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Epigenetics and Immunometabolism in Diabetes and Aging
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Abstract

Significance: A strong relationship between hyperglycemia, impaired insulin pathway, and cardiovascular
disease in type 2 diabetes (T2D) is linked to oxidative stress and inflammation. Immunometabolic pathways link
these pathogenic processes and pose important potential therapeutic targets.
Recent Advances: The link between immunity and metabolism is bidirectional and includes the role of in-
flammation in the pathogenesis of metabolic disorders such as T2D, obesity, metabolic syndrome, and hy-
pertension and the role of metabolic factors in regulation of immune cell functions. Low-grade inflammation,
oxidative stress, balance between superoxide and nitric oxide, and the infiltration of macrophages, T cells, and
B cells in insulin-sensitive tissues lead to metabolic impairment and accelerated aging.
Critical Issues: Inflammatory infiltrate and altered immune cell phenotype precede development of metabolic
disorders. Inflammatory changes are tightly linked to alterations in metabolic status and energy expenditure and
are controlled by epigenetic mechanisms.
Future Directions: A better comprehension of these mechanistic insights is of utmost importance to identify
novel molecular targets. In this study, we describe a complex scenario of epigenetic changes and im-
munometabolism linking to diabetes and aging-associated vascular disease. Antioxid. Redox Signal. 29, 257–274.
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Introduction

The prevalence of obesity and type 2 diabetes (T2D)
mellitus is alarmingly increasing worldwide (12, 71).

The International Diabetes Federation currently estimates
that 415 million people have been diagnosed with diabetes
mellitus worldwide and anticipate an increase up to 640
million by the year 2040 (1). The main determinants of
this increase are represented by modifiable (sedentary life-
style and dietary habits) and nonmodifiable factors (genetic
predisposition and aging; 119). T2D is associated with in-
creased risk of micro- and macrovascular complications and
approximately twofold greater mortality when compared
with the general population (71). Advances in therapy have
reduced T2D morbidity and mortality. However, cardiovas-

cular risk is far to be eradicated, and mechanism-based
therapeutic approaches are needed (42). In patients with
T2D, high glucose levels trigger endothelial inflammation,
mitochondrial oxidative stress, and reduced availability of
nitric oxide (NO), all contributing to cardiovascular com-
plications. One of the key predictive factors related to micro-
and macroangiopathy is associated with accelerated vascular
aging resulting in atherosclerosis and microvascular dys-
function (9, 144). Low-grade inflammation has been estab-
lished as one of the key mechanisms linking these conditions
(51, 97, 98, 113, 138). Therefore, T2D is a prime example
of an interplay between metabolism and immunity, making
it prototypic for an in-depth look into immunometabolism.
It has been known since the 1980s that insulin and insu-
lin receptors modulate immunity (64). At the same time,
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low-grade inflammation and the infiltration of immune cells
into insulin-sensitive tissues lead to metabolic impairment
and accelerated aging (145). Perivascular and adipose tissue
(AT) inflammatory infiltrate, and altered immune cell phe-
notype, can precede the development of metabolic disorders,
including obesity, insulin resistance, T2D, atherosclerosis
(129, 150), or hypertension (102). Moreover, specific abla-
tion of macrophages, B cells, or T cells from the AT can not
only restore metabolic function but also prevent develop-
ment of related pathologies (51, 145). Clinical significance is
emphasized by the prognostic value of C-reactive protein
levels or plasma cytokines such as interleukin (IL)-6 or tumor
necrosis factor alpha (TNF-a; 74), although ongoing clinical
trials will give us strong insight soon. Better understanding of
immunometabolic diseases may lead to the development of
novel immune targeted therapies in the treatment and preven-
tion of metabolic dysfunction in hypertension, diabetes, and
aging. Epigenetic mechanisms that control immune cell lineage
determination, function, and migration are implicated (132,
149) and can provide valuable therapeutic targets in the future.

Epigenetic modifications are emerging as key players in the
setting of this pathogenetic chain of events (61). Acetylation
and methylation at DNA/histone complexes significantly alter
gene expression by modulating chromatin accessibility (21).

Accelerated Vascular Aging in Diabetes

Accelerated vascular aging is characterized by progressive
pathological vascular remodeling, dependent on vascular fibrosis
and calcification, leading to vascular stiffening as a clinical
manifestation and is particularly prevalent in T2D (Fig. 1) (172).
It bears important prognostic significance (40). Extracellular
matrix remodeling is initiated by risk factors such as hyperten-
sion and diabetes and is mediated by endothelial dysfunction and
vascular inflammation (28). Factors affecting collagen deposi-
tion and matrix degradation are linked to pathologic vascular

remodeling also in the context of inflammation (25, 92). MMP9
(metalloproteinase 9) is, for example, essential for driving
macrophage-dependent inflammation in the context of aging
(92), although the cause–effect relationship between matrix re-
modeling factors and cardiovascular outcomes remains poorly
defined (31), and may indicate other important regulators. Tel-
omere shortening is one of the features of accelerated vascular
aging. Indeed, vascular telomere length is lower in T2D patients
(162). This is also important as a recent cross-sectional study
demonstrated that telomere length is independently associated
with subclinical atherosclerosis in subjects with T2D (152).
However, accelerated telomere attrition was recently reported
in circulating leukocytes, but not arteries, in T2D compared to
control rats (156). This indicates the importance of immune se-
nescence in diabetic vascular dysfunction/aging pathogenesis
and that leukocytes may be primary targets of accelerated aging.

