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Long noncoding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing

lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes, including human

diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive

of over 109,000 coding and noncoding genes, as described in the FANTOMCAGE-Associated Transcriptome (FANTOM-

CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility

of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal

and diseased human samples. In particular, we (a) identify tissue-specific transcription profiles for distinct classes of coding

and noncoding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel noncoding

genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhanc-

er lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by

the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other re-

searchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.

[Supplemental material is available for this article.]

Long noncoding RNAs (lncRNAs) are commonly defined as tran-
scripts longer than 200 nucleotides that are not translated into
proteins. This definition is not based on their function, since
lncRNAs are involved in distinct molecular processes and biologi-
cal contexts not yet fully characterized (Batista and Chang 2013).
Over the past few years, the importance of lncRNAs has clearly
emerged, leading to an increasing focus on decoding the conse-
quences of their modulation and studying their involvement in
the regulation of key biological mechanisms during development,
normal tissue and cellular homeostasis, and in disease (Esteller
2011; Batista and Chang 2013; Ling et al. 2015).

Given the emerging and previously underestimated impor-
tance of noncoding RNAs (ncRNAs), the FANTOM Consortium

has initiated the systematic characterization of their biological
function. Through the use of Cap Analysis of Gene Expression se-
quencing (CAGE-seq), combined with RNA-seq data from the pub-
lic domain, the FANTOM Consortium released a comprehensive
atlas of the human transcriptome, encompassing more accurate
transcriptional start sites (TSSs) for coding and noncoding genes,
including numerous novel long noncoding genes: the FANTOM
CAGE-Associated Transcriptome (FANTOM-CAT) (Hon et al.
2017). We hypothesized that these lncRNAs can be measured in
many RNA-seq data sets from the public domain and that they
have been so far missed by the lack of a comprehensive gene
annotation.

Although the systematic analysis of lncRNAs function is be-
ing addressed by the FANTOM Consortium in loss-of-function
studies, increasing the detection rate of these transcripts
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combining different studies is difficult because of the heterogene-
ity of analytic methods employed. Current resources that apply
uniform analytic methods to create expression summaries from
public data do exist but can miss several lncRNAs because of their
dependency on a preexisting gene annotation for creating the
gene expression summaries (Tatlow and Piccolo 2016;
Lachmann et al. 2018). We recently created recount2 (Collado-
Torres et al. 2017b), a collection of uniformly processed human
RNA-seq data, wherein we summarized 4.4 trillion reads from
over 70,000 human samples from the NCBI Sequence Read
Archive (SRA), The Cancer Genome Atlas (TCGA) (The Cancer
Genome Atlas Research Network et al. 2013), and the Genotype-
Tissue Expression (GTEx) (The GTEx Consortium 2013) projects
(Collado-Torres et al. 2017b). Importantly, recount2 provides anno-
tation-agnostic coverage files that allow requantification using a
new annotation without having to reprocess the RNA-seq data.

Given the unique opportunity to access the latest results to
the most comprehensive human transcriptome (the FANTOM-
CAT project) and the recount2 gene agnostic summaries, we ad-
dressed the previously described challenges, building a compre-
hensive atlas of coding and noncoding gene expression across
the human genome: the FANTOM-CAT/recount2 expression atlas
(FC-R2 hereafter). Our resource contains expression profiles for
109,873 putative genes across over 70,000 samples, enabling an
unparalleled resource for the analysis of the human coding and
noncoding transcriptome.

Results

Building the FANTOM-CAT/recount2 resource

The recount2 resource includes a coverage track, in the form of a
bigWig file, for each processed sample. We built the FC-R2 expres-
sion atlas by extracting expression levels from recount2 coverage
tracks in regions that overlapped unambiguous exon coordinates
for the permissive set of FANTOM-CAT transcripts, according to
the pipeline shown in Figure 1. Since recount2’s coverage tracks
do not distinguish between genomic strands, we removed ambig-
uous segments that presented overlapping exon annotations from
both strands (see Methods section and Supplemental Methods).
After this disambiguation procedure, the remaining 1,066,515 ex-
onic segments mapped back to 109,869 genes in FANTOM-CAT
(out of the 124,047 starting ones included in the permissive set
[Hon et al. 2017]). Overall, the FC-R2 expression atlas encompasses
2041 studies with 71,045 RNA-seq samples, providing expression

information for 22,116 coding genes and 87,763 noncoding
genes, such as enhancers, promoters, and other lncRNAs.

