
REVIEW
published: 18 April 2022

doi: 10.3389/fcvm.2022.870924

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 April 2022 | Volume 9 | Article 870924

Edited by:

Ngan F. Huang,

Stanford University, United States

Reviewed by:

Santosh Kumar Yadav,

University of Nebraska Medical

Center, United States

Ibrahim Elmadbouh,

University of Menoufia, Egypt

Gaetano Santulli,

Albert Einstein College of Medicine,

United States

*Correspondence:

Huaqin Wu

yuanshanyun2650@163.com

Yuanhui Hu

huiyuhui55@sohu.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Cardiovascular Biologics and

Regenerative Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 07 February 2022

Accepted: 31 March 2022

Published: 18 April 2022

Citation:

Chai R, Xue W, Shi S, Zhou Y, Du Y,

Li Y, Song Q, Wu H and Hu Y (2022)

Cardiac Remodeling in Heart Failure:

Role of Pyroptosis and Its Therapeutic

Implications.

Front. Cardiovasc. Med. 9:870924.

doi: 10.3389/fcvm.2022.870924

Cardiac Remodeling in Heart Failure:
Role of Pyroptosis and Its
Therapeutic Implications
Ruoning Chai 1†, Wenjing Xue 2†, Shuqing Shi 3†, Yu Zhou 4, Yihang Du 1, Yuan Li 4,

Qingqiao Song 3, Huaqin Wu 1* and Yuanhui Hu 1*

1Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,
2Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China, 3Department of Internal Medicine,

Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 4Department of Clinical Medicine,

Shaanxi University of Chinese Medicine, Xianyang, China

Pyroptosis is a kind of programmed cell death closely related to inflammation. The

pathways that mediate pyroptosis can be divided into the Caspase-1-dependent

canonical pathway and the Caspase4/5/11-dependent non-canonical pathway. The

most significant difference from other cell death is that pyroptosis rapidly causes

rupture of the plasma membrane, cell expansion, dissolution and rupture of the cell

membrane, the release of cell contents and a large number of inflammatory factors,

and send pro-inflammatory signals to adjacent cells, recruit inflammatory cells and

induce inflammatory responses. Cardiac remodeling is the basic mechanism of heart

failure (HF) and the core of pathophysiological research on the underlying mechanism. A

large number of studies have shown that pyroptosis can cause cardiac fibrosis, cardiac

hypertrophy, cardiomyocytes death, myocardial dysfunction, excessive inflammation,

and cardiac remodeling. Therefore, targeting pyroptosis has a good prospect in

improving cardiac remodeling in HF. In this review, the basic molecular mechanism of

pyroptosis is summarized, the relationship between pyroptosis and cardiac remodeling

in HF is analyzed in-depth, and the potential therapy of targeting pyroptosis to improve

adverse cardiac remodeling in HF is discussed, providing some ideas for improving the

study of adverse cardiac remodeling in HF.
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INTRODUCTION

Heart failure (HF) is a clinical syndrome caused by insufficient heart pumping function and is the
terminal stage of cardiovascular diseases, affecting approximately 64.3 million people worldwide
(1, 2). In developed countries, the prevalence of known HF is generally estimated at 1% to 2% of
the general adult population (3, 4), the study indicated patients with HF had 87%, 73%, 57%, and
35% survival at 1, 2, 5, and 10 years (5), and HF events increased the risk of death by five times. The
absolute number of HF patients will continue to increase due to population aging, global population
growth, and improved survival rates after diagnosis, as well as a gradual increase in younger patients
(<55 years). North America had the highest hospitalization rate for HF (11/100 person-years) (6),
HF remains a serious clinical and public health problem (7–10). Despite significant advances in
drug and instrumental treatment of HF over the past two decades, patient outcomes and quality
of life remain inadequate, which may be closely related to a focus on symptomatic treatment and a
lack of in-depth discussion of pathophysiology (9).
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Left ventricular function is an important indicator for
evaluating HF and is also a key point in the study of
potential mechanisms in pathophysiology (3). The occurrence
and progression of HF are closely related to cardiac remodeling,
which is characterized by changes in cardiac structure, shape,
and function, and cardiomyocytes death is a key step in
cardiac remodeling (11, 12). Cell death is the final stage
of cell life, including programmed cell death and non-
programmed cell death, of which pyroptosis is a type of
programmed cell death that accompanies an inflammatory
response (13). Pyroptosis is a double-sided sword, on the
one hand, moderate pyroptosis can contribute to cellular
homeostasis, effectively prevent excessive cell proliferation and
protect the host, on the other hand, excessive pyroptosis can
cause cardiac fibrosis, myocardial hypertrophy, cardiomyocytes
death, myocardial dysfunction, excessive inflammation and
promote cardiac remodeling (14). The most significant difference
between pyroptosis and other modes of cell death lies in the rapid
rupture of the plasma membrane, cell expansion, dissolution and
rupture of the cell membrane, the release of cell contents and a
large number of inflammatory factors, send pro-inflammatory
signals to adjacent cells, recruit inflammatory cells and induce
inflammatory responses (14–16). Nowadays, many studies have
proved that pyroptosis may be an endogenous regulatory
factor of cardiovascular diseases and play an important role in
cardiovascular diseases (17).

In this review, the basic molecular mechanism of pyroptosis
is summarized, the relationship between pyroptosis and cardiac
remodeling HF is analyzed in-depth, and the potential therapy
of inhibiting pyroptosis to improve cardiac remodeling HF is
discussed, which provides some ideas for improving adverse
cardiac remodeling HF from the perspective of pyroptosis.

