chemotherapy II June

2020

Aug. 2023 NCT04282109

Pembrolizumab Anti-PD-1 II Dec.

2015

Aug. 2023 NCT02628067

Pembrolizumab /paclitaxel/cisplatin/

carboplatin/bevacizumab/Placebo

Anti-PD-1 /platinum-based chemotherapy /

antiangiogenic agents

III Oct.

2018

Nov. 2022 NCT03635567

Pembrolizumab /platinum /brachytherapy Anti-PD-1 /chemotherapy /radiotherapy I Dec.

2017

Jan. 2019 NCT03144466

Pembrolizumab /cisplatin /brachytherapy Anti-PD-1 /chemotherapy /chemoradiation II Jan

2016

May 2021 NCT02635360

Pembrolizumab / paclitaxel/cisplatin/

carboplatin /bevacizumab

Anti-PD-1/platinum-based chemotherapy /

antiangiogenic agents

II Sept.

2018

Oct. 2025 NCT03367871

Pembrolizumab /immunomodulatory /

cocktail /radiotherapy

Anti-PD-1 /vitamin D, aspirin,

cyclophosphamide and lansoprazole

II July

2017

June 2022 NCT03192059

AGEN2034 (RebmAb-700) Anti-PD-1 I/II April

2017

Sept. 2019 NCT03104699

REGN2810 (cemiplimab) Anti-PD-1 I/II April

2017

Sept. 2019 NCT03257267

Durvalumab /vigil Anti-PD-L1 /cellular immunotherapy II June

2016

Jan. 2021a NCT02725489

M7824 Bifunctional antibody targeting TGF-b and

PD-L1

II Feb.

2018

Dec. 2023 NCT03427411

Atezolizumab /carboplatin /

cyclophosphamide

Anti-PD-L1 /chemotherapy I Jan.

2017

June 2019a NCT02914470

Atezolizumab /cisplatin/paclitaxel /

bevacizumab

Anti-PD-L1 /chemotherapy /antiangiogenic

agents

III Sept.

2018

Dec. 2023 NCT03556839

Atezolizumab /bevacizumab Anti-PD-L1 /antiangiogenic agents II Mar.

2017

Aug. 2020a NCT02921269

aActive, not recruiting.
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cellular immunotherapy called vigil in advanced cancers

including cervical carcinomas (NCT02725489). Vigil con-

sists of irradiated autologous tumour cells genetically

engineered to suppress transforming growth factor-b1
and transforming growth factor-b2 (TGF-b1 and TGF-

b2) and express recombinant human granulocyte–macro-

phage colony-stimulating factor (rhGM-CSF). Moreover,

in another phase II study, M7824, a bifunctional antibody

targeting TGF-b and PD-L1, is being studied in HPV-as-

sociated cancers (NCT03427411). A combinational ther-

apy of chemotherapeutic drugs, carboplatin–
cyclophosphamide and atezolizumab (anti-PD-L1), is

under study in a phase I study (NCT02914470). Further,

in an active, recruiting phase III clinical trial, ate-

zolizumab is combined with cisplatin/paclitaxel/beva-

cizumab, a standard treatment of stage IVB cervical

carcinoma (NCT03556839).21 In addition, in a running

phase II clinical study, bevacizumab is combined with

atezolizumab in advanced cervical cancers. Interestingly,

this study includes intratumoral and peripheral T cell

receptor (TCR) clonality assessment by TCR sequencing

(NCT02921269).

Anti-CTLA-4 monoclonal antibodies

Upon ligand binding on activated T cells, CTLA-4 down-

modulates their cytotoxic responses. It has been shown

recently that single nucleotide polymorphisms in the pro-

moter region of the CTLA-4 gene correlate with higher

susceptibility to various types of malignancies including

cervical cancer.22 Ipilimumab, a fully human anti-CTLA-4

monoclonal antibody, is being tested in a phase II study

to assess its efficacy in patients with recurrent or

metastatic cervical cancer (NCT01693783). Initial results

on 34 evaluated patients showed three partial responses

and eight cases with stable disease, while 23 patients had

progression of disease. Moreover, ipilimumab was well

tolerated in cervical cancer patients and promoted

immune activation.23 Another phase I study recruits

patients with locally advanced cervical cancer to receive

chemotherapy with cisplatin and chemoradiation followed

by administration of ipilimumab. This study will measure

HPV-specific T cells and differential activated T cell

responses based on the HLA-subtype A*0201
(NCT01711515). According to an initial report on 2017,

ipilimumab was efficient and well tolerated.24 Safety and

dosage of ipilimumab in combination with cetuximab is

also being studied in patients with stage III/IVB head and

neck cancer (NCT01935921).