Immunometabolism: Basic Concepts

The relationship between immunity and metabolism is
bidirectional and includes (i) the role of inflammation in the
pathogenesis of metabolic disorders, such as diabetes, obe-
sity, metabolic syndrome, and hypertension and (ii) the role
of metabolic factors in regulation of immune cell functions
(132). The latter encompasses the effects of metabolic state
of the environment on inflammation and the metabolic pro-
cesses within the immune cells that regulate immunity (112).

It has been well recognized that metabolic state of envi-
ronment may affect the development of inflammation (11,
87) particularly by affecting substrates available and also by
changing chemokine gradients and local cytokine produc-
tion. Overabundance of substrates observed in obesity and
metabolic syndrome affects the phenotype of both infiltrating
and resident immune cells (145). This has been strongly
demonstrated in relation to macrophage phenotype switching
between M1 and M2 (190).

FIG. 1. Vicious cycle of
oxidative stress, endothelial
dysfunction, and vascular
inflammation in the patho-
genesis of vascular complica-
tions of metabolic disorders.
eNOS, endothelial nitric ox-
ide synthase; ET1, endothelin
1; H2O2, hydrogen peroxide;
NO, nitric oxide; Nox, non-
phagocytic NADPH oxidase;
O2

-, superoxide anion; PGI2,
prostacyclin; ROS, reactive
oxygen species; T2D, type 2
diabetes; XO, xanthine oxi-
dase.
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Macrophages

More importantly, however, immune responses are ac-
companied by a dramatic metabolic switch within the immune
cells themselves (145). For example, interferon gamma (IFN-
c)-activated (M1 type) macrophages rapidly shift to aerobic
glycolysis, while M2-type macrophages rely on oxidative
phosphorylation (Fig. 2). This has been first identified nearly
five decades ago in studies of peritoneal macrophages dem-
onstrating their increased glycolysis and decreased oxygen
consumption on activation (62).

T cells

Similar metabolic switches are related to adaptive T cell
responses. Naive and quiescent T cells rely on glucose and
fatty acid metabolism for energy, such as the tricarboxylic acid
cycle, linked to the generation of adenosine triphosphate
(ATP) via oxidative phosphorylation (Fig. 2; Table 1; 36, 125).
When antigen is presented during immune challenge, T lym-
phocytes engage pathways of anabolic metabolism, switching
to aerobic glycolysis (regulated greatly by mechanistic target
of rapamycin or mTOR), to support clonal expansion and
the development of effector functions (Fig. 2; Table 1; 107).
T regulatory cells (Treg) are, in turn, dependent on oxidative
phosphorylation and lipid peroxidation (93, 101). T cell acti-
vation is associated with transient activation of AMP-activated
protein kinase (AMPK), a sensor of cellular energy levels,
which allows the cells to prepare for high-energy consuming
processes that follow T cell receptor activation (157).

Glucose metabolism and immune activation

The metabolic changes within the T cell during activation
are modulated by environmental factors, such as insulin,
which promotes T cell activation (64). Classical T cell acti-
vation is accompanied by upregulation of the insulin recep-

tor, with subsequent increase in Glut1, Glut3, and Glut4, as
well as an upregulation of glycolytic enzymes (37). These
events are required for efficient adaptive immunity. Silencing
the insulin receptor impairs T cell functions related to glucose
transport and glycolysis, including polyclonal activation of
CD4+ T cells, effector cytokine (Th1 type—IFN-c and TNF
and Th17 type—IL-17) production, migration, and prolifer-
ation (37). This was associated with alterations in intracel-
lular signaling pathways, including RAS/ERK, PI3K/AKT,
and mTOR pathways (37). The cytotoxicity of CD8+ T cells
in response to alloantigens is also dependent on insulin re-
ceptor (37). Moreover, recent evidence suggests that regu-
latory T cells (Tregs) express the insulin receptor, and that
high levels of insulin impair the ability of Tregs to suppress
inflammatory responses via effects on the AKT/mTOR sig-
naling pathway (60). The effect of insulin on Treg suppres-
sion is limited to IL-10 production and does not alter other
suppression mechanisms.