OVERVIEW OF PYROPTOSIS

Pyroptosis, also known as inflammatory necrosis of cells (18), was
first observed by Cookson and Brennan in salmonella-infected
macrophages and named pyroptosis (19). When pathogens
invade a host cell, pattern recognition receptors (PRRs) are
capable of recognizing pathogen-associated molecular patterns
(PAMPs) and damage-associated molecules patterns (DAMPs)
intracellularly, bind to specific ligands, and combine with
other proteins to form inflammasome (15, 20, 21). Meanwhile,
the canonical pathway also detects cytoplasmic disturbances,
recently coined as homeostasis altering molecular properties
(HAMPs), and the recognition of HAMPs is through the
detection of molecular processes that perturbs cytoplasmic
homeostasis (22, 23). PRRs involved in pyroptosis mainly include
Nod-like receptors (NLRs) family—NLRP3, NLRP1, NLRP6,
NLRP9, NLRC4, PYHIN200 family—Absent in melanoma 2
(AIM2) and TRIM family—Pyrin (24–26). NLRP3 is currently
the most famous inflammasome and the noncanonical pathway
crosstalks with the canonical pathway via NLRP3 (27). NLRs
generally contain three domains: an N-terminal adaptor domain
[such as CARD or pyrin domain (PYD)], a central nucleotide-
binding domain (NBD), and a C-terminal leucine-rich repeat

(LRR) domain. NLRP1 contains two additional domains at its
C-terminus, a CARD followed by a function to find domain
(FIIND) domain. The LRR domains are used to detect bacterial
components, the NBD domain is critical for oligomerization
and activation, the N-terminal domain is responsible for CARD
recruitment and CARD-CARD interactions as well as for
activating Caspase-1. As the activation platform of Caspase,
the inflammasome plays an important role in the occurrence
of pyroptosis. When cells are subjected to different stimuli,
the induced pyroptosis pathway is different, which can be
divided into the Caspase-1-dependent canonical pathway and the
Caspase4/5/11-dependent non-canonical pathway (28, 29).

The Canonical Pathway of Pyroptosis
When cells are infected by pathogens or sense endogenous
danger signals, PRRs interact with PAMPs or DAMPs and
activate the apoptosis-associated speck-like protein (ASC) to
activate ASC proteins through protein-protein interactions (21,
30). The C-terminal CARD domain of ASC and the N-terminal
CARD domain of pro-Caspase-1 combine to recruit active-
Caspase-1 (31). The binding complex of PRRs, ASC, and pro-
Caspase 1 is termed the inflammasome. On the one hand,
Caspase-1 recognizes pro-IL-1β and pro-IL-18, converts them
into IL-1β and IL-18, and releases them extracellular to expand
the inflammatory response, on the other hand, Caspase-1
shear Gasdermin family protein GSDMD to separate its N-
and C- domains, N-terminal fragments are released to the
membrane, mediating the formation of cell membrane pores,
releasing inflammatory factors and inducing pyroptosis (32).
The canonical pathway also utilizes toll-like receptors (TLRs)
for priming certain PRRs to enhance immune responses, TLR4
can upregulate NLRP3 (33, 34) and GSDMD (35) to promote
pyroptosis via Nek7, GBP5, and NF-κB signaling. NLRC4 can
directly interact with pro-Caspase-1 via CARD-CARD to form
active-Caspase-1 and induce pyroptosis (36, 37) (Figure 1).

The Non-canonical Pathway of Pyroptosis
In addition to the canonical pathway of pyroptosis, the
CARD domain of pro-Caspase 4/5/11 directly interacts with
the intracellular lipopolysaccharides (LPS) of Gram-negative
bacteria, causing a significant conformational rearrangement of
pro-Caspase 4/5/11 (36, 37) and resulting in oligomerization
and autoproteolysis. After oligomerization, Caspase 11 auto-
proteolyze after D285 with a sequence of MEAD|A to gain full
activity in proteolyzing GSDMD (38, 39). However, activated
Caspase 4/5/11 has been considered only to recognize GSDMD
and cleave at D275 of hGSDMD or D276 of mGSDMD for
generating pyroptotic pores (38, 39). Meanwhile, Caspase 4/11
were activated by guanylate-binding proteins 1-4 (38), and
Caspase 4/5/11 also crosstalk with NLRP3, both of them can
process to pyroptosis. The K+ efflux caused by cell membrane
pore formation induces activation of the NLRP3/ASC/ Caspase-
1 pathway (39, 40). The non-canonical pathway has also been
considered to involve mitochondrial dysfunction, such as the
release of mitochondrial reactive oxygen species (ROS) and
mitochondrial DNA (mtDNA) (39). In addition, Caspase-3
cleaves the Gasdermin family protein GSDME, releasing the
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FIGURE 1 | The basic molecular mechanism of pyroptosis. The canonical pathway of pyroptosis, Nod-like receptors protein-3 (NLRP3), NLRP1, NLRP6, NLRP9,

absent in melanoma 2 (AIM2), and Pyrin binds to the N-terminal PYD region of the apoptosis-associated speck-like protein (ASC) to activate ASC proteins through

protein-protein interactions. The C-terminal CARD domain of ASC and the N-terminal CARD domain of pro-Caspase-1 combine to recruit active-Caspase-1. The

binding complex of PRRs, ASC, and pro-Caspase 1 is termed the inflammasome. On the one hand, Caspase-1 recognizes pro-IL-1β and pro-IL-18, converts them

into IL-1β and IL-18, and releases them extracellular to expand the inflammatory response, on the other hand, Caspase-1 shear Gasdermin family protein GSDMD to

separate its N- and C- domains, N-terminal fragments are released to the membrane, mediating the formation of cell membrane pores, releasing inflammatory factors

and inducing pyroptosis. NLRC4 can directly interact with pro-Caspase-1 via CARD-CARD to form active-Caspase-1 and induce pyroptosis. The non-canonical

pathway of pyroptosis, Caspase4/5/11 can directly bind to lipopolysaccharide (LPS) in the cytoplasm and initiate pyroptosis following cleavage of GSDMD-induced

membrane pore formation and subsequent cell membrane rupture. The K+ efflux caused by cell membrane pore formation induces activation of the NLRP3/ASC/

Caspase-1 pathway. In addition, Caspase-3 cleaves the Gasdermin family protein GSDME, releasing the N-terminal active fragment to the cell membrane, leading

to pyroptosis.

N-terminal active fragment to the cell membrane, leading to
pyroptosis. The distribution and expression levels of GSDME
determine the mode of cell death activated by Caspase-3, and
when cells overexpress GSDME, activated Caspase-3 induces
pyroptosis (40) (Figure 1).

The Regulation of NLRP Inflammasome on
Pyroptosis
NLRP Inflammasome belongs to the NLRs family which
generally contains three domains: an N-terminal adaptor domain
[such as CARD or pyrin domain (PYD)], a central nucleotide-
binding domain (NBD), and a C-terminal leucine-rich repeat
(LRR) domain. NLRP1 contains two additional domains at its
C-terminus, a CARD followed by a function to find domain
(FIIND) domain. The LRR domains are used to detect bacterial
components, the NBD domain is critical for oligomerization

and activation, the N-terminal domain is responsible for CARD
recruitment and CARD-CARD interactions as well as for
activating Caspase-1.