In yet another approach, anti-PD-1/PD-L1 and anti-

CTLA-4 antibodies are used simultaneously. An active

phase I study was designed to evaluate the safety and toler-

ance of tremelimumab, anti-CTLA-4 antibody and durval-

umab in various advanced solid tumours including cervical

cancer (NCT01975831). Preliminary results showed that

this combination is safe and has clinical activity.25 Combi-

nation of nivolumab, ipilimumab and radiotherapy is also

being evaluated in HPV-positive head and neck cancer

(NCT03799445). Combinational therapy with durvalumab,

tremelimumab and vinorelbine (chemotherapeutic drug

that inhibits mitosis through interaction with tubulin) is

being evaluated in a phase I/II study for advanced solid

tumours including cervical cancer (NCT03518606). Treme-

limumab combined with durvalumab and radiotherapy is

being studied for the treatment of cervical, vaginal or vul-

var cancers (NCT03452332).

Table 2. Ongoing clinical trials of CTLA-4 inhibitors for the treatment of HPV-associated cancers

Agent(s) Type

Clinical

phase

Start

Date

Completion

Date

Clinical trial

reference

Ipilimumab Anti-CTLA-4 II Dec.

2012

Dec. 2020a NCT01693783

Ipilimumab /cisplatin /radiation Anti-CTLA-4/chemotherapy I Oct.

2012

Mar. 2017a NCT01711515

Ipilimumab /cetuximab /radiotherapy Anti-CTLA-4 /antiangiogenic /

radiotherapy

I Apr.

2013

Oct. 2016a NCT01935921

Tremelimumab /durvalumab Anti-CTLA-4 /anti-PD-L1 I Dec.

2013

Dec. 2020a NCT01975831

Nivolumab /ipilimumab /

radiotherapy

Anti-PD-1 /Anti-CTLA-4 /

radiotherapy

II July

2019

Aug. 2022 NCT03799445

Tremelimumab /durvalumab /

vinorelbine

Anti-CTLA-4 /Anti-PD-L1 /

chemotherapy

I/II Jun 2018 Aug. 2023 NCT03518606

Tremelimumab /durvalumab /

radiotherapy

Anti-CTLA-4/anti-PD-L1 /

radiotherapy

I July

2018

Oct. 2020 NCT03452332

aActive, not recruiting.
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THERAPEUTIC VACCINES

Most therapeutic HPV vaccines target the two major

oncoproteins of HPV16 and HPV18, E6 and E7, which

are constitutively expressed by tumour cells.26 A number

of strategies have been applied to develop therapeutic

vaccines using vectors, peptides/proteins, DNA and gen-

ome editing tools. Vector, peptide and protein vaccines

are mainly HPV16-specific, while DNA vaccines and gen-

ome editing tools are mostly polyvalent vaccines targeting

E6 and E7 genes of both HPV16 and HPV18. Table 3

summarizes recent clinical studies using vaccines.

Vector vaccines

Certain recombinant bacterial and viral vectors can repli-

cate inside the cells and promote antigen presentation.27

ADXS11-001 is an attenuated live Listeria monocytogenes

(LM) encoding a HPV16 E7 oncoprotein linked to LM

listeriolysin O, which has been evaluated in several clini-

cal trials for the treatment of HPV16(+) cancers including
cervical cancer. ADXS11-001 monotherapy has shown

promising outcomes in terms of safety and efficacy in

recurrent cervical cancer patients (NCT01266460). The

first stage of these two-stage phase II clinical study

showed 12-month overall survival for 38.5% of the

patients.28 In the second stage, 34.9% had 12-month

overall survival rate and these outcomes encourage fur-

ther clinical studies of ADXS11-001.29 In a phase III clini-

cal trial, this vaccine was also compared with placebo in

disease-free interval of patients with high-risk locally

advanced cervical cancer (NCT02853604). ADXS11-001 is

also being studied in HPV-positive head and neck cancers

to evaluate whether it can simulate the immune system

prior to surgery (NCT02002182). A recent completed

phase I/II trial with ADXS11-001 showed that 1 9 109

colony-forming units (CFU) could be safely administered

to patients with advanced anal cancer and that the vac-

cine, solely or in combination with cisplatin, had antitu-

mour activity (NCT01671488).30 Another phase I/II study

showed the safety of a higher dose of ADXS11-001

(1 9 1010 CFU) in cervical cancer patients at different

stages (NCT02164461).31 In a phase I/II clinical trial, the

same vaccine was administered alone or in combination

with durvalumab in previously treated locally advanced

or metastatic cervical or head and neck cancer patients

(NCT02291055).32 ADXS11-001, as monotherapy or in

combination, has shown encouraging outcomes, and the

results of more clinical studies can pave its path to be

approved as an alternative therapy for HPV-positive can-

cer patients.