Apart from the key role of mTOR in regulation of immune
cell metabolism, particularly interesting data are related to
the role of AMPK. AMPK is not only an important sensor of
the cellular energy levels but through its potential inhibition
by metformin may represent a potentially important phar-
macological target for modulation of immunometabolism as
well (5). Metformin, an activator of AMPK, inhibits Th1 and
Th17 cell differentiation (76), while enhancing Treg through
metabolic effects on fatty acid oxidation and glycolysis,
leading to anti-inflammatory effects in vivo (151). This role
of AMPK also provides a link between immunometabolism
and oxidative stress.

Therapeutic implications of immunometabolism

One of the key concepts of immunometabolism is related
to the fact that immune cells can be reprogrammed by in-
terfering with their metabolic states. This creates a possible

FIG. 2. Schematic representation of metabolic alterations between OXPHOS and anaerobic glycolysis is one of the
key determinants of immune cell activation (e.g., macrophage or T cell) from quiescent state. Modified, based on (36)
TCA/Krebs cycle; ATP; Modified from ATP, adenosine triphosphate; OXPHOS, oxidative phosphorylation; TCA, tricar-
boxylic acid.
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therapeutic utility. M2 macrophage profile is promoted on
inhibition of glycolysis (e.g., by inhibiting pyruvate kinase
M2; 116). Similarly, proinflammatory IL-17 producing T
cells can be reprogrammed to develop into Treg-like cytokine
producing profile by inhibition of glycolysis (e.g., using
2-deoxyglucose).

Immunometabolism of Diabetes

Accumulating evidence suggests that development of
vascular complications of diabetes is dependent on inter-
actions between immune cells and vascular wall components
(70, 141). Indeed, immune cell infiltration is a key feature
linking obesity to diabetes, as proinflammatory cytokines,
macrophages, and T cells are essential for the development
of insulin resistance (110). Both innate immunity and adap-
tive immunity contribute to metabolic pathology. A classical
example is that the activation of toll-like receptors, IL-1 re-
ceptor type I or TNF receptor, results in nuclear factor kappa
B (NF-jB) and Jun amino-terminal kinase signaling, leading
to insulin receptor substrate (IRS)-1 and IRS-2 serine phos-
phorylation causing insulin resistance (112). Recognition of
‘‘metabolic’’ danger signals (such as glucose, ATP, or cho-
lesterol) by the nucleotide oligomerization domain (NOD)-
like receptor (NLR) family leads to activation of the NLR
pyrin domain-containing 3 (NLRP3) inflammasome. This
results in M1 macrophage activation (164). Abundance of
fatty acids in obesity promotes AT inflammation in a toll-
like receptor 4 (TLR4)-dependent manner (147). In healthy,

nonobese individuals, Th2 and Treg residing in the fat have
a beneficial effect by reducing visceral adipose tissue
(VAT) inflammation. During obesity and other metabolic
challenges, these cells are overwhelmed by proinflammatory
CD8+ cells and Th1 CD4+ cells, which promote insulin
resistance and glucose intolerance (174). CD4+ T cells have
been recognized as a central regulator of chronic VAT in-
flammation, as they can modulate macrophage- and other T
and B cell-dependent inflammatory responses. For example,
IFN-c-producing Th1 cells enhance proinflammatory mac-
rophage activation in the AT, and IL-17 produced by Th17
cells may impair insulin receptor signaling in macrophages in
culture and in surrounding AT (160). Th2 cells secreting IL-4
and IL-13 as well as the FOXP3+ Treg induce, in turn, anti-
inflammatory macrophages that release IL-10, inhibiting low-
grade inflammation in VAT (35, 105). Further characterization
of AT infiltrating T cells in obesity revealed that they repre-
sent features of senescence-associated T cells typically seen in
aging in the secondary immune organs. They promote chronic
VAT inflammation and metabolic disorders by secreting
large amounts of osteopontin (148). These CD153+PD-
1+CD44hiCD4+ T cells are remarkably increased and pref-
erentially accumulated in the VAT of high-fat diet-fed mice in
a B cell-dependent manner. Indeed, B cells are critical for the
pathogenesis of insulin resistance and metabolic dysfunction
(173). Treatment with a clinically available anti-CD20 an-
tibody, which results in significant reductions of B cells, at-
tenuates disease. In contrast, transfer of immunoglobulins G
(IgGs) from obese mice to controls leads to the development of

Table 1. Major Immune Cell Populations Infiltrating Adipose Tissue, Their Role in Insulin Resistance,

Key Effector Mechanisms, and Metabolic Regulation of Their Function

Cell type
Effect on

insulin resistance Key effector mechanisms Metabolic program
Key metabolic

regulator

Myeloid cells
M1 Mf \ TNF; IL-6; iNOS Aerobic glycolysis mTOR/HIF1f/Glut

PFK2
M2 Mf Z IL-10; arginase Oxidative phosphorylation AMPK; STAT6
Dendritic cells \ IL-12; IL-15 Aerobic glycolysis

