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Most approaches to musical rhythm, whether in music theory, music psychology,

or musical neuroscience, presume that musical rhythms are based on isochronous

(temporally equidistant) beats and/or beat subdivisions. However, rhythms that are

based on non-isochronous, or unequal patterns of time are prominent in the music of

Southeast Europe, the Near East and Southern Asia, and in the music of Africa and the

African diaspora. The present study examines one such style found in contemporary

Malian jembe percussion music. A corpus of 15 representative performances of

three different pieces (“Manjanin,” “Maraka,” and “Woloso”) containing ∼43,000 data

points was analyzed. Manjanin and Woloso are characterized by non-isochronous beat

subdivisions (a short IOI followed by two longer IOIs), while Maraka subdivisions are

quasi-isochronous. Analyses of onsets and asynchronies show no significant differences

in timing precision and coordination between the isochronously timed Maraka vs. the

non-isochronously timed Woloso performances, though both pieces were slightly less

variable than non-isochronous Manjanin. Thus, the precision and stability of rhythm

and entrainment in human music does not necessarily depend on metric isochrony,

consistent with the hypothesis that isochrony is not a biologically-based constraint on

human rhythmic behavior. Rather, it may represent a historically popular option within a

variety of culturally contingent options for metric organization.

Keywords: rhythmic timing, meter, beat subdivision, ensemble entrainment, audio-based corpus, African

drumming, culture

INTRODUCTION

The rhythms of human music and dance are significantly more complex, more diverse, and more
flexible than the rhythmic behaviors found in any other species (see Patel et al., 2005; Bispham,
2006; Fitch, 2006, 2012, 2013; Patel, 2006, 2014; Merker et al., 2009; Bowling et al., 2013; Merchant
and Honing, 2014; Ravignani et al., 2014; Merchant et al., 2015). While birds and bonobos may be
able to entrain to musical or quasi-musical stimuli exhibiting a constant and acoustically obvious
pulse at specific frequencies, adult humans are able to find regular pulses in irregular rhythmic
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patterns, and at a wider range of tempos, than any other
species (McAuley et al., 2006). However, a common presumption
in biomusicological studies is that the essence of this human
capacity involves the extraction of an isochronous (temporally
equidistant) pulse train, which provides a framework for
temporal perception and action. Indeed, most approaches to
musical rhythm, whether in ethnomusicology (Waterman, 1952;
Arom, 1984, 1991; Kubik, 1988, 1994; Tenzer, 2011), music
theory (Lerdahl and Jackendoff, 1983; Hasty, 1997; Mirka, 2009),
music psychology (Longuet-Higgins and Lee, 1982, 1984; Povel
and Essens, 1985; Desain and Honing, 1999; Madison and
Merker, 2002), and musical neuroscience (Large and Jones, 1999;
Snyder and Large, 2005; Grahn and Brett, 2007; Large, 2008;
Grube and Griffiths, 2009; Grube et al., 2010; Nozaradan et al.,
2012, 2015; Nozaradan, 2014), as well as biomusicology, presume
that human rhythmic entrainment is based on a hierarchical
organization of isochronous beats and beat subdivisions. In
other words, it is commonplace to regard isochrony as a
universal, constitutive feature of the regularity that entrainable
rhythms require. Savage et al. (2015) show that isochronous beats
represent a statistical universal of near global spread, and the
authors suggest that the occurrence of such statistical universals
might indicate biological constraints on cultural diversity.

In principle, presuming relative simplicity as a functional
prerequisite of metric pulse appears plausible. Together with
other mechanisms, such as categorical rhythm perception
(Clarke, 1987; Schulze, 1989; Desain and Honing, 2003), it allows
one to tell a story of rhythmic evolution along the following lines.
While many creatures exhibit isochronous rhythmic behaviors
(e.g., locomotive gaits and wing beating, resting respiration, etc.),
and while a few can exhibit an isochronous rhythmic response
to an external isochronous rhythm (e.g., primate chorusing),
humans evolved a capacity for creating endogenous isochronous
pulses frommore complex stimuli (Merchant andHoning, 2014).
Specifically, the relative simplicity of the pulse phenomenon
can be understood arising from human behavioral complexity
coupled with a need for stable and predictable interpersonal
interaction. The temporally predictive functionality of pulse and
meter suggests that it should be structurally simpler than the
rhythmic structures that give rise to it.