Modified vaccinia virus Ankara (MVA) vectors encod-

ing E6 or E7 oncoprotein of HPV16 or HPV18 have been

shown to drive HPV-specific cytotoxic T-lymphocyte

(CTL) responses. TG4001 is a MVA vector expressing

HPV16 E6/E7 and IL-2, which is currently being evalu-

ated in a phase I/II trial (NCT03260023) in HPV16(+)
recurrent or metastatic cancers in combination with ave-

lumab, a humanized IgG1 monoclonal antibody targeting

human PD-L1. Interim results suggest that administration

of TG4001 plus avelumab in HPV16+ cancer patients is

safe and induces antitumour activity.33

Vvax001 is an RNA replicon derived from Semliki For-

est virus encoding a fusion of the HPV16 E6 and E7 pro-

teins that is being tested for the first time in humans to

evaluate its efficiency and safety in advanced cervical can-

cer in a running clinical study (NCT03141463).

TA-HPV is a live recombinant vaccina virus expressing

modified E6/E7 genes of HPV16/18. Based on the result

of a phase I clinical study, TA-HPV in combination with

pNGVL4a-Sig/E7 (detox)/HSP70 DNA vaccine34 and imi-

quimod is well tolerated, and can induce effector immune

response in HPV16+ CIN III patients (NCT00788164).35

PRGN-2009 is a novel gorilla adenovirus including

multiple E6/E7 epitopes of HPV16 and HPV18. Due to

its promising preclinical results,36 it is being evaluated in

HPV (+) cancer patients (NCT04432597).

Peptide and protein vaccines

Peptide vaccines use identified MHC class I-restricted

immunogenic epitopes from HPV antigens. DPX-E7 is a

9-amino-acid-long synthetic peptide, HPV16 E711-19,

packaged into liposomes, freeze-dried and resuspended in

oil. DPX-E7 efficacy is being tested in an open-label

phase Ib/II trial in HLA-A*02-01 patients with HPV16-

associated head and neck, anal and cervical cancers

(NCT02865135).

ISA101 (ISA Pharmaceuticals) is a synthetic long pep-

tide (SLP) vaccine consisting of 12 SLPs (25–35 residues

each) from the E6 and E7 oncoproteins of HPV16.

ISA101 is being studied combined with nivolumab in

patients with HPV16-positive solid tumours in a phase II

trial (NCT02426892). Based on the overall response rate

and median overall survival, the results showed promising

outcomes compared with solo administration of anti-PD-

1.37 In another phase I/II clinical study, ISA 101 is used

in combination with pegylated interferon (IFN-a IIb).

Their results showed that there is a significant correlation

between overall survival and T cell responses induced by

the vaccine.38 Hespecta is another vaccine of the same

company consisting of two HPV16 E6-derived SLPs con-

jugated to a synthetic Toll-like receptor 2 (TLR2) ligand

(Amplivant). Dose–escalation, toxicity and ability to

induce HPV16 E6-specific T cell responses of Hespecta

are being tested in a phase I study (NCT02821494).

PepCan is a vaccine consisting of four HPV16 E6 pep-

tides, which was designed as therapy for high-grade squa-

mous intraepithelial neoplasia (HSIL). It was safe in a

phase I study combined with a Candida skin test reagent
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Table 3. Ongoing clinical trials with therapeutic vaccines for the treatment of HPV-associated cancers

Agent Type

HPV

target Clinical phase

Start

Date

Completion

Date Reference

ADXS11-001 Bacterial vector HPV16 E7 II May

2013

Oct 2018a NCT01266460

ADXS11-001 /placebo Bacterial vector HPV16 E7 III Sept.

2016

Oct. 2024a NCT02853604

ADXS 11-001 Bacterial vector HPV16 E7 II Dec.

2013

Aug. 2023a NCT02002182

ADXS11-001/5-fluorouracil/

mitomycin

Bacterial vector/ chemotherapy HPV16 E7 I/II Feb.

2013

Feb. 2018 NCT01671488

ADXS11-001 Bacterial vector HPV16 E7 I/II Jan.

2015

July 2018 NCT02164461

ADXS11-001 /durvalumab Bacterial vector /anti-PD-L1 HPV16 E7 I/II Apr.

2015

Dec. 2019 NCT02291055

TG4001/avelumab Viral vector/anti-PD-L1 HPV-16

E6/E7

I/II Sept.

2017

Dec. 2021 NCT03260023

Vvax 001 RNA replicon vaccine HPV-16

E6/E7

I Jan.