Validating the FANTOM‐CAT/recount2 resource

We first assessed how gene expression estimates in FC-R2 com-
pared to previous gene expression estimates from other projects.
Specifically, we considered data from the GTEx Consortium (v6),
spanning 9662 samples from 551 individuals and 54 tissues types
(The GTEx Consortium 2013). First, we computed the correlation
for the GTEx data between gene expression based on the FC-R2 at-
las and on the GENCODE (v25) genemodel in recount2, which has
been already shown to be consistent with gene expression esti-
mates from the GTEx project (Collado-Torres et al. 2017b), observ-
ing a median correlation ≥0.986 for the 32,922 genes in common.
This result supports the notion that our preprocessing steps to dis-
ambiguate overlapping exon regions between strands did not sig-
nificantly alter gene expression quantification.

Next,we assessedwhether gene expression specificity, asmea-
sured in FC-R2, wasmaintained across tissue types. To this end, we
selected and compared gene expression for known tissue-specific
expression patterns, such as keratin 1 (KRT1), estrogen receptor 1
(ESR1), and neuronal differentiation 1 (NEUROD1) (Fig. 2).
Overall, all analyzed tissue-specific markers presented nearly iden-
tical expression profiles across GTEx tissue types between the alter-
native gene models considered (see Fig. 2 and Supplemental Fig.
S1), confirming the consistency between gene expression quantifi-
cation in FC-R2 and those based on GENCODE.

We also assessed whether there are genes that are not ex-
pressed in any of the normal tissues included in GTEx. Out of
109,869 genes, 681 (0.6%) (see Supplemental Figs. S3, S4) were
not expressed in any tissue included in GTEx, and they were over-
represented in the FANTOM-CAT permissive set (χ2 test, P-value<
2.2 ×10 16).

Tissue-specific expression of lncRNAs

It has been shown that, although expressed at a lower level, en-
hancers and promoters are not ubiquitously expressed and are
more specific for different cell types than coding genes (Hon
et al. 2017). In order to verify this finding, we used GTEx data to
assess expression levels and specificity profiles across samples
from each of the 54 analyzed tissue types, stratified into four dis-
tinct gene categories: coding mRNA, intergenic promoter
lncRNA (ip-lncRNA), divergent promoter lncRNA (dp-lncRNA),
and enhancer lncRNA (e-lncRNA). Overall, we were able to con-
firm that these RNA classes are expressed at different levels and
that they display distinct specificity patterns across tissues, as
shown for primary cell types by Hon et al. (2017), albeit with
more variability, likely due to the increased cellular complexity
present in tissues. Specifically, coding mRNAs were expressed at
higher levels than lncRNAs (log2 median expression of 6.6 for cod-
ingmRNAs, and of 4.1, 3.8, and 3.1 for ip-lncRNA, dp-lncRNA, and
e-lncRNA, respectively). In contrast, the expression of enhancers
and intergenic promoters was more tissue-specific (median=0.41
and 0.30, respectively) than that observed for divergent promoters
and coding mRNAs (median=0.13 and 0.09, respectively) (Fig.
3A). Finally, when analyzing the percentage of genes expressed
across tissues by category, we observed that coding genes are, in ge-
neral, more ubiquitous, whereas lncRNAs are more specific, with
enhancers showing the lowest percentages of expressed genes
(mean ranging from88.42% to 41.98%) (see Fig. 3B), in agreement

Figure 1. Overview of the FANTOM-CAT/recount2 resource develop-
ment. FC-R2 leverages two public resources, the FANTOM-CAT genemod-
els and recount2. FC-R2 provides expression information for 109,873
genes, both coding (22,110) and noncoding (87,693). This latter group
encompasses enhancers, promoters, and other lncRNAs.
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with the notion that enhancer transcription is tissue-specific (Ong
and Corces 2011).