(in activated state)
mTORC1; mTORC2

Mast cells \ Histamine; PGE2; TNF Aerobic glycolysis and
oxidative phosphorylation

mTOR? AMPK

Neutrophils \ MPO; IL-8; IL-1b; NETs Glycolytic mTORC1
Eosinophils Z IL-10; IL-13; TGFb; IL-13 Glycolytic AMPK

Lymphoid cells
Naive T cells Mixed fuel oxidative

phosphorylation
Effector T cells Aerobic glycolysis
T h cells (CD4+)
Th1 \ IFN-c; Tbx21 Aerobic glycolysis mTORC1
Th2 Z IL-4; IL-5; IL-13 Aerobic glycolysis mTORC1; mTORC2
Th17 \ IL-17 Aerobic glycolysis mTORC1; HIF-1a
Treg (FOXP3+) Z IL-10; TGFb Lipid oxidation AMPK
T c (CD8+) \ TNF; IFN-c

(perforin/granzyme)
Aerobic glycolysis mTORC1

Memory T cells Lipid oxidation TRAF6; AMPK
NK cells \ TNFa; IFN-c; IL4; IL13 Aerobic glycolysis (mTORC1)
B cells \ IgG ? ?

For detailed discussion and references see text (5, 37, 60, 64, 96, 105, 113, 131, 154, 166).
AMPK, AMP-activated protein kinase; IFN-c, interferon gamma; IgG, immunoglobulin G; IL, interleukin; iNOS, inducible nitric oxide

synthase; M1/M2, types of macrophages; Mf, macrophage; mTOR, mechanistic target of rapamycin; TNF, tumor necrosis factor; TRAF,
TNF receptor-associated factor.
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insulin resistance (173). B cells worsen glucose tolerance, in
part, by inducing proinflammatory cytokine production by
T lymphocytes. Less evidence is available in the clinical set-
ting, but insulin resistance in obese humans has been shown to
be linked to elevated IgG autoantibodies (173) and immune
cell accumulation in VAT, in particular, activated CD4+ and
CD8+ T cells (177).

While immune cells can promote insulin resistance and
T2D, hyperinsulinemia, as previouly discussed, alters im-
munity by promoting T cell activation as well as it increases
T cell glucose uptake, amino-acid transport, and lipid me-
tabolism (64). These changes promote overall decrease in IL-
10 production with a parallel increase in production of IFN-c,
thus promoting a prodiabetic inflammatory milieu (60).

Immunometabolic Determinants
of Vascular Dysfunction in T2D

While AT inflammation is essential for the development of
insulin resistance, diabetes is associated with perivascular
adipose tissue (PVAT) inflammation, which leads to macro-
vascular and microvascular complications. We have recently
shown that macrophage, T cell, and dendritic cell infiltration
into PVAT precedes development of large vessel endothelial
dysfunction and oxidative stress (129, 150). Molecular
mechanisms of PVAT inflammation include signal transducer
and activator transcription 4 (STAT4) in adipocytes and im-
mune cells. STAT4 deficiency reduces development of ath-
erosclerosis and PVAT inflammation in apolipoprotein E
(ApoE)-/- mouse (26) and in insulin-resistant obese Zucker
rats (126). The immune dysfunction linking diabetes to vas-
cular disease includes T effector cell memory polarization (6)
and monocyte subset changes toward proinflammatory
monocytes (103, 161, 171). PVAT inflammation is mediated
by chemokines such as MCP-1 (monocyte chemoattractant
protein 1), RANTES (regulated on activation, normal T cell

expressed and secreted), or IP-10 (CXCL10) that recruit ac-
tivated monocytes/macrophages and CD8+ T cells to PVAT
(51, 54, 70, 113). Infiltrating cells release cytokines such as
IFN-c, TNF-a, or IL-6, which induce insulin resistance (19, 90,
91) and impair endothelium-dependent relaxation (82, 102,
103). IL-6 is also necessary for Th17 cell differentiation (14),
another T cell subpopulation with strong proinflammatory
impact on endothelial cells (ECs) and vascular smooth muscle
cells (VSMCs) through activation of RhoA/Rho-kinase. It in-
creases inhibitory endothelial nitric oxide synthase (eNOS)
Thr495 phosphorylation in ECs leading to decreased NO pro-
duction (108). Inflammatory cytokines modulate smooth
muscle cell constriction, proliferation, and migration (99).
They also affect adipokine release. For example, TNF, IL-6,
and IL-17A can all inhibit expression of adiponectin or
omentin-1, the vasoprotective adipokines (33, 69, 84, 170), and
stimulate proinflammatory leptin and resistin (84, 111). Leptin,
through its structural similarity to the cytokines of the long-
chain helical family such as IL-6, IL-12, and IL-15, can affect
leukocyte activation, chemotaxis, and release of oxygen radi-
cals. In vascular cells, it induces proliferation of VSMCs and
expression of adhesion molecules on ECs and VSMCs (84).
These aspects have been reviewed by us in detail elsewhere (58,
113). It can also directly induce vascular dysfunction and oxi-
dative stress (53, 57, 113) through possible effects on VSMC
contractile function (176) and endothelial NO production.