NLRP3

The NLRP3 inflammasome is the best studied and possesses
the most complex signaling of all inflammasomes. NLRP3
must first be primed by a cytokine receptor or another PRR
(41). When NLRP3 is knocked out in mice or antagonized,
there is a significant reduction of pyroptosis. Interestingly,
lysosomal membrane damage results in K+ efflux and the
release of lysosomal protease cathepsin B, both of which initiate
NLRP3 inflammasome activation (42). The protein NIMA-
related kinase 7 (NEK7), which participates by regulating
NLRP3 inflammasome formation following potassium release
and preventing inflammasome formation during mitotic division

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 April 2022 | Volume 9 | Article 870924

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chai et al. Pyroptosis in Cardiac Remodeling

stages of the cell cycle, is a crucial player during NLRP3
activation (43, 44). Co-crystal structures show that NEK7 directly
binds to two neighboring NLRP3 subunits (44). Knockdown of
RBP4 alleviated ischemia-hypoxia-induced activation of NLRP3
inflammasome signaling and pyroptosis in cardiomyocytes (45).
After activation, the NLRP3 receptor recruits the ASC by
PYD-PYD interaction, assembling the NLRP3 inflammasome.
NLRP3 crosstalks with other innate immune pathways (46,
47), indicating that the inhibition of the NLRP3 could have a
prospect effect on inflammatory responses. Therefore, NLRP3
is a hopeful drug target for patients with inflammatory
diseases (48).

NLRP1

NLRP1 was the first discovered NLR family member that was
discovered to be involved in the formation of an inflammasome
complex. The NLRP1 possesses a C-terminal CARD domain and
an N-terminal pyrin domain so that it can activate pro-Caspase 1
without ASC oligomerization, leading to IL-1β secretion (49, 50).
It is coded by a single gene in humans with three homologs
NLRP1a, b, and c in mice (51). In terms of human disease,
the NLRP1 inflammasome is genetically associated with several
other autoimmune diseases. In addition, NLRP1 can be activated
by muramyl dipeptide and ATP in humans (52). Interestingly,
inhibitors of dipeptidyl peptidases 8 and 9 (DPP8/9) can
selectively activate NLRP1 and its related protein CARD8
in both mouse and human lymphocytes (53). The activation
of the NLRP1 inflammasome can promote the secretion of
high mobility group protein B1 (HMGB1), which stimulates
inflammatory responses by modulating both the innate and the
adaptive immune responses (54).

NLRC4

NLRC4 plays an important role in protection against certain
Gram-negative bacteria with type III or type IV secretion
systems (55). NLRC4 combines with NAIPs (NLR family
apoptosis inhibitory proteins)to forms complexes and activates
NLRC4 by binding to pathogenic proteins from flagellin or
type III/IV secretion systems. NLRC4 oligomerizes and directly
interacts with pro-Caspase 1 via a CARD-CARD interaction,
bypassing the participation of ASC, when the NLRC4 is activated
(55). There are several gain-of-function mutations in NLRC4,
which have been shown to result in the development of
autoinflammatory diseases (56).

NLRP6

NLRP6 causes ASC speck formation and subsequently
Caspase1 activation (57). It has been reported that NLRP6
plays an inflammasome-dependent role in host defenses and
inflammation and an inflammasome-independent role in
intestinal homeostasis and cancer. However, the molecular
mechanisms in these processes are not fully explained (58, 59).

ROLE OF PYROPTOSIS IN CARDIAC
REMODELING

Role of Pyroptosis in Cardiac Fibrosis
Cardiac fibrosis, the expansion of the cardiac interstitium due to a
net accumulation of extracellular matrix (ECM) proteins, occurs
primarily in cardiac fibroblasts and accompanies most cardiac
pathologic conditions (60). Activated fibroblasts contribute to
the regulation of matrix remodeling by producing proteases,
such as matrix metalloproteinases (MMPs). During mild injury,
extracellular matrix components are temporarily accumulated
and quickly eliminated, promoting the recovery of normal
tissue structure (61, 62), however, when damage is severe,
extracellular matrix components continue to accumulate, leading
to structural destruction, organ dysfunction, and ultimately
organ failure (63). Cardiac fibrosis has a dual role, although, in
most myocardial diseases, the extent of cardiac fibrosis predicts
adverse outcomes, in myocardial infarction, reparative fibrosis
performs an important repair function, preventing heart rupture
(60). Cardiac fibrosis is an important manifestation of cardiac
remodeling. It has been found in various cardiovascular diseases
that cardiac fibrosis is closely related to pyroptosis, which has an
important influence on the occurrence and development of HF.

In a mouse model of HF with transverse aortic constriction
(TAC), the content of NLRP3 increased and the degree of
myocardial fibrosis increased (64–66). Immunofluorescence was
applied to determine the cellular localization of NLRP3 protein
in cardiac tissue (67). NLRP3 inflammasome activation mainly
occurs in cardiac fibroblasts during myocardial remodeling and
repair (68), activates IL-1β release and pyroptosis in cardiac
fibroblasts after myocardial infarction (MI) (69).A significant
increase in expression of pyroptosis andMMP9 in cardiac fibrosis
in diabetes (33, 70). Cardiac dysfunction, cardiac fibrosis (TGF-
β1, collagen I, and collagen III), pyroptosis (Caspase-1, IL-
1β, and GSDMD) were found in diabetic rats (71). Inhibition
of Caspase-1 reduced the occurrence of cardiac fibrosis in
diabetic cardiomyopathy and improved cardiac function via
regulation of miR-135b (71). The proinflammatory cytokines
released by pyroptosis activate fibroblasts and promote tissue
fibrosis (63, 72). IL-1β and IL-18 promote Ca2+ efflux of the
sarcoplasmic reticulum, induces myocardial interstitial fibrosis,
activates TNF-α release, and TNF-α reacts on Caspase-1, forming
an inflammatory cascade loop and promoting the progression of
HF (73, 74).

Activation of the NLRP3 inflammasome was observed in LPS-
stimulated cardiac fibroblasts andmyofibroblasts, suggesting that
the NLRP3 inflammasome and pyroptosis may contribute to
myocardial dysfunction upon pyroptosis (16, 73).