2017

Nov. 2017 NCT03141463

TA-HPV /pNGVL4a-Sig/E7

(detox)/HSP70 /imiquimod

Viral vector /DNA vaccine /immune

response modifier

HPV-16/

18 E6/E7

I Nov.

2008

Dec. 2021 NCT00788164

PRGN-2009 /M7824 Viral vector /bifunctional antibody

targeting TGF-b and PD-L1

HPV-16

E6/E7

I/II Aug.

2020

Oct. 2023 NCT04432597

DPX-E7 Peptide vaccine HPV16-E7

(11-19)

I/II Dec.

2016

May 2023 NCT02865135

ISA 101 /Nivolumab Peptide vaccine/anti-PD-1 HPV-16

E6/E7

II Dec.

2015

Dec. 2019a NCT02426892

ISA 101 /carboplatin/paclitaxel /

bevacizumab

Peptide vaccine /chemotherapy /

antiangiogenic

HPV-16

E6/E7

I/II Sept.

2013

Aug. 2018 NCT02128126

PepCan Peptide vaccine HPV-16

E6

II Oct.

2015

Aug. 2020 NCT02481414

Hespecta Peptide vaccine HPV16 E6 I Mar.

2015

Dec. 2017 NCT02821494

HPV16 E7 peptide, synthetic

HPV16 E6 peptide

Peptide vaccine HPV16

E6/E7

I Jan.

2003

Apr. 2015 NCT00019110

TA-CIN Protein vaccine HPV16

L2/ E6/

E7

I Apr.

2019

Nov. 2022 NCT02405221

TVGV-1 Protein vaccine HPV16 E7 II Nov.

2015

Sept. 2018a NCT02576561

GX-118E DNA vaccine HPV16/18

E6/E7

II July

2014

Mar. 2016 NCT02139267

GX-118E/placebo DNA vaccine HPV16/18

E6/E7

II Aug.

2015

Aug. 2018a NCT02596243

GX-118E/GX-I7/imiquimod DNA vaccine /IL-7 /antigenital warts HPV16/18

E6/E7

Interventional

clinical trial

May

2017

Oct. 2018 NCT03206138

VGX-3100 /INO-9012 DNA vaccine /DNA vaccine encoding

IL-12

HPV16/18

E6/E7

I/IIa May

2014

Sept. 2017 NCT02172911

VGX-3100 /placebo DNA vaccine HPV16/18

E6/E7

III June

2017

Apr. 2021a NCT03185013

VB10.16 DNA vaccine HPV16 E6 I/II Aug.

2015

Jan. 2019 NCT02529930

pnGVL4a-CRT/E7 (Detox) DNA vaccine HPV16 E7 I Oct.

2009

July 2018 NCT00988559

pnGVL4a-CRT/E7 (Detox)/

cyclophosphamide

DNA vaccine / chemotherapy HPV16 E7 I Dec.

2011

Nov. 2018 NCT01493154
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as adjuvant.39 The efficacy and safety of PepCan is cur-

rently being evaluated in a phase II study in patients with

HSIL (NCT02481414).

In contrast to peptide vaccines, protein vaccines

include all antigenic epitopes of E6/E7. Yet, they are less

immunogenic and induce mainly MHC class II presenta-

tion.40 However, vaccines using fusion proteins are more

immunogenic and promote presentation through MHC I

pathway and subsequent activation of CTLs.41 TA-CIN is

a vaccine consisting of an HPV16 L2/E6/E7 fusion pro-

tein, which is currently being evaluated in a phase I study

in patients with HPV16 (+) cervical cancer

(NCT02405221). TVGV-1 is another fusion protein vac-

cine consisting of peptide sequence of human HPV16 E7

fused to the Pseudomonas aeruginosa exotoxin A and an

endoplasmic reticulum retention signal (KDEL), com-

bined with GPI-0100 as adjuvant. Its efficiency and safety

are being studied in a phase II trial enrolling HPV16/18

(+) HSIL patients (NCT02576561).

DNA vaccines

DNA vaccines have been tested in different clinical stud-

ies and demonstrated to be safe, but they generally act as

poor immunogens.41,42 Therefore, strategies to improve

the processing and presentation of antigens encoded by

DNA vaccines have been developed to improve their

immunogenicity. GX-188E (Genexine, Inc.) is one such

vaccine consisting of a tissue plasminogen activator signal

sequence, an FMS-like tyrosine kinase 3 ligand, and shuf-

fled E6 and E7 genes of HPV16 and HPV18. Safety and

efficiency of GX-118E, applied intramuscularly by electro-

poration, has been studied in different trials in patients

with cervical intraepithelial neoplasia II/III (CIN II/III)

(NCT02139267, NCT02596243), and its efficacy in a

cohort of 64 CIN III patients has been reported

recently.43 In another interventional study, the efficiency

of GX-188E in combination with GX-I7, interleukin-7

(IL-7) or imiquimod is being tested in CINIII patients

(NCT03206138).