PVAT and Vascular Dysfunction

While classically it is recognized that PVAT-derived adi-
pokines and inflammatory cytokines affect EC and VSMC
function, studies of human vascular dysfunction associated
with metabolic impairment have led to a novel concept of
an inside-to-outside signaling (Fig. 3; 7, 8, 96). According to
this concept, bioactive compounds released from the vessel
or the heart in conditions of increased oxidative stress can

FIG. 3. Interactions be-
tween PVAT and vascular
wall components ‘‘outside
to inside’’ and ‘‘inside to
outside’’ theory of interac-
tions in development of
vascular pathologies. Both
types of inteactions coexist in
development of vascular
dysfunction and augment
each other. EC, endothelial
cell; IFN-c, interferon gam-
ma; IgG, immunoglobulin G;
IL, interleukin; PPAR-c,
peroxisome proliferator-
activated receptor gamma;
PVAT, perivascular adipose
tissue; TNF-a, tumor necro-
sis factor alpha; VSMC,
vascular smooth muscle cell.
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reciprocally control the biosynthetic activity of the neighbor-
ing perivascular or epicardial AT (7, 8, 96). While the media-
tors of this bidirectional cross talk are not clear, peroxidation
products such as 4-hydroxynonenal that modulate gene ex-
pression within the PVAT or epicardial fat via PPAR-c-
dependent mechanisms have been shown (7, 8, 96). This may
constitute an important mechanism through which endothelial
dysfunction and oxidative stress can affect metabolism of
surrounding AT. VSMCs also regulate PVAT inflammation by
releasing chemotactic factors and contributing to immune cell
recruitment and activation. Strong evidence implicates meta-
bolic regulation of VSMC controlled inflammation (130). In-
doleamine 2,3-dioxygenase, the first rate-limiting enzyme of
the kynurenine pathway of tryptophan (Trp) degradation, has
immune regulation and anti-inflammatory mechanisms in vas-
cular inflammation and, mainly through effects on Treg func-
tion, regulates vascular cell adhesion molecule (VCAM)-1
expression and vascular recruitment of macrophages in mice.
Such effect can be reversed by exogenous administration of
the Trp metabolite 3-hydroxyanthranilic acid (130). Response
of immune cells to VSMC-derived danger signals is also tightly
regulated. For example, the innate immune protein CARD9
in macrophages may mediate necrotic smooth muscle cell-
induced inflammation by activating NF-jB and contribute to
neointima formation in vascular remodeling (89).

Finally, lymphatic vessel dysfunction is an emerging
component of metabolic diseases (4). Lymphatics regulate
tissue lipid accumulation, dyslipidemia, and edema. A recent
study has demonstrated lymphatic dysfunction in diabetic
db/db mice, which was rescued by L-arginine (140). These
authors also demonstrated that PDE3 (phosphodiesterase 3)
inhibition is required to maintain lymphatic vessel integrity
and represents a viable therapeutic target for lymphatic en-
dothelial dysfunction in metabolic disease (140).

Thus, over the years it became apparent that vascular
dysfunction associated with diabetes is closely regulated
by coincident immune and metabolic dysregulation making
immunometabolic interventions a valuable therapeutic ap-
proach in the prevention and treatment of diabetic vascular
disease.

The Role of Epigenetics in Immunometabolic Regulation

The concept that adverse chromatin remodeling con-
tributes to the pathogenesis of vascular damage in T2D has
been introduced (78). Epigenetics is an important modula-
tor of gene expression without affecting DNA sequence
(26). Epigenetics leads to heritable changes in phenotype
(61). The major mechanisms of epigenetic regulation are
represented by DNA methylation, posttranslational histone
modifications, and RNA regulating molecules such as non-
coding RNAs (Fig. 4).

Histone methylation and demethylation

DNA methylation can inhibit gene transcription through
the covalent attachment of a methyl group to cytosine resi-
dues in CpG islands (79). In the setting of diabetes, promoter
hypomethylation leads to increased expression of genes in-
volved in inflammation, adiposity, b cell dysfunction, and
vascular damage (88). Excessive free radical production is a
major player for the onset of endothelial damage and im-
paired functionality. A better understanding of epigenetic
changes affecting oxidant genes may unmask new mechanistic
perspectives. Pathological chromatin remodeling causes gene
expression changes that persist even after control of cardio-
vascular risk factors. Hypomethylation of the oxidant gene
p66Shc is contributing to the hyperglycemic memory in ex-
perimental diabetes (121). Indeed, high glucose-exposed ECs

FIG. 4. Central role of
epigenetic regulation in the
pathogenesis of diabetic
vascular dysfunction. Epi-
genetic changes within en-
dothelium, adipocytes, in
particular PVAT and inflam-
matory cells are all contrib-
uting to vascular dysfunction
and metabolic dysregulation,
including insulin resistance.
Key genes identified to be
regulated epigenetically in
each of the discussed organ
systems are indicated in gray
along with miRNAs impli-
cated. These epigenetic chan-
ges lead to oxidative stress,
adipocyte and perivascular in-
flammation, and endothelial
dysfunction. CCL, CC che-
mokine ligand; miRNAs, mi-
croRNAs; NF-jB, nuclear
factor kappa B.