Role of Pyroptosis in Myocardial
Hypertrophy
Myocardial hypertrophy is divided into physiological and
pathological. Physiological cardiac hypertrophy is of great
significance for maintaining cardiac efficiency, however,
hypertrophic cardiomyopathy, long-term uncontrolled systolic
hypertension, and continuous overload pressure from cardiac
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valve stenosis can promote cardiac remodeling and lead to
HF (75, 76).

Factors related to pyroptosis play an important role in
myocardial hypertrophy. There was a report that hyperactivated
NLRP3 inflammasome with pyroptosis of cardiomyocytes were
presented in the myocardial tissues of dilated cardiomyopathy
patients, which were negatively correlated with cardiac function
(77). In vitro and in vivo models of cardiac hypertrophy, the
expression levels of pyroptosis-related factors were significantly
increased (66), downregulation of Caspase-1 and IL-1β
expression by Caspase-1 inhibitors attenuates angiotensin II
(Ang II) -induced cardiac hypertrophy (78). A recent study
indicated that NLRP3 levels in C57/BL6 mice with chronic
pressure overload-induced by TAC were significantly increased
and were involved in the production of inflammatory mediators
and fibrosis factors, leading to myocardial fibrosis, myocardial
hypertrophy, and impaired cardiac function (64). Under
pressure overload, S-nitrosylation of muscle LIM protein (MLP)
increased the complex formation between toll-like receptor
3 (TLR3) and receptor-interacting protein kinase 3 (RIP3),
inducing NLRP3 inflammasome activation, and promoting
the development of myocardial hypertrophy. Pharmacologic
blockade or RNA interference of NLRP3 and inhibition of IL-1β
can reduce pressure overload-induced myocardial hypertrophy
(79). Meanwhile, IL-18 expression was significantly increased
during pressure overload in rabbit models with TAC (80). There
is good evidence that the heart weight/body weight ratio was
significantly increased in the diabetic cardiomyopathy group
compared to the control (33). Elmadbouh I and Singla DK found
that diabetic cardiomyopathy involves sterile inflammation and
causes the upregulation of NLRP3-Nek7-GBP5 inflammasome
complex, which finally initiates Caspase-1-dependent pyroptosis
in diabetic cardiomyopathy. Inflammation-induced pyroptosis
has adverse effects on diabetic cardiac remodeling, endothelial
progenitor cells, neovascularization, and cardiac function (33).
Meanwhile, silica nanoparticles (SiNPs) exposure is correlated
with adverse cardiovascular effects, literature suggested
SiNPs could trigger pyroptosis and cardiac hypertrophy via
ROS/NLRP3/Caspase-1 signaling pathway (81). miR-133A-3p
could target IKKε to inhibit pyroptosis, alleviate myocardial
hypertrophy, and protect cardiac function (82).In H9C2
cardiomyocytes, NF-κB, NLRP3, and receptor of advanced
glycation endproducts (RAGE) induced hypertrophy through
the RAGE-NF-κB- NLRP3- IL-1β signaling pathway (83).

Role of Pyroptosis in Excessive
Inflammation
Cardiomyocyte necrosis and inflammation play key roles in the
pathophysiology of cardiovascular diseases. The inflammatory
response is mainly to repair the heart, but the excessive
inflammatory response will lead to cardiac dysfunction, adverse
cardiac remodeling, and HF (14).

NLRP3 inflammasome contributes a lot to sterile
inflammatory response and pyroptosis in ischemia/reperfusion
(I/R) injury (67). Inflammation triggered by pyroptosis
(NLRP3)-related pyroptosis of cardiac fibroblasts (CFs) resulted

in cardiomyocytes death and myocardial dysfunction (67).
It was found that NLRP3 and other inflammatory factors
were generally elevated in myocardial cells after MI, and the
subsequent response was mainly generated by the activation and
release of inflammatory factors (84). Meanwhile, cell fragments
and metabolites act as DAMPs to activate inflammasome and
membrane P2X7 receptor channels, causing K+ efflux, activating
NLRP3, the activated NLRP3 to recruit ASC and pro-Caspase-1,
activates Caspase-1, Caspase-1 splines pro-IL-1 β, and other
pro-inflammatory cytokines into active mature bodies that
recruit and activate other immune cells and induce the synthesis
of chemokines, inflammatory cytokines, and adhesion factors,
further amplifying the inflammatory response (17, 85–88).
Cardiomyocyte H/R induced the release of the inflammatory
factor IL-18, which is associated with pyroptosis, in the cell
culture supernatant, but there was no IL-1β release. IL-18 further
amplifies the inflammatory cascade by inducing additional
cytokines, adhesion molecules, and chemokines. Neutralization
of IL-18 significantly attenuates I/R-induced tissue damage in
vivo. Streptozotocin (STZ)-induced diabetic cardiomyopathy
significantly increased inflammasome formation (TLR4,
NLRP3, Nek7, and GBP5), which induced the occurrence of
pyroptosis, accompanied by the increased of inflammatory
cytokines (IL-6 and TNF-α), MMP9, infiltration of monocytes
(CD14), macrophage (iNOS), and dendritic cells (CD11b and
CD11c). Moreover, significant endothelial progenitor cells
(EPCs) dysfunction (c-Kit/FLk-1, CD31), adverse cardiac
remodeling, and reduction in left ventricular (LV) heart
function were observed (33). BMP-7 reduced inflammation and
improved adverse myocardial remodeling, hypertrophy as well
as interstitial and vascular fibrosis (33).

The expression of IL-1β was mainly derived from fibroblasts
and IL-1β was not significantly altered in cardiomyocytes
under oxidative stress conditions, cardiomyocyte pyroptosis,
and release of the proinflammatory cytokine IL-18 may
activate cardiac fibroblasts to induce the secondary production
of cytokines (89).Caspase-1 is an important regulator of
the inflammatory response, activated Caspase-1 can trigger
pyroptosis, and the release of pro-inflammatory cytokines IL-1β
and IL-18 can cause the amplification of inflammatory cascade,
resulting in endothelial dysfunction, and then produce or
increase the development of myocardial fibrosis. ROS produced
by oxidative stress can activate the NLRP3 inflammasome,
leading to Caspase-1 activation and IL-1β secretion (90–92).
When the ROS system of cardiomyocytes is activated, the
accumulated ROS and Ca2+ are released into the cytoplasm,
and the mitochondrial membrane potential changes, resulting in
pyroptosis. Pirfenidone can regulate the ROS-dependent NLRP3-
IL-1β signaling pathway by inhibiting NLRP3, improving left
ventricular hypertrophy and myocardial fibrosis in rats with
TAC (93).