Differential expression analysis of coding and noncoding genes in

cancer

We analyzed coding and noncoding gene expression in cancer
using TCGA data. To this end, we compared cancer to normal
samples separately for 13 tumor types, using FC-R2 requantified
data. We further identified the differentially expressed genes
(DEGs) in common across the distinct cancer types (see Fig. 4).
Overall, the number of DEGs varied across cancer types and by
gene class, with a higher number of significant coding than non-
coding genes (FDR≤0.01) (see Table 1). A substantial fraction of
these genes was exclusively annotated in the FANTOM-CAT
meta-assembly, suggesting that relying on other gene models
would result in missing many potential important genes (see
Table 1). We then analyzed differential gene expression consen-
sus across the considered cancer types. A total of 41 coding
mRNAs were differentially expressed across all of the 13 tumor
types after global correction for multiple testing (FDR≤10−6)
(see Supplemental Table S1). For lncRNAs, a total of 28 divergent
promoters, four intergenic promoters, and three enhancers were
consistently up- or down-regulated across all the 13 tumor types
after global correction for multiple testing (FDR≤0.1) (see
Supplemental Tables S2–S4, respectively).

A usual task performed after differential gene expression anal-
ysis is to identify biological processes and pathways associated
with the DEGs. To this end, gene set enrichment methods are usu-
ally employed; however, this requires detailed gene-to-function
annotations, which are mostly lacking for lncRNAs. One possible
way to assist prioritizing noncoding transcripts for follow-up
functional studies is to identify association with other features
along the genome. As an example of this type of analysis, we
have assessed the overlap between single-nucleotide polymor-
phisms (SNPs) associated with cancer in GWAS studies and the
list of DEGs we identified. On average, the percentage of DEGs
overlapping cancer SNPs ranged from 6.6% in dp-lncRNA to
10.21% in ip-lncRNA across the 13 cancer types (see Supplemental
Table S5).

Next, we reviewed the literature to identify functional corre-
lates for these consensus genes. Most of the up-regulated coding
genes (Supplemental Table S1) participate in cell cycle regulation,
cell division, DNA replication and repair, chromosome segrega-
tion, and mitotic spindle checkpoints. Most of the consensus
down-regulated mRNAs (Supplemental Table S1) are associated
with metabolism and oxidative stress, transcriptional regulation,
cellmigration and adhesion, andwithmodulation ofDNAdamage
repair and apoptosis.

Three down-regulated dp-lncRNA genes, GAS1RR, RPL34-DT,
and RAP2C-AS1, were reported to be implicated in cancer
(Supplemental Table S2). The first one controls epithelial-

Figure 2. Tissue-specific expression in GTEx. Log2 expression for three tissue-specific genes (KRT1, NEUROD1, and ESR1) in GTEx data stratified by tissue
type using FC-R2- and GENCODE-based quantification. Expression profiles are highly correlated and expressed consistently in the expected tissue types
(e.g., KRT1 is most expressed in skin, NEUROD1 in brain, and ESR1 in estrogen-sensitive tissue types like uterus, Fallopian tubes, and breast).
Correlations are shown on top for each tissue marker. Center lines, upper/lower quartiles, and whiskers represent the median, 25/75 percentiles, and 1.5
interquartile range, respectively. Additional tissue-specific markers are shown in Supplemental Figure S1.
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mesenchymal transition, the second is associated with tumor size
increase, whereas the third is associated with urothelial cancer af-
ter kidney cancer transplantation (Zhao et al. 2015b; Shang et al.
2016; Zhou et al. 2016). Among the up-regulated dp-lncRNAs
(Supplemental Table S2), SNHG1 has been implicated in cellular
proliferation andmigration and invasion of different cancer types,
and to be strongly up-regulated in osteosarcoma, nonsmall lung
cancer, and gastric cancer (Cao et al. 2013; Sun et al. 2017).