However, this nativist view of a natural predisposition
toward isochrony resulting from biological constraints is
implausible from a cross-cultural, ethnomusicologically
informed perspective. The main thrust of rhythm research
in comparative musicology and ethnomusicology has been to
emphasize the dramatic range of cultural diversity and difference,
not only in their surface rhythms, but also in the metrical systems
that function as frameworks for their rhythm perception and
production. It is empirically evident that music in many parts
of the world makes structural usage of non-isochronous beats,
including northern Europe (Kvifte, 2007; Johansson, 2009;
Haugen, 2014), south-east Europe (Brăiloiu, 1984; Moelants,
2006; Goldberg, 2015; Polak, 2015), Turkey (Cler, 1997; Bates,
2011; Holzapfel, 2015; Reinhard et al., 2015), Egypt and the
Arab world (Marcus, 2001, 2007), Central Asia (During, 1997),
India (Clayton, 1997, 2000), and parts of Africa and its diasporas
(Gerischer, 2003, 2006; Polak, 2010; Jankowsky, 2013; Haugen

and Godøy, 2014; Polak and London, 2014). Both isochronous
and non-isochronous beats co-exist in most, if not all, of these
regions. Musicians, listeners and respondents —people dancing,
singing, working, marching, trancing, or clapping to music—are
typically at ease with employing different (yet appropriate)
metric frameworks in different pieces of the same repertoires,
genres, and styles.

In this paper, performance timings of three pieces of jembe
ensemble music from Mali are analyzed to assess whether
rhythms characterized by non-isochronous beat subdivisions
differ with respect to their precision and stability in complex,
polyrhythmic multi-part ensemble music, in comparison to
rhythms characterized by isochronous beat subdivisions from
the same genre and musical tradition. If isochronous meters
are privileged in human rhythm perception and production,
then we hypothesize that music that involves non-isochronous
beat subdivisions should exhibit less precision and stability than
music with isochronous beat subdivisions. In particular, we
would expect rhythms produced in a non-isochronous context
to display:

• Greater variability in the onset timing (i.e., micro-rhythmic
placement of drum strokes within the metric cycle);

• Greater asynchrony amongst members of the ensemble (i.e.,
micro-rhythmic deviation of note onsets by two or more
players in the same metric location).

Within a corpus of isochronous and non-isochronous pieces
displaying otherwise similar characteristics, the aforementioned
hypothesis predicts that non-isochronous pieces will display
greater timing variability and greater ensemble asynchrony in
comparison with isochronous pieces. If, however, we find that
variability and asynchrony of non-isochronous rhythms are not
substantially different than isochronous rhythms, then one can
no longer claim that isochronous meter has a privileged status in
human rhythm perception and production.

MATERIALS AND METHODS

Music and Recordings Used in this Study
The music we have studied is colloquially known as “jembe
music,” as the jembe (also djembe) is featured as main instrument
in these ensembles. The jembe is a goblet shaped drum
beaten with bare hands, originating from Guinea and Mali.
Traditionally, jembe-centered percussion ensemble music has
played a central role in celebratory dance events such as weddings
and other life cycle events, as well as with agricultural work-
tasks such as hoeing fields for weeding. In the 1960s, jembe
music and dance entered programs of state-sponsored folkloric
ensembles and, at the same time, became part of the urban
popular culture in Bamako, Conakry, Dakar, and Abidjan, among
other West African cities. Since the 1980s, West African jembe
music, musicians, and instruments have migrated globally (see
Charry, 1996, 2000, chapter 4; Polak, 2000, 2004, 2005, 2007,
2012). The popular, vernacular, and participatory characteristics
of jembe music make it a particularly relevant case for issues
in the psychology and biology of music, because these qualities,
which are typical of many types of functional music, are arguably
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more representative of human musicality than, for instance,
Western art music (Peretz, 2006).