262 GUZIK AND COSENTINO



(human) and T2D mouse aortas show p66Shc overexpression
after restoration to normal glucose levels (121). p66Shc upre-
gulation and mitochondrial translocation induced free radical
generation and impaired NO release. Global methylation status
of leukocytes and B cells has been associated with insulin
resistance and T2D (149, 187). Specific methylation changes
were observed in TNF-a (65), ubiquitin-associated and SH3
domain-containing protein B (UBASH3B), or tripartite motif-
containing 3 (TRIM3) genes involved in immune regulation
(169). DNA methyltransferase DNMT3B is increased in
macrophages exposed to high levels of saturated fatty acids,
promoting M1 polarization in turn (181). Aberrant promoter
DNA methylation also results in pathological endothelial-to-
mesenchymal transition (EndMT) and subsequent fibrosis
(179). Perivascular inflammation in turn is greatly orchestrated
by RANTES receptor CCR5 (CC chemokine 5 receptor) gene
methylation (102).

Histone acetylation and deacetylation

Histone acetylation mark was the first posttranslational
modification identified (77) and the field has rapidly devel-
oped with the identification of enzymes that can either acet-
ylate or deacetylate histones (21) and therefore lead to an
opening of chromatin and subsequent transcription of relevant
genes. On the contrary, nonacetylated histones are present in
compact chromatin, also characterized by DNA hypermethy-
lation at CpG. DNA and histone methyltransferase (DNMTs
and HMTs), as well as histone acetyltransferase (HATs), are
involved in plastic remodeling of chromatin as response to
physiological and pathological stimuli (61). Together with
histone deacetylases (HDACs) they regulate endothelial dys-
function and inflammation in T2D. One of the key families
of deacetylases important in this setting are sirtuins (166),
through the effects on vascular p66Shc gene transcription
(SIRT1; 189). As a result, SIRT1 activation inhibits oxidative
stress in the vessel wall and inhibits inflammation through
prevention of NF-jB activation and cleavage of PARP—the
poly (ADP-ribose) polymerase (188). SIRT1 is downregulated
in the AT of obese individuals leading to histone hyper-
acetylation, which enhances macrophage recruitment, TNF,
IL-6, IL-1b, TNF-a, IL-13, IL-10, and IL-4 expression, and
generalized AT inflammation (43).

Through their effects on NF-jB activity, HATs and
HDACs are important in controlling inflammation (166).
HDAC3 regulates inflammatory genes in macrophages and
HDAC2 contributes to resolution of inflammation (132).
Role of SIRT1, HDAC4, enzyme involved in histone dea-
cetylation is decreased in obesity and is correlated inversely
to RANTES levels (2). T2D and T1D are both associated with
increased H3 acetylation in the TNF-a and COX2 (cy-
clooxygenase 2) promoter regions, while H3 K4 methylation
renders dysfunctional monocytes through effects on NF-jB-
dependent genes (132). Methylation of lysine residue 9 of
histone 3 in lymphocytes affects their autoreactive poten-
tial in type 1 diabetes (100) and suppressing the H3K9
methylation is proinflammatory in the vasculature (136, 167).
A growing body of evidence suggests that the mamma-
lian methyltransferase Set7, involved in methylation of his-
tones, may represent an important mechanism of vascular
damage under hyperglycemic conditions (32, 114, 153). In
bovine and human ECs exposed to high glucose, Set7 induces

monomethylation of lysine 4 of histone 3 (H3K4m1) on
the promoter of the RelA gene encoding for the transcription
factor NF-jB p65. This epigenetic modification by Set7 favors
NF-jB p65 upregulation and resulting overexpression of ad-
hesion molecules (32, 114, 153). Interestingly, suppression of
Set7-dependent epigenetic changes prevented hyperglycemia-
induced inflammation (32). Despite these data, the role of Set7
in patients with diabetes mellitus remained unknown. Thus, we
designed a study to investigate the link between Set7-induced
chromatin changes and vascular phenotype in patients with
T2D. Our findings demonstrated that a specific epigenetic
signature induced by Set7 regulates NF-jB p65 expression
and, hence, contributes to dysregulation of oxidant/inflam-
matory genes and endothelial dysfunction (118).

Targeting this chromatin-modifying enzyme may repre-
sent a promising approach to maintain vascular homeostasis
(186) and reduce oxidative and inflammatory burden in this
setting.