Among the ip-lncRNAs ubiquitously down-regulated (see
Supplemental Table S3), MIR99AHG has been identified in many
different tumor types, including leukemia, breast, vulvar, prostate,
and bladder cancer (Emmrich et al. 2014; Sun et al. 2014;Gökmen-
Polar et al. 2016; Ni et al. 2016; Li et al. 2017). For instance, in vul-
var squamous cell carcinoma, MIR99AHG and MIR31HG expres-
sions are correlated and associated with tumor differentiation (Ni
et al. 2016). Similarly, MIR99AHG down-regulation in ER-positive
breast cancer is associated with progression, recurrence, and me-
tastasis (Gökmen-Polar et al. 2016). In contrast, increased expres-
sion of SNHG17 (an ip-lncRNA) (see Supplemental Table S3) was
associated with short term survival in breast cancer and with tu-
mor size, stage, and lymph node metastasis in colorectal cancer
(Zhao et al. 2015a;Ma et al. 2017). In addition, LINC01311, anoth-
er ip-lncRNA (Supplemental Table S3), was found to be up-regulat-
ed in liver cancer and metastatic prostate cancer (Zhu et al. 2016).
Even though we did not identify any cancer association for com-
mon e-lncRNAs, one among those we identified, LINC02884, has
been previously reported to be up-regulated in late-onset
Alzheimer’s disease (Humphries et al. 2015). Furthermore, the en-

hancer lncRNA class also yielded the lowest number of genes in
common among all cancer types, reinforcing the concept that en-
hancers are expressed in a tissue-specific manner (see Fig. 3A and
Supplemental Table S4).

Finally, we focusedmore in depth on prostate cancer (PCa) as
a prototypical example, andwewere able to confirmprevious find-
ings for both coding and noncoding genes (see Supplemental Fig.
S2). For coding genes, we confirmed differential expression for
known markers of PCa progression and mortality, like ERG,
FOXA1, RNASEL, ARVCF, and SLC43A1 (Yu et al. 2010; Lin et al.
2011). Similarly, we also confirmeddifferential expression for non-
coding genes, likePCA3, the first clinically approved lncRNAmark-
er for PCa (Bussemakers et al. 1999; de Kok et al. 2002), PCAT1, a
prostate-specific lncRNA involved in disease progression
(Prensner et al. 2011), MALAT1, which is associated with PCa
poor prognosis (Ren et al. 2013), CDKN2B-AS1, an antisense
lncRNA up-regulated in PCa that inhibits tumor suppressor genes
activity (Kotake et al. 2011; Gutschner and Diederichs 2012), and
theMIR135host gene, which is associatedwith castration-resistant
PCa (Huang et al. 2015).

Confirming prognostic enhancers

Chen and collaborators have recently surveyed enhancer expres-
sion in nearly 9000 patients from TCGA (Chen et al. 2018), using
genomic coordinates from the FANTOM5 project (Andersson et al.
2014), identifying 4803 expressed genomic regions with prognos-
tic potential in one or more TCGA tumor types. We therefore

A

B

Figure 3. Expression profiles across GTEx tissues. (A) Expression level and tissue specificity across four distinct RNA categories. The y-axis shows log2 ex-
pression levels representing each gene using itsmaximum expression in GTEx tissues expressed as transcripts permillion (TPM). The x-axis shows expression
specificity based on entropy computed from median expression of each gene across the GTEx tissue types. Individual genes are highlighted in the figure
panels. (B) Percentage of genes expressed for each RNA category stratified by GTEx tissue facets. The dots represent themean among samples within a facet
and the error bars represent 99.99% confidence intervals. Dashed lines represent the means among all samples.
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leveraged the FC-R2 atlas to identify prognostic coding and non-
coding genes using both univariate and multivariate Cox propor-
tional hazard models, comparing our results for e-lncRNAs with
those reported by Chen and colleagues. To this end, we started
by comparing gene annotations and genomic overlap between
the studies. This was necessary because Chen and collaborators re-
lied on the enhancer regions reported by Andersson et al. (2014),
which is based on the observation of bidirectional transcription.
Our resource, on the contrary, relies on the latest updated
FANTOM-CAT annotation, which takes into account other fea-