Role of Pyroptosis in Cardiomyocytes
Death and Myocardial Dysfunction
Pyroptosis directly leads to the death of cardiomyocytes,
which reduces the number of effective cardiomyocytes, thereby
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TABLE 1 | Therapy for improving cardiac remodeling by drugs on pyroptosis.

Drugs Models Mechanism Effects Ref

Rosuvastatin

MCC950

CME rats Rosuvastatin decreased the expression of

NLRP3, Caspase-1, IL-1β, and GSDMD

N-terminal domains, which is associated with

regulating mitochondrial ROS

Pyroptosis (NLRP3, Caspase-1, IL-1β,

GSDMD)↓; Cardiac fibrosis↓ Cardiac systolic

function↑; Cardiac remodeling↓

(105, 106)

Metformin I/R Metformin protects against myocardial

ischemia-reperfusion injury and cell pyroptosis

via AMPK/NLRP3 inflammasome pathway

Pyroptosis (NLRP3, IL-1β)↓; Cardiac fibrosis↓;

Inflammation (TNF-α, IL-6)↓; Myocardial infarct

size↓, Cardiomyocyte activity (LDH↓)↑

(107)

Trimetazidine/

Emodin

I/R Trimetazidine/ Emodin alleviated pyroptosis

induced by myocardial I/R injury through the

TLR4/MyD88/NF-κB/NLRP3 inflammasome

pathway.

TLR4, MyD88, phospho-NF-κB p65, the

NLRP3 inflammasome↓; Infarct size↓Viability of

H9c2 cardiomyocytes↑

(94, 108)

Liraglutide Hypoxia H9C2 Liraglutide alleviated pyroptosis mediated by

NLRP3 inflammasome by down-regulating the

SIRT1/NOX4/ROS pathway

Pyroptosis (NLRP3, Caspase-1 p20,

GSDMD-N)↓; Cardiomyocyte activity (LDH↓)↑

(109)

Pinocembrin DOX-induced

cardiotoxicity

Pinocembrin inhibited DOX-induced

cardiomyocyte pyroptosis via activating

Nrf2/Sirt3 signal pathway.

Pyroptosis (IL-1β, IL-18)↓; Cardiac fibrosis↓;

Cardiac function (LVEF, LVFS, LDH, CK-MB)↑

(111)

Pyrroloquinoline

quinone

DCM Pyrroloquinoline quinone improved DCM in

diabetic mice by inhibiting NF-κB/NLRP3

inflammasome-mediated cell pyroptosis.

Pyroptosis (NLRP3, Caspase-1, IL-1β, IL-18)↓;

Cardiac fibrosis (collagen I and TGF-β1)↓;

Myocardial hypertrophy (ANP and BNP)↓

(112)

Artemisinin I/R Artemisinin inhibited cardiac autophagy,

improved mitochondrial electron transport

chain activity, decreased activation of NLRP3

inflammasome.

Pyroptosis (NLRP3, ASC, cleaved Caspase-1,

IL-1β)↓Infarct size and CK-MB, LDH↓ Cardiac

autophagy↓

(110)

Ranolazine DCM miR-135b directly bound to Caspase-1 Pyroptosis (Caspase-1, IL-1β, GSDMD)↓;

Cardiac Fibrosis (TGF-β1, collagen I and

collagen III)↓; Cardiac function↑

(71)

Sevoflurane I/R patients with

myocardial

ischemia

Sevoflurane inhibited the expression of IL-1β,

IL-18, and GSDMD by inhibiting the

P2X7-NLRP3 signaling pathway

Pyroptosis (NLRP3, Casepase-1, GSDMD, IL-

1β, IL-18)↓; Cardiac injury (CK, CK-MB, LDH,

MDA, SOD)↓; Inflammation (CD11b)↓

(114)

Piperazine ferulate I/R Piperazine ferulate can suppress the

I/R-triggered NLRP3 inflammasome activation

and pyroptosis

Pyroptosis (NLRP3, Caspase-1, GSDMD, IL-

1β, ASC)↓ Cardiac function (LVEF, LVFS↑,

mitral early diastolic flow velocity/late diastolic

flow velocity, infarction size↓)↑

(113)

Iguratimod I/R Iguratimod protected cardiomyocytes by

reducing the cascade of inflammation in the

heart by inhibiting cardiac fibroblast pyroptosis

via the COX2/NLRP3 signaling pathway.

Pyroptosis (NLRP3, Casepase-1, GSDMD, IL-

1β, IL-18)↓; Inflammatory response (IL-6,

TNF-α)↓

(67)

Syringaresinol Sepsis mouse Syringaresinol ameliorated sepsis-induced

cardiac dysfunction via the

ER/SIRT1/NLRP3/GSDMD pathway.

Proinflammatory cytokines↓; Cardiac function↑ (99)

CME, coronary microembolization; I/R, myocardial reperfusion; ROS, reactive oxygen species; LDH, lactate dehydrogenase; TNF-α, tumor necrosis factor α; NF-κB, nuclear-factor-

κB; TLR4, toll-like receptors 4; SIRT1, Sirtuin 1; NOX4, NADPH oxidase 4; Dox, doxorubicin; CK-MB, creatine kinase-MB; DCM, diabetic cardiomyopathy; cTnI, cardiac troponin I; EF,

ejection fraction; FS, fractional shortening; CO, cardiac output; SV, stroke volume; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; MDA, malondialdehyde; SOD, superoxide

dismutase; ER, estrogen receptor.

affecting the systolic and diastolic functions of the myocardium
and promoting cardiac remodeling in HF. In adult mouse
cardiomyocytes, the absence of GSDMD markedly blocked H/R-
induced cardiomyocyte pyroptosis, which is associated with
N-terminal fragment cleavage release (94, 95). Immunoblot
analysis revealed significantly increased levels of GSDMD
and GSDMD-N after H/R in adult mouse cardiomyocytes
in a time-dependent manner, bring with large numbers of
balloon-shaped vesicles and accumulation of propidium iodide
(PI), which are typical characteristics of pyroptosis, as well
as exhibited decreased ATP levels and the loss of cell

membrane integrity. The mouse myocardial I/R injury model
showed that GSDMD deficiency significantly reduced I/R-
induced myocardial infarct size. Serum GSDMD levels were also
significantly higher after percutaneous coronary intervention in
patients with ST-segment–elevation myocardial infarction than
in age-matched stable coronary artery disease patients (89).
Moreover, trimetazidine and silencing PVT1 could alleviate
myocardial I/R damage through suppressing GSDMD-mediated
pyroptosis in vivo and in vitro, involved TLR4/MyD88/NF-
κB/NLRP3 inflammasome pathway, improved cardiac fibrosis,
inflammatory cytokines, and cardiac function (94, 96). NLRP3
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TABLE 2 | Therapy for improving cardiac remodeling by potential molecules on pyroptosis.