Noncoding RNAs

MicroRNAs (miRNAs) represent small noncoding RNAs
that appear to play a key role regulating cardiovascular
dysfunction in T2D (158). They posttranscriptionally regu-
late gene expression. Microarrays have demostrated a de-
rangement of miRNA expression profile in patients with
diabetes (185). Impairments of miRNAs involved in angio-
genesis, inflammation, vascular repair, as well as endothelial
homeostasis, have been reported (75, 104, 185). One of the
hallmark studies has identified key miRNAs altered in sub-
jects with T2D, as potential biomarkers. Lower plasma levels
of miR-20b, miR-21, miR-24, miR-15a, miR-126, miR-191,
miR-197, miR-223, miR-320, and miR-486 were seen in T2D
and a modest increase of miR-28-3p. Importantly, reduced
miR-15a, miR-29b, miR-126, miR-223, and elevated miR-
28-3p levels antedated the manifestation of disease (185).
Moreover, dysregulation of miRNAs within the AT, pre-
dominantly PVAT, has been linked to vascular disease, ath-
erosclerosis, and aging (163). We recently investigated the
miRNA landscape of the diabetic heart and its relationship
with glycemic control (24). Our study was designed to address
whether miRNAs may represent putative molecular drivers
of hyperglycemic memory in the diabetic myocardium. miR-
NA landscape was assessed by miRNA polymerase chain re-
action arrays in left ventricular specimens collected from
streptozotocin-induced diabetic mice, with or without inten-
sive glycemic control. We have shown that diabetes induces a
profound alteration of miRNA expression in the heart and,
most importantly, these detrimental signatures are not reverted
by glycemic control (24). Such persistent alteration of several
miRNAs orchestrating apoptosis, myocardial fibrosis, hyper-
trophy, autophagy, and redox signaling suggests the existence
of hyperglycemic memory in the heart. Several miRNAs,
which regulate inflammation, are decreased in T2D and aging,
resulting in proinflammatory phenotype. MiR-21 has been
widely associated with vascular aging and demonstrates con-
comitant effects on metabolic, inflammatory, and vascular
mechanisms in the vessels and heart (Table 2; 29, 45, 180).
While numerous other miRNAs have been implicated, miR-
146b (resulting in monocyte activation), miR-107, (resulting in
TLR4 expression and increased macrophage responses), miR-
126 and miR-193b (resulting in enhanced chemotaxis) appear
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to be strongly linked to immunometabolism (132). Some
proadipogenic and proinflammatory miRNAs are increased in
T2D such as miR-103 and miR-143, resulting in increased
adipocyte growth, altered adipokine profile, and insulin resis-
tance (178), while miR-23b or novel miR-1298 is involved
in VSMC phenotypic switching (72, 142). MiRNAs can also
provide a molecular link between metabolic dysfunction and
development of some of its complications such as hypertension
(18, 95). Table 2 summarizes selected key miRNAs, which
have been shown repetitively to regulate metabolic, immune,
and vascular functions and diseases. Over the next few years,
we will learn more about other types of noncoding RNAs in
immune regulation, such as lnc-DC, which targets STAT3 or
Lethe, which is induced by TNF and represses NF-jB target
genes. These interesting new developments are reviewed
elsewhere (80).

Oxidative Stress, Vascular Inflammation,
and Endothelial Insulin Resistance

Impaired insulin signaling and high glucose are strongly
interlinked with cardiovascular disease (CVD) in the setting
of T2D (12, 56, 59, 154). This relationship is strongly me-
diated by reactive oxygen species (ROS), through their ef-
fects on vascular inflammation and dysfunction (42, 55, 172).
Insulin resistance precipitates the development of T2D and
CVD (117). While links between hyperglycemia and oxida-
tive stress are relatively clear, much less is known regarding
the pathways through which free radicals regulate insulin
resistance. Unquestionably, ROS contribute to altered insulin
sensitivity in ECs. These effects may be, in part, direct and, in
part, regulated by local low-grade inflammation promoted by
oxidative stress. Vascular inflammation and atherosclerosis
progression are directly linked to EC insulin signaling as
demonstrated in ApoE-/- mice (27, 135). Indeed, endothelial-
specific overexpression of the inhibitory subunit of nuclear
factor-kappa B (Ij-Ba), which inhibits NF-jB activation,
protects from insulin resistance in other organs (63). These
findings cause a paradigm ‘‘shift’’ in the adipocentric theory
(81). The novel concept that insulin resistance may primarily
start in the endothelium is also strengthened by the fact that
the endothelium lines the entire vascular system. Endothelial
release of NO is essential for capillary recruitment and,
hence, appropriate insulin delivery to hormone-sensitive or-
gans (73). Accordingly, insulin-mediated glucose uptake is
reduced in eNOS-/- compared with wild-type (WT) mice
(10). Previous work has suggested that oxidative stress is
a potent mediator of insulin resistance in ECs (27). Indeed,
overexpression of free radical scavengers uncoupling protein
1 or manganese superoxide dismutase can restore endothelial
NOS and prostacyclin (PGI2) synthase activities, thus war-
ranting insulin-dependent vasodilation and anti-inflammatory
effects (27, 57). Moreover, vasodilatation induced by insulin
may importantly regulate insulin-mediated glucose uptake (20,
85, 133). Thus, restoration of endothelial function (measured
as flow-mediated dilatation in human arteries) is clearly linked
with an improvement of insulin sensitivity (106, 168). Key
mechanistic markers of endothelial dysfunction and oxidative
stress such as NF-jB activity or protein kinase C (PKC) b2