VGX-3100 (Inovio Pharmaceuticals) is another DNA

vaccine consisting of plasmids encoding modified E6 and

E7 genes of HPV16/HPV18. The efficiency and safety of

VGX-3100 combined with INO-9012 (a plasmid encoding

IL-12), labelled INO-3112, was tested in a phase I/IIa trial

in patients with recurrent or persistent cervical cancer

(NCT02172911). Another phase III trial is active on

patients with CIN II or CIN III associated with HPV16/

HPV18 (NCT03185013). VB10.1 (Vaccibody AS6) is

another DNA vaccine encoding a chimeric protein com-

posed of an HPV16 E6/E7 fusion, a dimerization domain

and an MIP-1a sequence that binds to antigen-presenting

cells. VB10.1 was tested recently in woman with HPV16

(+) CIN II/III in a phase I/IIa (NCT02529930) and

reported to be safe and induce E6/E7-specific CD8+ T cell

responses.44 PNGVL4a-CRT/E7 (detox) is another

promising DNA vaccine that induced robust immune

response in HPV16 CIN II/III patients (NCT00988559).45

This vaccine encodes calreticulin, which is linked to a

detoxified form of HPV16 E7 and has been also evaluated

for treating head and neck cancer patients in a phase I

clinical study (NCT01493154).

Genome editing tools

It has been shown recently that genome editing tools such

as clustered regularly interspaced short palindromic

repeats/Cas9 protein (CRISPR/Cas9), zinc finger nucleases

(ZFNs) and transcription activator-like effector nuclease

(TALENs) can decrease tumorigenicity in HPV16/18

in vitro and in vivo models.46–48 ZFN-603 and ZFN-758

can cleave the HPV16/18 E7 oncogene and reduce the

expression of E7 leading to apoptosis of tumour cells.

They are being evaluated in a phase I clinical study for

the treatment of HPV16- or HPV18-positive CIN

(NCT02800369). TALEN and CRISPR/Cas9 targeting

HPV16 and HPV18 E6/E7 are also being evaluated in a

phase I study for the treatment of HPV (+) CIN patients

(NCT03057912).

CELL-BASED THERAPIES

In cell-based therapy, DCs, B cells or T cells are isolated

from the patient, transduced ex vivo to express or target

a specific antigen and infused back to the same patient.

Ongoing clinical trials testing adoptive cell therapies for

the treatment of cervical cancer are summarized in

Table 4.

Table 3. (Continued)

Agent Type

HPV

target Clinical phase

Start

Date

Completion

Date Reference

ZFN-603/ZFN-758 Zinc finger nuclease HPV16/18

E7

I Dec.

2016

July. 2017a NCT02800369

TALEN/CRISPR/Cas9 Genome editing tools HPV16/18

E6/E7

I Jan.

2018

Jan. 2019 NCT03057912

aActive, not recruiting

ª 2020 The Authors. Immunology published by John Wiley & Sons Ltd, Immunology, 163, 33–45 39



Clinical studies using adoptive T cell therapy (ATC)

strategies for the treatment of metastatic or recurrent cer-

vical cancer have shown encouraging results. The first

study that explored ATC in cervical cancer was performed

by Stevanovi�c et al.49 on nine patients with HPV18- or

HPV16-associated metastatic cervical cancer, who were

treated with tumour-infiltrating lymphocytes (TILs)