Potential

molecules

Models Mechanism Effects Refs

MLK3 miR-351 TAC MLK3 mainly regulates NF-κB/NLRP3 signaling

pathway-mediated inflammation and that

pyroptosis causes myocardial fibrosis in the

early stages of CHF

Pyroptosis↓; Cardiac hypertrophy↓; Cardiac

Fibrosis↓; Cardiac function↑

(65)

LncRNA PVT1 H/R-treated H9C2

cells

Silencing PVT1 could alleviate myocardial I/R

damage by suppressing GSDMD-mediated

pyroptosis

Pyroptosis (GSDMD-N↓)↓; Cardiac Fibrosis↓;

Inflammatory cytokines↓; Cardiac function

(α-MHC↑and β-MHC↓)↑

(96)

NOX1, NOX4,

Drp1

DCM Dox enhanced expressions of NOX1 and NOX4

and induced mitochondrial fission through

dynamin-related protein 1 activation, leading to

NLRP3 inflammasome-mediated pyroptosis in

cardiomyocytes via Caspase-1-dependent

manner.

Pyroptosis (NLRP3, ASC, Caspase-1, IL-1β,

IL-18,)↓

(77)

BMP-7 DCM BMP-7 activated the TLR4-NLRP3

inflammasome complex by signaling

Nek7/GBP5.

Pyroptosis (Caspase-1, IL-1β, IL-18,)↓; Cardiac

fibrosis (MMP-9) ↓; Cardiac hypertrophy and

dilation↓; Inflammasome formation

(TLR4-NLRP3)↓; Inflammatory cytokines (IL-6,

TNF-α)↓; Inflammatory cells (CD14, iNOS,

CD11b, CD11c)↓; Adverse cardiac

remodeling↓; EPC markers and

neovascularization (c-Kit/Flk-1 and CD31/α-SM

actin)↑; Cardiac function↑

(33)

Becn1 I/R Becn1 overexpression suppressed Caspase-4

inflammasome activation and pyroptosis by

enhancing autophagic flux.

Pyroptosis (Caspase-4, IL-1β, GSDMD) ↓;

Inflammation (F4/80+ macrophages and

CD11b+ neutrophils infiltration in the heart)↓;

Autophagic flux (Beclin1, LC3-II/LC3I)↑;

Myocardial infarct size (LDH, CK↓)↓

(97)

sRAGE I/R sRAGE protected the heart from pyroptosis by

inhibiting the NF-κB pathway during myocardial

ischemia-reperfusion.

Pyroptosis (NLRP3, Casepase-1, GSDMD, IL-

1β, IL-18) ↓; Cardiac function (the movement of

the left ventricle anterior wall, CO, SV, EF,

FS)↑Myocardial infarct size (cTnI)↓

(118)

METTL3 I/R METTL3 promoted DGCR8 binding to

pri-miR-143-3p through m6A modification, thus

enhancing miR-143-3p expression to inhibit

PRKCE transcription and further aggravating

cardiomyocyte pyroptosis and MI/R injury.

Pyroptosis (NLRP3, Casepase-1, GSDMD-N,

IL- 1β, IL-18)↓Myocardial injury↓

(119)

RBP4 AMI RBP4 interacted directly with NLRP3 in

cardiomyocytes, promoted the precursor

cleavage of Caspase-1, and subsequently

induced GSDMD dependent pyroptosis.

Pyroptosis (GSDMD, ASC, pro-Caspase-1,

Caspase-1-p10, GSDMD, cleaved GSDMD,

and IL-18) ↓; Hypertrophic markers (ANP, BNP,

and MHC7) ↓; Myocardial infarct size↓;

Adverse cardiac remodeling (left ventricular

internal dimension and left ventricular volume)

↓Cardiac function (EF, FS)↑

(45)

IRF2 MI IRF2 is directly bound to the GSDMD promoter

to drive GSDMD transcription and promote

pyroptosis and IRF2 expression may be

regulated via the HIF-1 signaling pathway.

Pyroptosis (Cleaved caspase-1, IL-1β, IL-18,

GSDMD-N, GSDMD) ↓; Cardiac function (EF,

FS)↑

(95)

LncRNA

KLF3-AS1

MI LncRNA KLF3-AS1 in exosomes secreted from

hMSCs by acting as a ceRNA to sponge

miR-138-5p can regulate Sirt1 to inhibit

pyroptosis and attenuate MI progression.

Apoptosis and pyroptosis↓; Myocardial infarct

size↓

(84)

miR-762 I/R Delivery of exogenous miRNA-762 before

transplantation significantly increased the

post-transplant survival of stem cells and also

significantly ameliorated cardiac fibrosis and

heart functions following I/R injury.