tures, such as the epigenetic context, when defining RNA catego-
ries. Out of the 4803 genomic regions found prognostic by Chen
and collaborators (Chen et al. 2018), we could unambiguously
map 1218 regions to exons annotated in the FANTOM-CAT gene
models for the four RNA categories we considered in our study
(corresponding to a total of 1046 unique genes). Overall, despite
the mentioned differences in annotation and quantification (see
Supplemental Table S6), we were still able to confirm the prognos-
tic value for 466 genes out of the 1046 reported by Chen et al.
(2018), including KLHDC7B-DT (also known as enhancer 22),

Figure 4. Differential expression for selected transcripts from distinct RNA classes across tumor types. Box plots for selected differentially expressed genes
between tumor and normal samples across all 13 tumor types analyzed. For each tissue of origin, the most up-regulated (on the left) and down-regulated
(on the right) gene for each RNA class is shown. Center lines, upper/lower hinges, and the whiskers, respectively, represent the median, the upper and lower
quartiles, and 1.5 extensions of the interquartile range. Color coding on the top of the figure indicates the RNA classes (red formRNA, purple for dp-lncRNA,
cyan ip-lncRNA, and green for e-lncRNA). These genes were selected after global multiple testing correction across all 13 tumor types (see Supplemental
Tables S1–S4).

Table 1. Differentially expressed genes in cancer

dp-lncRNA e-lncRNA ip-lncRNA mRNA

Cancer type Total Up Down Up Down Up Down Up Down

Bile 7010 200 (60) 313 (90) 186 (89) 203 (99) 47 (12) 84 (17) 2658 (106) 3319 (97)
Bladder 7680 344 (125) 319 (87) 140 (68) 149 (67) 65 (19) 82 (7) 3112 (201) 3469 (61)
Breast 15,290 753 (291) 721 (202) 656 (377) 583 (305) 207 (50) 178 (32) 6109 (296) 6083 (244)
Colorectal 13,685 490 (164) 592 (168) 381 (203) 400 (196) 130 (32) 160 (28) 5538 (371) 5994 (132)
Esophagus 4883 87 (21) 193 (50) 90 (38) 184 (103) 40 (11) 48 (2) 1921 (83) 2320 (77)
Head and neck 10,517 442 (138) 401 (96) 267 (139) 251 (112) 100 (23) 109 (18) 4329 (256) 4618 (53)
Kidney 15,697 734 (238) 820 (281) 535 (299) 486 (209) 203 (45) 200 (48) 6349 (525) 6370 (114)
Liver 10,554 346 (94) 395 (106) 230 (102) 248 (123) 90 (16) 112 (19) 4164 (174) 4969 (95)
Lung 17,143 864 (338) 835 (304) 893 (512) 729 (396) 242 (76) 213 (39) 7523 (532) 5844 (212)
Prostate 13,183 686 (287) 654 (218) 418 (254) 452 (214) 175 (55) 167 (30) 5153 (489) 5478 (128)
Stomach 11,309 528 (213) 518 (164) 462 (291) 436 (240) 144 (51) 129 (22) 4509 (558) 4583 (89)
Thyroid 14,264 752 (284) 804 (318) 527 (295) 594 (332) 161 (39) 174 (47) 5403 (189) 5849 (308)
Uterus 12,906 641 (285) 713 (235) 454 (263) 612 (341) 210 (79) 225 (54) 5135 (335) 4916 (181)
Mean 11,855 528 (195) 560 (178) 403 (225) 410 (211) 140 (39) 145 (28) 4762 (317) 4909 (138)
SD 3650 237 (102) 218 (89) 225 (137) 189 (107) 67 (23) 55 (16) 1557 (167) 1234 (77)

Table summarizes the number of significant DEGs (FDR<0.01) between tumor and normal samples across the 13 cancer types, analyzed for each gene
class considered. Counts are for DEGs up- and down-regulated in cancer; values in parentheses are the number of genes exclusively annotated in the
FANTOM-CAT gene model. Mean and standard deviation across cancer types are shown at the bottom.
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which was highlighted as a promising prognostic marker for kid-
ney cancer (Supplemental Fig. S5).