Malian drum ensembles typically involve three distinct
musical roles: a variative lead drum, a repertoire-specific
timeline, and one or more ostinato accompaniment parts
(Polak and London, 2014). These roles are assigned to specific
instrumental “voices” or ensemble parts. In the Bamako style
of jembe music performance in the 1990s and early 2000s, the
minimum ensemble size was a duet of one jembe playing the
lead part and one dundun, a cylindrical drum beaten with a
stick, playing the timeline. Trios add a second jembe playing
an ostinato accompaniment rhythm; if financial and logistic
resources allow for it, a second dundun is added to further
support the accompaniment section.

The set of recordings analyzed here is comprised of three
different pieces: Maraka, Manjanin, and Woloso. These three
are among the core repertoire of standard pieces in the Bamako
style of jembe music (see Polak, 2012). The pieces in our corpus
involve two different meters, and were performed by three
different ensemble sizes and with four different lead drummers
(see Table 1).

As is typical of jembe music performance, all recordings
show a large-scale, nearly continuous structural accelerando; the
tempo at the end of each piece is 30–45% faster than in the
beginning. The average ending tempo of 185 bpm (IOI = 324
ms per beat) is very rapid, yielding an average IOI of 108 ms
per metric subdivision, which is near the limit for sensori-motor
synchronization (Repp, 2003). Their rhythmic textures are near-
maximally saturated, that is, each time-point at the subdivision
level almost always receives a note onset. Typically, no single
player articulates every time-point in the metric cycle for more
than a few cycles. Rather, the saturated rhythmic texture results
from the interweaving phrases of various ensemble members
playing together.

The three studied pieces share a common type of metric
framework: a cycle of four regular beats with ternary subdivision.
Polak (2010) found two different timing patterns for the ternary
subdivision timing in these three pieces. Maraka has quasi-
isochronous triplets, while the non-isochronous or “swung”
ternary subdivision in Manjanin and Woloso consistently
showed either a short-medium-long (SML) or short-long-long
(SLL) pattern, which were assumed to represent variations of
a slightly more generic pattern type, short-flexible-long (SFL).
These patterns appeared stable for each piece, across different
recordings, players, ensemble parts, durations, phrases, and
tempo changes, and thus seemed to represent repertoire-specific
metric norms. They were found in other types of drum ensemble
music from Mali as well (Polak and London, 2014). Figure 1
graphically represents the basic drumstroke patterns used by each
part in each piece. Note that the column widths are indicative of
their characteristic timings.

Data Collection and Preparation
In 2006/07, author RP collected a set of 15 multi-track audio
and video recordings of complete live drum performances
while conducting ethnographic field research in Bamako, Mali.
Unidirectional microphones (AKG C-419) were clipped-on to

the rims of each drum. Individual parts were recorded to amobile
digital four-track studio (Edirol R4) in WAVE-file format at 16-
bit/48-Hz. A mini-DV camcorder (Canon XM2) captured video
footage at 25 progressive scans per second. Recording sessions
took place in the open air, where there was little acoustical
crosstalk of instruments and reverberation from walls. The single
tracks of themultitrack recordings proved clean enough for audio
analysis without the need for frequency filtering.

Audio and video recordings were combined and synchronized
in Vegas Pro 11 and 12 (Sony); Soundforge Pro 10 (Sony),
Wavelab 7 (Steinberg), and Cubase 7 (Steinberg) were used
for onset detection and marking. Onsets were detected
automatically, and then were individually checked by eye. Note
onset times were exported to Excel 2013 for data organization,
and then to Matlab 8 (Mathworks) for further analysis. Out of
the 42,297 resulting onsets, some 1054 data points (2.5% of all
onsets) were excised from the beginning and end of recordings,
to exclude informal introductions and formulaic endings that do
not conform to the stable polyrhythms of interest in our study.