Pyroptosis (Caspase-1, Caspase-11,

Caspase-1, GSDMD, IL-1β)↓; Cardiac

function↑

(120)

TAC, transverse aortic constriction; MLK3, mixed lineage kinase 3; I/R, myocardial reperfusion; H/R, hypoxia/reoxygenation; MHC, myosin heavy chain; RBP4, retinol-binding protein 4;

BMP-7, bone morphogenetic protein-7; MMP-9, matrix-metalloprotianse-9; TNF-α, tumor necrosis factor α; TLR4, toll-like receptor-4; sRAGE, soluble receptor for advanced glycation

end-products; cTnI, cardiac troponin I; EF, ejection fraction; FS, fractional shortening; CO, cardiac output; SV, stroke volume; ANP, atrial natriuretic peptide; BNP, brain natriuretic

peptide; IRF2, Interferon regulatory factor 2; HIF-1, hypoxia inducible factor 1; ER, estrogen receptor; METTL3, methyltransferase-like protein 3; PRKCE, protein kinase C epsilon; Dox,

doxorubicin; NOX, oxidase.
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markedly promotes pyroptosis in the progression of AMI,
knockdown of NLRP3 attenuated cardiomyocyte pyroptosis
and significantly decreased the infarct size, as evidenced by
decreased expression levels of ASC, pro-Caspase-1, Caspase-
1-p10, GSDMD, cleaved GSDMD, and IL-18 (45). Becn1-
driven autophagy is a protective response in the heart during
I/R, Becn1 overexpression suppressed Caspase-4 inflammasome
activation and pyroptosis, alleviated microvascular damage,
reduced infarct size, and mitigated cardiac inflammation and cell
death (97). The recent research showed that activation of SIRT1
by inhibition of miR-29a inhibited oxidative stress, pyroptosis
and protect I/R injury (98, 99). It has been found that pyroptosis
participated in the pathogenesis of sepsis-induced myocardial
injury which was associated with the XIST/miR-150-5p/c-Fos
axis and ER/SIRT1/NLRP3/GSDMD pathway (99, 100).

Echocardiogram data suggests impaired LV function in
diabetic cardiomyopathy, diabetic cardiac systolic and diastolic
dysfunction can be preserved by inhibiting pyroptosis proteins
(33), CD74 ablation protects against Type 2 diabetes-induced
cardiac remodeling and contractile dysfunction through
NLRP3/pyroptosis-mediated regulation of ferroptosis (101).
IL-1β released by pyroptosis stimulates the synthesis of inducible
nitric oxide synthase (iNOS), leading to cell death and cardiac
remodeling leading to HF (74, 102). In the progression of HF,
the activation of the NLRP3 inflammasome leads to the release
of IL-1β, which can induce Ca2+ efflux in the myocardial plasma
reticulum, directly affecting the excitation-contraction coupling
of the myocardium, and impairing the systolic function of the
myocardium (74). It was found that the amount of ASC, NLRP3,
and Caspase-1 in myocardial cells at the edge of AMI increased
significantly with time, and the level of NLRP3 in myocardial
fibroblasts in ischemic myocardium increased significantly,
inhibition of NLRP3 activation could reduce the size of MI and
preserve the function of myocardial after infarction (85).

POTENTIAL CLINICAL APPLICATIONS OF
PYROPTOSIS TO AMELIORATE ADVERSE
CARDIAC REMODELING IN HF

The improvement of cardiac remodeling plays an important role
in maintaining cardiac function and improving patients’ quality
of life. At present, there are many inhibitors targeting factors
related to the pyroptosis pathway, and these studies provide
a feasible way to better solve the problem of pyroptosis to
improve cardiac remodeling in HF. Although many inhibitors
of pyroptosis-related molecules have been studied (20, 103, 104),
there is still a certain gap between them and clinical use. For
this reason, we reviewed some common clinical drugs and
effective ingredients of natural drugs targeting pyroptosis and
put forward some possible targeting molecules to provide readers
with certain ideas.

Therapy for Improving Cardiac Remodeling
by Drugs on Pyroptosis
MCC950 inhibited inflammation in early myocardial infarction,
reduced cardiac fibrosis, and protected cardiac function

(105), combined with Rosuvastatin (RVS), MCC950 inhibited
the expression of NLRP3, Caspase-1, interleukin-1β, and
Gasdermin D n-terminal domains, and decreased serum lactate
dehydrogenase (LDH) level, improved cardiac systolic function
and myocardial fibrosis in mice (106). Metformin inhibited the
activation of TNF-α, IL-6, IL-1β, and NLRP3 inflammasome,
reduced the size of MI and myocardial fibrosis, enhanced the
activity ofmyocardial cells, reduced the activity of LDH, inhibited
pyroptosis and inflammation (107). Trimetazidine (TMZ) and
Emodin increased the viability of H9c2 cardiomyocytes subjected
to H/R treatment and reduced the infarct size in vivo as well
as alleviated pyroptosis induced by myocardial I/R injury
through the TLR4/MyD88/NF-κB/NLRP3 inflammasome
pathway. Therefore, TMZ represents an alternative treatment for
myocardial I/R injury (94, 108). Liraglutide alleviated pyroptosis
mediated by NLRP3 inflammasome by down-regulating the
SIRT1/NOX4/ROS pathway in H9C2 cells (109). Artemisinin
and Triptolide have protective effects on myocardial function,
which is related to the reduction of factors involved in pyroptosis
(64, 110). It was shown that pinocembrin can inhibit pyroptosis
by activation of Nrf2/Sirt3 signaling pathway, LVEF, LVFS,
LVIDd, LVID, and myocardial fibrosis were improved, and the
expressions of LDH, CK-MB, IL-1β, and IL-18 were reduced
(111). Pyrroloquinoline quinone inhibited ROS and NF-κB
activation inhibited NLRP3 inflammasome and Caspase-
1, IL-1β and IL-18 expression, and improved myocardial
hypertrophy and cardiac fibrosis (112). Ranolazine treatment
of diabetic cardiac fibrosis inhibited pyroptosis and collagen
deposition by upregulating miR-135b (71). Syringaresinol
(SYR) improved cardiac function and alleviated myocardial
injury in sepsis-induced cardiac dysfunction mouse via the
estrogen receptor (ER)/SIRT1/NLRP3/GSDMD pathway (99).
Irisin protected cardiac function by inhibiting NLRP3 and
ameliorating cardiomyocyte hypertrophy induced by pyroptosis
(66). Piperazine ferulate can suppress the I/R-triggered NLRP3
inflammasome activation and pyroptosis (113). Sevoflurane
decreased heart-type fatty acid-binding protein (H-FABP),
ischemia modified albumin (IMA), IL-1β, and IL-18 in serum,
and alleviated myocardial injury in patients with myocardial
ischemia (114). Sevoflurane reduced the H/R rats’ injury
of cardiomyocytes and protected the cardiac function by
regulating inflammatory reaction and pyroptosis by inhibiting
the P2X7-NLRP3 signaling pathway (114). These drugs interfere
with pyroptois and improve cardiac remodeling from various
mechanisms, which has certain practical significance (Table 1).