expanded ex vivo. Ramos et al.50 showed that HPV-speci-

fic T cells (called HPVST) derived from patients with

HPV (+) cancers could be useful for immunotherapy of

HPV-associated cancers. HPVST have been engineered to

be resistant to TGF-b. In an ongoing phase I clinical trial

(NCT02379520), the safety dose and durability of HPVST

is being studied in patients with recurrent HPV-associ-

ated cancers in combination with nivolumab. It has been

also shown that HPV-TILs can cause tumour regression

in HPV-associated cancers (NCT01585428).51 Neverthe-

less, the process of isolating and expanding tumour-speci-

fic T cells is very labour and cost-intensive and not all

patients have HPV-reactive peripheral or infiltrating T

cells. Therefore, an ‘off-the-shelf’ approach with geneti-

cally engineered T cells would be desirable.52

Chimeric antigen receptor (CAR) T cell

CAR T cells are engineered T cells expressing a single-

chain fragment variable (scfv), which can recognize a

tumour-associated antigen (TAA). They also utilize

CD3-related components and costimulatory domains as

intracellular signalling machinery. CAR T cells are

MHC-independent and can activate the T cells upon

binding the antigens expressed on the surface of the

tumour cells.53 A phase I/II study (NCT03356795) eval-

uates the safety and efficacy of CAR T cells in cervical

cancer patients whose tumour cells express TAAs such

as GD2, PSMA, Muc1 or mesothelin. In this study, T

cells are isolated from peripheral blood mononuclear

cells (PBMCs) obtained through apheresis from cervical

cancer patients positive for the respective TAAs. Then,

the T cells are genetically modified to become TAA-

specific CAR T cells and administered to the patient by

intravenous infusion. The study also assessed the persis-

tence, proliferation and activation of CAR T cells in the

peripheral blood of patients.

Engineered TCR T cell therapy

The most relevant oncoproteins of HR-HPVs are nuclear

and do not show on the surface of the tumour cells.

However, they contain epitopes that are presented by

MHC molecules and can be recognized by TCRs. Engi-

neered TCR T cells recognizing these epitopes have an

advantage over CAR T cells.

T lymphocytes are essential cells of the adoptive immune

system to eliminate tumour cells. T cells become activated

through interaction between their TCRs and the peptide

epitopes loaded on MHC molecules (pMHC). Epitopes

from E6 and E7 are processed and presented by MHC class

I molecules, and hence can be ideal targets for TCR-based

immunotherapy as they are absent in healthy tissues.54

Table 4. Ongoing clinical trials of adoptive cell therapy for the treatment of HPV-associated cancers

Agent Type

Clinical

phase

Start

date

Completion

date

Reference

number

BVAC-C Cell-based therapy (B cell/monocyte) I/II Oct.

2016

Aug. 2020 NCT02866006

HPVST /Cytoxan/fludarabine /nivolumab HPV-specific T cells /chemotherapy /anti-PD-1 I Sept.

2015

Oct. 2033 NCT02379520

Tumour-infiltrating lymphocytes /

fludarabine /cyclophosphamide /aldesleukin

Adoptive cell transfer /chemotherapy /IL-2 II Apr.

2012

Aug. 2016 NCT01585428

CAR T cell Anti-GD2, PSMA, Muc1, mesothelin or other

markers positive for cervical cancer

I/II Nov.

2015

Dec. 2020 NCT03356795

Engineered TCR T cell /fludarabine/

cyclophosphamide /aldesleukin

E6 (29-38)-reactive TCR /chemotherapy/IL-2 I/II Oct.

2014

June 2016 NCT02280811

Engineered TCR T cell /aldesleukin E6 (29-38)-reactive TCR /IL-2 I Jan.

2018

May 2019 NCT03197025

Engineered TCR T cell /anti-PD-L1 E6 (29-38)-reactive TCR I Sept.

2018

Aug. 2021 NCT03578406

Engineered TCR T cell /fludarabine/

cyclophosphamide /aldesleukin

E7 (11-19)-reactive TCR /chemotherapy /IL-2 I/II Jan.

2017

Jan. 2026 NCT02858310

Engineered TCR T cell E7-reactive TCR II Oct.

2019

June 2020 NCT03937791

KITE-439 /cyclophosphamide /fludarabine HPV16 E7 T-cell receptor engineered T cells /

chemotherapy

I June

2019

Feb. 2037 NCT03912831
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Several approaches have been described to identify

tumour-specific T cells: (i) isolation of HPV-reactive T

lymphocytes from patients experiencing tumour regres-

sion; (ii) immunization with human oncogenic proteins

of transgenic murine models expressing human HLA; and

(iii) generation of CTLs by in vitro stimulation of T cells

extracted from patients or healthy donors55–57 (Fig-

ure 2A).

After having isolated a population of T cells reactive to

the target pMHC, their TCRs are identified by single-cell

Identification of reactive T cells
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Figure 2. Workflow for the identification of tumour-specific TCR sequences and for construction of engineered TCR T cells. (A) Reactive CTLs

to a specific epitope can be obtained through different strategies: (i) extraction from patients suffering from the tumour under study; (ii) immu-

nization of transgenic mice expressing human HLA (humanized antigen presentation) with a tumour-specific or tumour-associated antigen; and

(iii) in vitro generation of reactive CTLs by stimulation of PBMCs from healthy donors or patients. (B) The complete sequences of TCRs of reac-

tive CTLs are identified based on entire transcriptome or single-cell platforms. (C) The candidate TCR genes are engineered to include in tan-

dem: TCR-b variable (bV)–murine constant region of b chain (b-mc)–Furin-P2A–TCR-a variable (aV)–murine constant region of a chain (a-
mc). Then, na€ıve T cells or a TCR-a�b� T-cell line is transduced with a lentiviral vector expressing the fusion gene to generate engineered TCR