Given the structural tempo changes in each recording,
analyzing timing data as absolute durations (in seconds or
milliseconds) would be disadvantageous, because the magnitudes
of resulting values then would be incomparable across the greatly
different tempos covered in the performances. We therefore
chose the four-beat metric cycle as the basic unit of analysis and
normalized (“detrended”) the time-series from the tempo factor
by giving temporal intervals as percentages of the local four-beat
cycles. To obtain this, we performed the following process:

(1) The beginning of each four beat cycle was identified using
the ostinato accompaniment of Jembe 2 or, in case of duets
where Jembe 2 is not present, of the timeline phrase of
Dundun 1.

(2) We identified all onsets in all instruments within a tight
window around the start of the Jembe 2 cycle.

(3) We computed the average of the identified onsets, and
marked it as the beginning of the four-beat cycle.

(4) Other onsets within the piece were normalized to the relative
position between two adjacent cycle starts.

All normalization was done only at the four-beat cycle level; we
did not normalize each beat independently.

Figure 2 (top) shows the result of this process for one piece
in the corpus. Despite the large tempo changes (in this piece
from 136 bpm to 197 bpm) the onsets are organized in a highly
structured fashion. Figure 2 (bottom) shows the aggregated
histogram of all onsets, each peak corresponding to one of the 12
metrical grid positions. Figure 3 shows that these peaks were also
consistent across renditions of the same piece. The strictness of
adherence to the metric grid for each piece is striking, justifying
the heuristic for the identification of the cycle start. Based on this
structure we also defined heuristic boundaries between metric
positions (displayed in red in Figure 3) and binned each onset
to the corresponding metric bin. The exact location of the
boundaries does not matter much for the binning process, as the
peaks are extremely well separated. However, a small percentage
(less than 3%) of all events was nevertheless positioned in
ambiguous locations near the heuristic boundaries. These events
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TABLE 1 | Set of recordings.

Recording Player

Jembe 1

Player

Dundun 1

Player

Jembe 2

Player

Dundun 2

Ensemble

size

Playing

time

Beat IOI (ms)

start of piece

Beat IOI (ms)

end of piece

Maraka-1 D. Kone M. Jakite S. Balo trio 3:00 472 328

Maraka-2 D. Kone M. Jakite S. Balo trio 2:15 528 336

Maraka-3 S. Balo M. Jakite D. Kone trio 2:30 582 341

Maraka-4 J.M. Kuyate M. Jakite D. Kone trio 2:15 536 306

Maraka-5 J.M. Kuyate M. Jakite duet 2:00 549 306

Maraka-6 I. Coulibaly M. Jakite D. Kone A. Traole quartet 4:50 566 333

Manjanin-1 D. Kone M. Jakite S. Balo A. Traole quartet 5:00 444 295

Manjanin-2 D. Kone M. Jakite D. Kone duet 4:20 523 305

Manjanin-3 S. Balo M. Jakite trio 3:15 443 304

Manjanin-4 I. Coulibaly M. Jakite D. Kone A. Traole quartet 5:40 500 307

Woloso-1 D. Kone M. Jakite S. Balo trio 3:45 588 381

Woloso-2 D. Kone M. Jakite S. Balo A. Traole quartet 3:20 499 319

Woloso-3 D. Kone M. Jakite duet 3:10 597 333

Woloso-4 S. Balo M. Jakite D. Kone trio 2:40 502 339

Woloso-5 J.M. Kuyate M. Jakite D. Kone trio 2:00 535 322

FIGURE 1 | Rhythmic patterns (melodic and timbral aspects omitted) for Maraka, Manjanin, and Woloso in annotated box notation. The pattern given for

Jembe 1 is an example of a typical lead drum phrase.

almost exclusively represent metrically extraneous onsets by the
lead-drum part. The first jembe frequently embellishes phrases
by adding extra ornamental strokes. These include flams, which
consist of two onsets that perceptually merge into one rhythmic

event, as well as rolls that combine three or more strokes at
a frequency higher than that of the metric subdivision. The
approach to filtering these extraneous onsets was two-fold. First,
we assumed that only one event within each subdivision “bin”
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FIGURE 2 | Top all 5393 onsets of four ensemble parts aligned to the average downbeat (Pulse 1.1) in a sample recording (Manjanin 1). The distribution of onsets

within the metric cycle is plotted on the x-axis; the course of absolute time (sequence of metric cycles) is plotted on the y-axis for each ensemble part. Numbers below

each vertical extension give the mean distributions of onsets for each metric position relative to the four-beat cycle (=400%). Ornamental filtered events are marked

with red crosses. Bottom shows the histogram of all events included in the piece. Histogram peaks correspond to the locations of metric subdivisions.