We then considered the FANTOM-CAT RNA classes across the
different tumor types. We were able to identify a variable number
of genes significantly associated with overall survival (FDR≤0.05)
in univariate Cox proportional hazards models (see Supplemental
Tables S7–S10). Among the consensus DEGs identified across all
tumor types, 40 out of 41 coding mRNAs, 25 out of 28 dp-
lncRNAs, four out of four ip-lncRNAs, and two out of three e-
lncRNAs were found to be associated with survival (see
Supplemental Tables S11–S14). Kaplan–Meier curves for selected
differentially expressed genes for each RNA category are shown
in Supplemental Figure S6. Finally, we performed multivariable
analysis controlling for relevant clinical and pathological charac-
teristics in each tumor type. Overall, despite a number of genes be-
ing associated with such variables, we obtained similar results (see
Supplemental Tables S15–S22).

Discussion

The importance of lncRNAs in cell biology and disease has clearly
emerged in the past few years, and different classes of lncRNAs
have been shown to play crucial roles in cell regulation and ho-
meostasis (Quinn and Chang 2016). For instance, enhancers—a
major category of gene regulatory elements, which has been
shown to be expressed (Andersson et al. 2014; Arner et al. 2015)
—play a prominent role in oncogenic processes (Herz et al. 2014;
Sur and Taipale 2016) and other human diseases (Hnisz et al.
2013). Despite their importance, however, there is a scarcity of
large-scale data sets investigating enhancers and other lncRNA cat-
egories, in part due to the technical difficulty in applying high-
throughput techniques such as ChIP-seq and Hi-C over large co-
horts, and to the use of gene models that do not account for
them in transcriptomics analyses. Furthermore, the large majority
of the lncRNAs that are already known—and that have been
shown to be associated with some phenotype—are still lacking
functional annotation.

To address these needs, the FANTOM Consortium has first
constructed the FANTOM-CAT metatranscriptome, a comprehen-
sive atlas of coding and noncoding genes with robust support from
CAGE-seq data (Hon et al. 2017); then, it has undertaken a large
scale project to systematically target lncRNAs and characterize
their function using a multipronged approach (Ramilowski et al.
2020). In a complementary effort, we have leveraged public
domain gene expression data from recount2 (Collado-Torres et al.
2017a,b) to create a comprehensive gene expression compendium
across human cells and tissues based on the FANTOM-CAT gene
model, with the ultimate goal of facilitating lncRNAs annotation
through association studies. To this end, the FC-R2 atlas is already
in use in the FANTOM6 project (https://fantom.gsc.riken.jp/6/) to
successfully characterize lncRNA expression in human samples
(Ramilowski et al. 2020).

In order to validate our resource, we have compared the gene
expression summaries based on FANTOM-CAT gene models with
previous, well-established gene expression quantifications, dem-
onstrating virtually identical profiles across tissue types overall
and for specific tissue markers. We have then confirmed that dis-
tinct classes of coding and noncoding genes differ in terms of over-
all expression level and specificity pattern across cell types and
tissues. We also have observed a small subset of genes that were
not expressed in the large majority of the samples analyzed in
the GTEx project. These genes were mostly classified as small

RNAs and enhancers, which was expected given that the RNA-
seq libraries included in recount2 did not target small RNAs, and en-
hancers are usually expressed at a lower level. We further reveal
that this subset of genes not expressed in any normal tissue is
also associated with a lower level of support of the corresponding
FANTOM-CAT gene models (Hon et al. 2017).

Furthermore, using the FC-R2 atlas, wewere also able to iden-
tifymRNAs, promoters, enhancers, and other lncRNAs that are dif-
ferentially expressed in cancer, both confirming previously
reported findings and identifying novel cancer genes exclusively
annotated in the FANTOM-CAT gene models, which have been
thereforemissed in prior analyseswith TCGAdata. Finally, we con-
firmed the prognostic value for some of the enhancer regions re-
cently reported by Chen and colleagues in the TCGA (Chen
et al. 2018) by performing a systematic screening for survival asso-
ciation of both coding and noncoding genes that are quantifiable
in the FC-R2 resource. Overall, we identified several genes with po-
tential prognostic value across the analyzed cancer types in TCGA;
however, further corroboratory studies in independent patient co-
horts are necessary to validate these associations.