T cells that are expanded for further studies. (D) The engineered TCR T cells are then characterized for antigen affinity and avidity and for func-

tionality by in vitro and in vivo assays
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sequencing. Several methods, based on cDNA library

preparation, provide entire transcripts of the TCR chains:

multiplex PCR, target enrichment and 50 RACE. Further-
more, single-cell sequencing technologies, such as single-

cell RT-PCR and paired SEQ, can identify the TCR reper-

toire at single-cell level. The ICELL8 single-cell system of

Takara Bio USA, Inc. and 10XGenomics, Inc. also offers

platforms for V(D)J analysis at single-cell level58 (Fig-

ure 2B). Once HPV-specific TCRs have been identified

and cloned, their TCR-a and TCR-b genes are delivered

to a TCR-deficient human T cell line, such as JurkatD76,
for further characterization. Gene delivery can be

achieved by RNA or plasmid DNA transfections, or by

using a viral vector.59–61 Due to its high efficiency and

long-term expression, virus-mediated delivery is usually

preferred, especially using adeno-associated viruses, gam-

maretrovirus and lentivirus62,63 (Figure 2C). Subse-

quently, the engineered T cells undergo in vitro and

in vivo functionality and avidity tests (Figure 2D).

Design of lentiviral vectors expressing engineered
TCRs

It has been shown that using the murine constant region

of TCRs can increase cytokine secretion signals and

reduce the chance of mispairing of transgenic and

endogenous TCRs.64 Moreover, introducing an additional

disulphide bond and mutations in the murine constant

region to introduce hydrophobic amino acids can

enhance structural avidity, that is the binding strength of

their TCRs to pMHCs.65,66 Sequences encoding the alpha

and beta chains are placed sequentially on the same open

reading frame and are expressed as a fusion protein. A

Furin cleavage site and a self-cleaving 2A sequence are

added between alpha and beta chains. Furin is a member

of the proprotein convertase family, which cleaves pro-

teins downstream of basic amino acids such as arginine

and lysine.66 2A self-cleaving peptides (2A peptides) are

derived from viruses, and the most prevalent are as fol-

lows: P2A, E2A, F2A and T2A. Based on recent studies,

P2A, derived from porcine teschovirus 1, is more efficient

than others.67 For a more effective function, it is recom-

mended that a glycine–serine spacer, such as GSG or

SGSG, is included between the Furin cleavage site and the

2A peptides.68 A schematic representation of an engi-

neered TCR gene is depicted in Figure 2C.

Structural avidity characterization of engineered TCR
T cells

After having evidence showing that the engineered TCR T

cells are able to recognize their target epitope on MHC

class I, their structural avidity has to be measured.

Nauerth et al69 described a method by which the dynamic

dissociation (Koff rate) can be quantitatively measured.

This assay is based on reversible Streptamer including an

engineered streptavidin, called as Strep-Tactin�, and small

peptides with high affinity to Strep-Tactin (Strep-tags�),

which are linked to fluorescently labelled monomers of

the epitopes under study.

The binding of engineered TCR T cells to the target

cells can be analysed also using the LigandTracer� instru-

ment (Ridgeway Instruments AB). LigandTracer� detects

the interaction of labelled molecules with cells in real

time. The instrument has an inclined rotating platform

on which the dish is placed. On one side of the Petri

dish, the target cell is immobilized and pulsed with the

desired peptides. The dish is placed on the rotating sup-

port, and the background fluorescence is measured. Then,

the engineered TCR T cells, labelled with carboxyfluores-

cein succinimidyl ester, are added to the other side of the

Petri dish. The rotation starts, and binding of the T cells

to the target cells is measured by subtraction of the fluo-

rescent signal on the side of the target cells from that of

the side of the plate without target cells.70

Surface plasmon resonance (SPR) is another approach

that has been used extensively to analyse TCR-pMHC

interaction.71 In this technique, biotinylated pMHC is

fixed covalently to a streptavidin-coupled sensor chip.

Biotinylated pMHC loaded with an irrelevant epitope is

used as a control. Then, the engineered TCR T cell sus-

pension is injected and flows over the chip. Due to the

binding of TCR to pMHC, the intensity of signal results

increased.72 A more recent system, the Cell Avidity Ana-

lyzer z-MoviTM (Lumicks), uses target cells or ligands

immobilized on the surface of a chip through which the

T cells are circulated. Then, an acoustic force ramp is

applied by which cells are progressively flushed out. Low

avidity cells require less force to be separated from their

targets. The interaction strength of effector to target cells

is measured over time so that each effector cell popula-

tion is characterized both absolute and relative to other

populations by gradually increasing the force.