would function as the articulation of that particular subdivision
pulse and hence be relevant for ensemble synchrony. Whenever
one metric pulse-bin received two onsets by the lead drum, we
discounted the onset that was more distant from the mean value
for that metric position. Secondly, we defined windows of 17% of
the normalized beat duration for each of the three subdivisions
(that is, about half of their nominal normalized duration), spread
asymmetrically (−10% to +7%) around the mean value for each
of them, and discarded all onsets outside that window. Author RP,
an expert in this style of music, verified that the decision made by
this heuristic corresponded to his understanding of the musical
style by visual and audio inspection of the entire corpus. In any
case, the number of filtered events was small, totalingmerely 1170
events (2.8%) of all events in the corpus.

RESULTS

Isochronous vs. Non-Isochronous
Subdivision Timings
All three pieces exhibit a meter comprised of four isochronous
beats that show almost no local differences in IOI. However,
within each beat, the three pieces show two distinct patterns
of subdivision timing (see Figures 4, 5). The difference is

particularly evident in the second (middle) subdivision pulse-
bin. In Maraka the subdivisions are nearly isochronous, albeit
with a characteristic slight compression of the middle element
(see Desain and Honing, 2003; Repp, 2005; Repp and Su, 2013).
By contrast, Manjanin and Woloso display a short-medium-long
pattern of subdivision, with an earlier articulation of the middle
element.

As can be seen in Figure 6, the variability of subdivision
timing is very low on average; the standard deviations of all
onsets in all recordings for each of the three pulse classes are
approximately 2.5–3.5% of the local beat duration.

We further analyzed these variabilities with a 2-way Piece ×
Subdivision ANOVA that shows both a significant main effect of
Piece [F(2, 36) = 10.7, p < 0.001 and of Subdivision F(2, 36) =
13.6, p < 0.001], but no significant interaction [F(4, 36) = 0.96,
p = n.s]. Post-hoc tests showed that (a) there is no significant
difference in variability between the isochronous Maraka and
the non-isochronous Woloso [t(31) = 0.47, p = n.s], whereas
the variability of Manjanin was significantly larger than both
Woloso [t(25) = 3.05, p = 0.016] and Maraka [t(28) = 3.46, p =
0.005] (Bonferroni correction for multiple comparisons applied
here and in all post-hoc tests noted below); (b) the variability of
the first subdivision (onbeat) is significantly smaller than both
the second subdivision [mid-beat; t(25) = 3.04, p = 0.016],
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FIGURE 3 | Aggregated onset histograms per piece (n = 41,243). Red dotted vertical lines specify the heuristically defined location of metric pulse-bin borders.

Numbers above dashed black lines show the mean location of the onset within a pulse-bin relative to the four-beat cycle (=400%).

FIGURE 4 | Onset histogram of all events of all ensemble parts and all

recordings relative to the normalized local beat duration (1 beat = 100

%) for the three pieces in the corpus.

and the third [up-beat; t(28) = 3.45 p = 0.005], which were
not significantly different from one another [t(31) = 0.47, p
= n.s]. This is consistent with the idea that the strong metric
positions (onbeat) are more stable than weak metric positions
(London, 2012; see Repp, 2003 for similar result in a finger
tapping experiment).

FIGURE 5 | Mean subdivision timing ratio grouped by piece and

recording. Error bars represent the standard deviation of the subdivision

position (1 beat = 100%) computed for each recording individually. Dashed

lines represent idealized isochronous subdivisions.