Collectively, by confirming findings reported in previous
studies, our results demonstrate that the FC-R2 gene expression at-
las is a reliable and powerful resource for exploring both the coding
andnoncoding transcriptome,providing compelling evidence and
robust support to the notion that lncRNA gene classes, including
enhancers and promoters, despite not being yet fully understood,
portend significant biological functions. Our resource, therefore,
constitutes a suitable and promising platform for future large scale
studies in cancer andother humandiseases,which in turnhold the
potential to reveal important cues to the understanding of their bi-
ological, physiological, and pathological roles, potentially leading
to improved diagnostic and therapeutic interventions.

Finally, all results, data, and code from the FC-R2 atlas are
available as a public tool. With uniformly processed expression
data for over 70,000 samples and 109,873 genes ready to analyze,
we want to encourage researchers to dive deeper into the study of
ncRNAs, their interaction with coding and noncoding genes, and
their influence on normal and disease tissues. We hope this new
resource will help pave the way to develop new hypotheses that
can be followed to unwind the biological role of the transcriptome
as a whole.

Methods

Data and preprocessing

The complete FANTOM-CAT gene catalog (inclusive of robust, in-
termediate, and permissive sets) was obtained from the FANTOM
Consortium within the frame of the FANTOM6 project (Ramilow-
ski et al. 2020). The genes were annotated using official HUGO
Gene Nomenclature Committee (HGNC) symbols (https://www
.genenames.org) when available. For genes without HGNC sym-
bols, we named themaccording toHGNC instructions (see Supple-
mental Table S23). The remaining genes were referred to using the
official ID fromtheConsortiumthat annotated the gene (Ensembl/
FANTOM). This catalog accounts for 124,245 genes supported by
CAGE peaks, and it includes those described by Hon et al. (2017).
In order to remove ambiguity due to overlapping among exons
from distinct genes, the BED files containing the coordinates for
all genes and exons were processed with the GenomicRanges R/
Bioconductor package (Lawrence et al. 2013) to obtain disjoint
(nonoverlapping) exon coordinates. To avoid losing strand
information from annotation, we processed data using a two-step
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approach by first disjoining overlapping segments on the same
strand and then across strands (Fig. 5). The genomic ranges (dis-
joint exon segments) that mapped back to more than one gene
were discarded. The expression values for these ranges were then
quantified using recount.bwtool (Ellis et al. 2018) (code at https
://github.com/LieberInstitute/marchionni_projects). The result-
ing expression quantifications were processed to generate Ranged-
SummarizedExperiment objects compatible with the recount2
framework (Collado-Torres et al. 2017a,b) (code available from
https://github.com/eddieimada/fcr2). Thus, the FC-R2 atlas pro-
vides expression information for coding and noncoding genes (in-
cluding enhancers, divergent promoters, and intergenic lncRNAs)
for 9662 samples from the GTEx project, 11,350 samples from
TCGA, and over 50,000 samples from the SRA.

Correlation with other studies

To test if the preprocessing steps used for FC-R2had amajor impact
on gene expression quantification, we compared our data to the
published GTEx expression values obtained from recount2 (version
2, https://jhubiostatistics.shinyapps.io/recount/). Specifically, we
first compared the expression distribution of tissue-specific genes
across different tissue types and then computed the Pearson’s cor-
relation for each gene in common across the original recount2 gene
expression estimates based on GENCODE and our version based
on the FANTOM-CAT transcriptome.