Therapy for Improving Cardiac Remodeling
by Potential Molecules on pyroptosis
Mixed lineage kinase 3 (MLK3) mainly regulates NF-κB/NLRP3
signaling pathway-mediated inflammation and that pyroptosis
causes myocardial fibrosis in the early stages of CHF (65).
Knockdown of retinol-binding protein 4 (RBP4) in heart
attenuates cardiac pyroptosis in AMI via interaction with
NLRP3, hypertrophic markers (atrial natriuretic peptide, brain
natriuretic peptide, and myosin heavy chain 7)were decreased
in the left ventricular myocardium of RBP4 knockdown
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FIGURE 2 | Role of pyroptosis in cardiac remodeling. Pyroptosis causes cardiac fibrosis, cardiac hypertrophy, cardiomyocytes death, myocardial dysfunction,

excessive inflammation, and cardiac remodeling in heart failure.

mouse, and echocardiography demonstrated that the left
ventricular internal dimension and left ventricular volume were
also decreased by inhibition of RBP4, indicating attenuated
adverse cardiac remodeling. Importantly, knockdown of
RBP4 significantly improved AMI-induced decrease of left
ventricular ejection fraction and fractional shortening (45).
Meanwhile, bone morphogenetic protein-7 (BMP-7)can inhibit
the NLRP3 inflammasome complex and their activator Nek7-
GBP5, and the subsequent cascade of pyroptosis in diabetic
cardiomyopathy, attenuate inflammatory infiltrated dendritic
and M1 macrophages, reducing inflammation and adverse
cardiac remodeling through enhanced neovascularization
following BMP-7 treatment while improving heart function
BMP-7 attenuated inflammation-induced pyroptosis, adverse
cardiac remodeling, and improved heart function via the TLR4-
NLRP3 inflammasome complex activated by novel signaling
Nek7/GBP5 (33). Becn1 overexpression increased Ischemia-
reperfusion mouse survival and decreased the levels of serum
LDH and CK. BECN1 attenuated F4/80+ macrophages and
CD11b+ neutrophils infiltration in the heart (97). Meanwhile,
myocardial fibrosis was markedly ameliorated, the collagen was
decreased through suppressing GSDMD-mediated pyroptosis
when PVT1 knockdown (96). miR-135b can alleviate the fibrosis
of cardiac fibroblasts, as well as cardiac fibroblast pyroptosis,
which can be inhibited via miR-135b that is directly bound
to Caspase-1 (71). LncRNA KLF3-AS1 in exosomes secreted
from hMSCs by acting as a ceRNA to sponge miR-138-5p can
regulate Sirt1 to inhibit pyroptosis and attenuate MI progression
(84). Interferon regulatory factor 2 (IRF2) is directly bound
to the GSDMD promoter to drive GSDMD transcription and
promote pyroptosis and IRF2 expression may be regulated via
the HIF-1 signaling pathway (95). Aldehyde dehydrogenase 2
(ALDH2) has been proven to protect the heart and brain against
regional I/R injury, in which the protective role is related to the
inhibition of pyroptosis. ALDH2 activator N- (1,3-benzodioxol-
5-ylmethyl)-2,6-dichloro-benzamide (Alda-1) would improve
post-resuscitation cardiac and neurological outcomes in a
clinically relevant swine model of cardiac arrest and resuscitation
(115). Silencing CMKLR1 could inhibit the expression of

activated Caspase-1 and IL-1β, and reduce the occurrence of
pyroptosis (116). Resolvin D2 (RvD2), an innate inflammatory
suppressor produced by ω3 polyunsaturated fatty acids, has been
found to promote NLRP3 degradation through autophagy. IL-1β
secretion is reduced in the presence of exogenous RvD2 in vivo
and in vitro, which may be a potential therapeutic target for
inflammasome (117). There are reports that soluble receptors
for advanced glycation end-products (sRAGE) would not only
improve cardiac function and diminish the infarction size but
also reduce the occurrence of apoptosis, necrosis, and pyroptosis
in I/R-treated myocardium. Meanwhile, sRAGE also reduced
the levels of pyroptosis-related proteins in cardiomyocytes, such
as NLRP3, GSDMD-NT, IL-1β, and IL-18, which were related
to the NF-κB pathway (118). These molecules can improve
cardiac remodeling by targeting pyroptosis in various pathways
or directly, which has certain research value (Table 2).

Interestingly, hydrogen improved cardiac function and
reduced the area of cardiac fibrosis by inhibiting NLRP3-
mediated pyroptosis, and it has been demonstrated in vitro
that hydrogen alleviated cardiomyocyte damage induced by
hypoxia and myocardial fibroblast migration and activation
induced by Ang II (121). As an important regulator of IL-1β
production and subsequent pyroptosis, delivery of exogenous
miRNA-762 before transplantation significantly increased the
post-transplant survival of stem cells and also significantly
ameliorated cardiac fibrosis and heart functions following I/R
injury (120). Mesenchymal stem cells (MSCs), derived from
bone marrow, placenta, adipose, or other tissues, significantly
alleviated cardiac arrest cardiac injuries in swine, in which the
protective effects were related to the inhibition of cell pyroptosis
and ferroptosis (122).

CONCLUDING REMARKS AND
PERSPECTIVES

Adverse cardiac remodeling is a decisive factor in the progression
of clinical HF, pyroptosis is involved in various stages of
cardiac fibrosis, cardiac hypertrophy, cardiomyocytes death,
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myocardial dysfunction, and excessive inflammation, and these
factors often overlap to promote cardiac remodeling in HF
(123) (Figure 2) Many targeted inhibitors have been developed
for pyroptosis, and there are also relevant clinical drugs
that can inhibit pyroptosis and improve cardiac remodeling,
however, it is undeniable that studies focus on NLRP3
and Caspase-1 inhibition, while there are few studies on
another inflammasome (27, 72). Research on improving cardiac
remodeling in HF from the perspective of pyroptosis has
a good prospect, however, current studies mostly focus on
improving the protein indexes and pathological observation
related to pyroptosis and cardiac remodeling, and lack of in-
depth molecular interaction mechanism, and the theoretical
mechanism is not clear, so it is difficult to achieve clinical
transformation of research results. In-depth discussion of
the molecular interaction mechanism and targeting another
inflammasome to improve cardiac remodeling will become our
focus in the future.
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