To test the consistency of variability over the large tempo
changes within each performance, we divided each recording
into two parts with the same number of four-beat cycles. The
average tempo of the second half of the pieces (168 BPM) was
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FIGURE 6 | Standard deviation of subdivision durations, all ensemble

parts, all recordings, as percentages of the normalized local beat

duration, separated by piece. Error bars represent standard error of the

mean.

significantly faster than the beginning half [145 BPM; t(14) =
16.3, p < 0.001]. However, the differences between the first
and second half in terms of relative performance variability
were extremely small: 2.7 and 2.9%, respectively. While it is
to be expected that relative variability will increase with tempo
(Wing and Kristofferson, 1973), a 3-way Piece × Subdivision ×

Part (first vs. second half) ANOVA showed only a marginally
significant main effect of Part [F(1, 76) = 4.07, p = 0.05]
but a significant Part × Piece interaction [F(2, 76) = 3.53,
p = 0.03]. However, a post-hoc test only found a significant
contrast between the end of the Manjanin pieces and all other
possible parts and pieces (p < 0.05) (Bonferroni correction for
multiple comparisons applied here and in subsequent post-hoc
tests). Importantly, there was no statistically significant difference
between isochronous Maraka and non-isochronous Woloso
among all the possible tested situations, i.e., the beginning and
ending of the piece and each of the three possible subdivisions
(p ≤ 0.05). These results show that (a) the basic subdivision
timings (Figures 2, 3) are highly stable in all three pieces, and
(b) there is no significant difference in variability between the
isochronous Maraka and the non-isochronous Woloso.

Asynchronies between Ensemble Parts
To assess the precision of coordination among parts and to
provide a window on the performers’ use of a common metric
framework, we measured the extent, pattern, and variability of
the mean asynchronies between onsets by different individual
ensemble members in the same metric position. Mean signed
asynchronies were calculated relative to a virtual reference beat,
which we defined as the mean of all onsets within each metric
bin for each performance. Across all three pieces in the corpus,
the value of the mean signed asynchronies is about 2% of the
normalized local beat duration (see Figure 7). Depending on
the tempo (beat IOIs from ≈300 to ≈600 ms), these mean
asynchronies are in the range of 6–12ms.

A 2-way Piece× Instrument ANOVA shows a significantmain
effect of instrument [F(3, 34)= 14.1, p< 0.001] but no significant
effect of piece [F(2, 34)= 0.01, p= n.s] nor significant interaction
[F(6, 34) = 0.52, p = n.s]. Post-hoc tests found that the lead
drummer (Jembe 1) tended to play ahead of the accompanists
[Jembe 2: t(25) = 7.92, p < 0.001; Dundun 2: t(17) = 6.7, p <

0.001] as well as ahead of the timeline [Dundun 1: t(28) = 3.39
p = 0.012]. Another related measure of accuracy is the absolute
value of the mean asynchrony: a 2-way Piece × Instrument
ANOVA did not show any significant main effect [piece: F(2,
34) = 0.59, p = 0.55; instrument: F(3, 34) = 1.47, p = 0.24]
nor an interaction [F(6, 34) = 0.42, p = 0.85]. Taken together,
these results show that the pattern and extent of asynchrony
between players does not vary between pieces; isochronous and
non-isochronous pieces do not differ in this respect.

The variability of asynchronies is also low (standard deviations
range between 1.5–3.2% of the local beat duration), indicating
that the minimal amount of mean asynchrony does not result
from averaging out larger deviations, but represents a very stable
pattern of highly precise ensemble timing (see Figure 8)1.

Analyzing the standard deviation of the asynchronies with 2-
way Piece × Instrument ANOVA showed significant main effect
of piece [F(2, 34) = 13.2, p < 0.001] and instrument [F(3, 34)
= 21.9, p < 0.001] but no significant interaction [F(6, 34) =

0.19, p = 0.97]. Post-hoc analyses show that the isochronous
Maraka and non-isochronous Woloso do not significantly differ
from each other [t(31) = 0.96, p = n.s], but are significantly less
variable than the non-isochronous Manjanin [t(29) = 3.05, p =

0.005]. In addition, the post-hoc analysis showed that Jembe 1 has
a significantly larger variability compared with Jembe 2 [t(25)
= 6.12, p < 0.001] and Dundun 1 [t(28) = 4.57, p < 0.001].
However Jembe 1 and Dundun 2 were not significantly different
from one another [t(17) = 2.55, p = n.s]. Note, however, that
all these differences and nominal values are extremely small. For
example, the differences are less than 1% of the beat duration, and
the largest nominal value of variability (Jembe 1: 3.3%) represents
a timing difference of only 10–20 ms.