Assays for evaluating the function of engineered TCR
T cells

The production of cytokines (IFN-c, IL-2 and TNF-a)
upon binding to target cells can be measured as an indi-

cation of functional engineered TCR T cells. In these

assays, T2 or 293-A2 cells are pulsed with E7-derived

peptides and co-cultured with E7-specific engineered TCR

T cells. Detection of these cytokines above background

levels (e.g. those obtained with irrelevant peptide) indi-

cates specific activation.73,74

The cytolytic activity of T cells has been classically

assessed by the chromium (51Cr) release assay. However,

bioluminescence imaging and real-time cell assays are

non-invasive and there is no need for prior labelling of

the cells. The xCELLigence system is one such assay in
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which electrical impedance is measured to determine cell

viability. The read-out of such experiments is shown as

cell index over time by which the lower the cell index,

the higher the lysis rate of target cells.74

Measuring transcription factor activity upon TCR-

pMHC engagement can also reveal the activation of T cells.

Nuclear factor ‘kappa-light-chain-enhancer’ of activated B

cells (NF-jB), nuclear factor of activated T cells (NFAT)

and activator protein 1 (AP-1) are transcription factors

playing important roles in T cell differentiation, prolifera-

tion and activation. A triple-parameter reporter has been

derived from Jurkat J76 cells, in which responsive elements

for the transcription factors induce the expression of fluo-

rescent proteins.75 There are also commercially available T

cell activation bioassays for measuring NFAT and the

secretion of IL-2, an indirect sign of NFAT activation, and

the read-out is based on luminescence. Importantly, the

engineered TCR T cells should be tested in vivo to confirm

their antitumour activity (Figure 2D). Engineered T cells

that meet the functional and structural avidity criteria and

show efficient tumour eradication in vivo can be then con-

sidered as good candidates for clinical trials.

Clinical trials using engineered TCR T cells targeting
HPV+cancers

In an exploratory in vitro study with TILs isolated from

tumour fragments of a patient with metastatic HPV16(+)
anal cancer, Draper et al. used the TCR engineering

approach to retarget T cells against the E6 protein of

HPV16.73 Using the sequence of the dominant E6-reactive

TCR clonotype, which recognized HLA-A*02:01/E629-38
tetramers, genetically engineered T cells were generated

from PBMCs of HPV16 (+) cancer patients. Based on

this, a phase I/II trial (NCT02280811) was conducted

with 12 HPV (+) cancer patients. Two partial responses

lasting up to 6 months were reported.

TCRCure Biopharma Ltd introduced another E6-speci-

fic engineered TCR T cell, which is being evaluated in a

phase I study with patients with HPV16 (+) cancers

(NCT03578406).

Recently, Jin et al.74 isolated and sequenced T cell clone

from cervix-infiltrating lymphocytes, which showed high

HLA-A*02:01/E711-19 tetramer binding and sequenced its

TCR. After introducing slight modifications (reversing

alpha and beta chain order, adding an extra disulphide

bond and several hydrophobic substitutions and cloning

into the MSGV1 retrovirus vector), they generated engi-

neered TCR T cells and tested their avidity and efficacy

in vitro and in a mouse model. Later on, a phase I/II

clinical trial (NCT02858310) was started to determine the

safety and efficacy of E7 TCR-engineered T cells in

HPV16-associated cancers, which is still ongoing. They

also evaluate the effect of this E7 TCR T cells for vulvar

HSIL in a phase II clinical study (NCT03937791).

Furthermore, a recent study has revealed information

about the TCR repertoire of cervical cancer patients expe-

riencing tumour remission or failed to clear tumour.76

This kind of data can provide a platform for further

investigation to find other possible TCR sequences to tar-

get HPV-positive cancers.

CONCLUSION AND FUTURE PERSPECTIVE

Antibodies against immune checkpoint inhibitors, such as

pembrolizumab, have shown antitumour activity in

patients with HPV16 (+) PD-L1-expressing tumours. How-

ever, these inhibitors have to be used in combination with

radiotherapy, chemotherapy or therapeutic vaccines.

Among therapeutic vaccines targeting HPV16, VGX-3100

and ADXS11-001 are in phase III trials, and they could get

clinical approval soon. However, most therapeutic vaccines

are still in early trial phases. Approaches to combat the

immune-evasive capacity of the tumour microenvironment

and improving the trafficking of genetically engineered T

cells into tumour tissues are important determinants for

successful cell-based immunotherapies. Due to the complex

nature of HPV-positive carcinoma, combination of differ-

ent immunotherapeutic approaches will be necessary.
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