Expression specificity of tissue facets

Weanalyzed the expression level and specificity of each gene strat-
ified by RNA category (i.e., mRNA, e-lncRNA, dp-lncRNA, ip-
lncRNA) using the same approach described by Hon et al. (2017)
(see Supplemental Methods). Briefly, overall expression levels for
each gene were represented by the maximum transcript per mil-
lion (TPM) values observed across all samples within each tissue

type in GTEx. Gene specificity was based on the empirical entropy
computed using themean expression value across tissue types. The
99.99% confidence intervals for the expression of each category by
tissue typewere calculated based onTPMvalues. Geneswith a TPM
greater than 0.01 were considered to be expressed.

Identification of differentially expressed genes

We analyzed differential gene expression in 13 cancer types, com-
paring primary tumor with normal samples using TCGA data from
the FC-R2 atlas. Gene expression summaries for each cancer type
were split by RNA category (coding mRNA, intergenic promoter
lncRNA, divergent promoter lncRNA, and enhancer lncRNA) and
then analyzed independently. A generalized linear model ap-
proach, coupled with empirical Bayes moderation of standard er-
rors (Smyth 2004), was used to identify differentially expressed
genes between groups. The model was adjusted for the three
most relevant coefficients for data heterogeneity as estimated by
surrogate variable analysis (SVA) (Leek and Storey 2007).
Correction formultiple testingwas performed across RNA category
by merging the resulting P-values for each cancer type and apply-
ing the Benjamini–Hochberg method (Benjamini and Hochberg
1995). Overlapping between DEG and GWAS SNPs was performed
using the FANTOM-CAT gene regions coordinates and the SNPs
positions obtained from the GWAS catalog (Buniello et al. 2019).

Prognostic analysis

To evaluate the prognostic potential of the genes in FC-R2, we per-
formed bothmultivariate and univariate Coxproportional hazards
regression analysis separately for each RNA class (22,106 mRNAs,
17,404 e-lncRNAs, 6204 dp-lncRNAs, and 1948 ip-lncRNAs) across
each of the 13 TCGA cancer typeswith available survival follow-up
information (see Supplemental Methods; Supplemental Table
S24). Genes with FDR≤0.05, using the Benjamini–Hochberg cor-
rection (Benjamini and Hochberg 1995) within each cancer type
and RNA class, were deemed significant prognostic factors.We fur-
ther analyzed the prognostic value of the consensus differentially
expressed genes we identified comparing tumors to normal sam-
ples by intersecting the corresponding gene lists with those ob-
tained by Cox proportional regression. Finally, in order to
compare our results to previous prognostic analyses, we obtained
data on enhancers position and prognostic potential from Chen
et al. (2018), performed a liftOver to the hg38 genome assembly
to match FC-R2 coordinates, and assessed the overlap between
prognostic genes identified in the two studies.

Data access

All data are available from http://marchionnilab.org/fcr2.html.
Expression data can be directly accessed through https://
jhubiostatistics.shinyapps.io/recount/ and the recount Biocon-
ductor package (v1.9.5 or newer) at https://bioconductor.org/
packages/recount as RangedSummarizedExperiment objects orga-
nized by the Sequence Read Archive (SRA) study ID. The data
can be loaded using R-programming language and are ready to
be analyzed using Bioconductor packages, or the data can be ex-
ported to other formats for use in another environment. All code
used in this manuscript is available for reproducibility and
transparency at GitHub (https://github.com/eddieimada/fcr2
and https://github.com/LieberInstitute/marchionni_projects). A
compressed archive with all scripts used is also available as Supple-
mental Code.

A

B

Figure 5. Processing the FANTOM-CAT genomic ranges. This figure
summarizes the disjoining and exon disambiguation processes performed
before extracting expression information from recount2 using the
FANTOM-CAT gene models. (A) Representation of a genomic segment
containing three distinct, hypothetical genes: gene A having two isoforms,
and genes B and C with one isoform each. Each box can be interpreted as
one nucleotide along the genome. Colors indicate the three different
genes. (B) Representation of disjoint exon ranges from example in panel
A. Each feature is reduced to a set of nonoverlapping genomic ranges.
The disjoint genomic ranges mapping back to two or more distinct genes
are removed (crossed gray boxes). After removal of ambiguous ranges, the
expression information for the remaining ones is extracted from recount2
and summarized at the gene level.
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