DISCUSSION AND CONCLUSION

This paper examines the assumption that isochrony is privileged
in human rhythmic perception and production by testing the
hypothesis that the production of non-isochronous rhythms
will be associated with both greater durational variability as
well as larger and less stable inter-personal asynchronies in
ensemble performance. We analyzed three pieces whose rhythms
are characterized by either isochronous or non-isochronous
meters. Manjanin and Woloso share a similar short-flexible-
long subdivision timing pattern that is different from the

1Note that the standard deviations of the asynchronies were computed similarly

to the mean signed asynchrony: separately for each piece, metric position, and

instrument. This computation is therefore slightly different from the standard

deviation computed in Figure 6, in which onsets within different metric bins (in

the four-beat cycle) that are associated with the same metric subdivision (onbeat,

midbeat, or upbeat) were aggregated independently of whether referring to Beat 1,

2, 3, or 4 in the four-beat cycle. Note that both methods provide consistent results

(compare Figures 6, 8).
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FIGURE 7 | Mean signed asynchronies between ensemble parts,

grouped by piece and instrument. The asynchronies are given relative to a

virtual reference beat (zero asynchrony) calculated as the mean of all onsets

(per recording) present in a metric position. Colors and shapes represent

individual instruments within a piece. To improve visibility of almost overlapping

values some random jitter was added to the y-axis of this graph.

quasi-isochronous subdivisions in Maraka (Figures 4, 5). This
hypothesis predicts much smaller and less variable asynchronies
among ensemble members performing the isochronous Maraka
than in performances of both non-isochronous Woloso and
Manjanin. However, our results are inconsistent with this
prediction in three main ways:

(1) We found that the average extent and variability of
asynchronies in all three pieces was extremely small (less
than 3% of the beat duration) and relatively stable as the
piece progresses (the mean change between first and second
half of the pieces was only about 0.2%). The extent of
asynchronies in the jembe ensemble (6–12 ms) is considerably
smaller than in European art music and African-American
jazz ensemble performances, where the lower end of typical
ranges lies at 20–30 ms (Rasch, 1979; Shaffer, 1984; Rose,
1989; Prögler, 1995; Friberg and Sundström, 2002; Goebl and
Palmer, 2009; Timmers et al., 2014). Jembe drummers in
both isochronous and non-isochronous contexts remain very
tightly synchronized to each other and they do so with cutting
precision and rock-solid stability (Figures 2, 7, 8).

(2) The extent of asynchrony among the ensemble members—the
mean signed asynchronies as a percentage of the normalized
beat duration (see Figure 7)—was not significantly different
among the three pieces.

(3) The variability of the relative position and asynchronies of
onsets—indicative of the relative stability of entrainment
among ensemble members—showed significant and
consistent differences between the pieces, but these differences
did not follow the isochrony hypothesis: isochronous Maraka
and non-isochronous Woloso were not significantly different.
The non-isochronous piece Manjanin had a small but
significant increase in variability compared with both
non-isochronous Woloso and isochronous Maraka.

While music based on isochronous pulses is held to represent
a statistical universal (Savage et al., 2015), it remains that

FIGURE 8 | Standard deviation of the asynchrony, grouped by piece

and instrument. Colors and shapes represent individual instruments within a

piece.

(a) music based on non-isochronous pulse structures is found
in many cultures (referenced in the introduction) and (b)
non-isochronous pulse structures afford precise and stable
rhythmic performance and entrainment, as our study above
has shown. This forces one to conclude that isochrony
is not an inherent, biologically-based constraint on human
rhythmic behavior. Rather, it may represent a historically
popular option within a variety of culturally contingent options
for metric organization. A range of evidence supports this
assumption. First, Hannon and colleagues have demonstrated
in a series of experimental studies that enculturation overrides
the mathematical complexity inherent in non-isochronous beats.
Non-isochronous beat sequences such as 2+2+3 are more
difficult than isochronous ones for Western adult listeners, but
not for Bulgarian, Macedonian, Turkish, and Indian listeners
(Hannon and Trehub, 2005a; Hannon, 2010; Hannon et al.,
2012a; Kalender et al., 2013; Ullal-Gupta et al., 2014). Studies of
rhythmic development have shown that 6-month-old infants can
respond to isochronous and non-isochronous beats with equal
facility, but by 12 months, infants already develop a bias toward
the rhythms of their environment. Yet one-year-old infants
can quickly learn to adapt to “foreign” (e.g., non-isochronous)
rhythmic patterns through brief exposure (Hannon and Trehub,
2005a,b). Statistical learning by passive exposure quickly and
strongly shapes our perception and cognition of rhythm and
meter (Hannon et al., 2012b). The transition from culture-general
to culture-specific patterns in beat perception starts very early
in life, and the privileging of isochronous over non-isochronous
beats is on the culture-specific, not on the culture-general side of
the developmental divide (Hannon and Trehub, 2005b).

Second, long-term ethnographic research in Malian jembe
music (author RP) reveals that local players, listeners, and
dancers do not experience non-isochronous subdivisions as
relatively difficult or irregular, nor do they conceptually
distinguish them from isochronous patterns. For instance,
professional teachers do not try to avoid non-isochrony when
students show difficulties in understanding a rhythm.

Biomusical discussions of the nature of human rhythmic and
entrainment capacities emphasize the diversity and flexibility
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of human rhythmicity, while at the same time presuming that
these complex behaviors supervene upon a small number of
simple underlying metrical processes. However, from our study
and the other cross-cultural studies of rhythm cited above,
it is evident that the human capacity for rhythm, and pulse
perception and production in particular, may be more complex
than previously assumed. Metric flexibility is surely limited in
degree when compared to rhythmic flexibility, yet clearly metric
regularity does not depend upon isochrony, though this has been
supposed in many theoretical, analytical, and psychological
accounts of rhythm in Western classical and popular
music.

This re-characterization of the human capacity for rhythm
and entrainment further emphasizes the distinction of
humans from all other species. For example, fireflies have
one meter/rhythm (without rhythm-meter distinction), whereas
birds and great apes may have a few rhythms and one meter,
within narrow limits of tempo (Schachner et al., 2009; Patel et al.,
2009a,b; Patel, 2014; Ravignani et al., 2014; Large and Gray,
2015). Humans, by contrast, are able to perform a great many
rhythms at many different tempos; contrary to conventional
presumptions, they also perceive many more meters than time
signatures in Western musical notations suggest (London,
2012). Humans are able to adapt to a much broader range of
rhythmic situations and contexts partly because their capacity
for meter, too, is more flexible and differentiated. One aspect
of the flexibility and source for differentiation of meters is that
metric pulses do not need to be isochronous—neither their beats
nor their subdivisions.

Biomusicological studies of rhythm hotly contest the rhythmic
abilities of non-human animals. By contrast, they seem to
assume that our understanding of the human capacity for
rhythm and entrainment is more or less fully understood, or
at least fully documented. This is premature. In particular,
existing and emerging knowledge about cultural diversity has not
been sufficiently integrated into music theoretic, psychological,
neuroscientific, and biological discussions of human rhythmicity
(for recent, surprisingly innovative insights of such perspective
in other domains such as economic behavior, visual perception,
or spatial cognition, see Henrich et al., 2010a,b). This bears the
risk of distortion, since the standard contexts for the evolution,
history, and practice of human music and dance are marked by
the encultured development of individuals and the encultured
social situations and institutions of individual action and social
interaction. The definition of the human capacity for rhythm
needs to recognize that cultural diversity and flexibility are part
and parcel of human nature.
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