activity are elevated in the endothelium from patients with
insulin resistance (50, 52, 155). In relation to this, we have
recently studied the role of mitochondrial adaptor p66Shc in

ROS-driven insulin resistance in the ECs. p66Shc silencing
in vivo restored endothelial function through modulation
of the IRS-1/AKT/eNOS (120). Knockdown of p66Shc in
endothelium from obese mice blunted free radical produc-
tion and free fatty acid oxidation, key events favoring in-
sulin resistance. Suppression of p66Shc-derived oxidative
stress prevented dysregulation of NF-jB, advanced glycation
end product (AGE) precursor methylglyoxal, and PGI2 syn-
thase, biochemical effectors of maladaptive insulin signaling
(120). In hypertension, angiotensin II infusion stimulates
T cells to produce TNF, and etanercept (TNF-a antagonist)
blunts vascular superoxide production (51). In macrophages,
in turn, TNF-like weak inducer of apoptosis (TWEAK,
Tnfsf12) and the receptor, fibroblast growth factor-inducible
14 (Fn14) promote ROS production and enhance nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase ac-
tivity, which contributes to vascular damage and dysfunction in
atherosclerosis (94).

A turn away from the sole ‘‘adipocentric’’ view of meta-
bolic dysfunction origins is further supported by studies in mice
with vascular smooth muscle-targeted deletion of p22phox
subunit of the NADPH oxidase (183). p22phox is essential for
activity of Nox1, Nox2, and possibly Nox4 NADPH oxidase,
while Nox5 (not expressed in mice) is p22phox independent
(47–50, 52, 143). These mice have significantly reduced vas-
cular oxidative stress and are protected from endothelial dys-
function in a number of pathological conditions. Interestingly,
high-fat feeding did not induce weight gain or leptin resistance
in these mice, which was associated with strongly reduced T
cell infiltration of perivascular fat. This is important as it in-
dicates a causal immunometabolic link, suggesting that vas-
cular dysfunction and inflammation may be primary, not
secondary, in the development of obesity and insulin resistance
(183). It also contributes to understanding of potential mech-
anisms of the inside-to-outside theory of the role of PVAT in
vascular disease.

In T2D, increased glucose levels cause excessive free
radical production from the mitochondria leading to the
generation of AGEs, PKC activation, as well as increases in
NF-jB (109). PKCb2 isoform is associated with endothe-
lial dysfunction through its effects on ROS (155). PKCb2

elicits its deleterious effect through activation of mito-
chondrial and NADPH oxidases by regulating major com-
ponents in ROS generation—namely p66Shc and p47phox
phosphorylation (83, 117). PKC inhibitor inhibits the
NADPH oxidase activity (46, 55, 131). p66Shc-/- mice are
protected against hyperglycemia-induced endothelial dys-
function and oxidative stress (17) and p66Shc expression is in-
creased in lymphocytes and monocytes (PBMCs) from subjects
with T2D. Moreover, p66Shc expression is correlated with
plasma ROS marker (isoprostanes; 115). PKCb2, important in
ROS generation, regulates of NF-jB signaling in response to
high glucose by reducing its Ij-Ba. This results in in-
flammatory activation of the ECs with increased VCAM-1
expression (83).

The role of NADPH oxidases in regulation of vascular
inflammation in diabetes hypertension or atherosclerosis is
well known, although recent studies have suggested addi-
tional important metabolic links. For example, Nox1-mediated
increase in ROS induced by sphingosylphosphorylcholine
leads to consequent enhancement of voltage-gated Ca2+ entry
and thus vasoreactivity (146).
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Although the understanding of the regulation of oxidant
and inflammatory genes remains challenging, it is clearly
emerging that targeting specific molecular machineries may
represent an interesting therapeutic possibility to reduce
CVD in the setting of metabolic disease.

Pathways Linking Aging and Immunometabolism

An increased body of evidence shows a link between ag-
ing, CVD, and impaired metabolism. Not only aging impairs
intracellular signaling triggering metabolic alterations but
also metabolic conditions, such as obesity, diabetes, and in-
sulin resistance, anticipate vascular and cardiac senescence.
It is emerging that a dynamic interplay among p66Shc, NAD-
dependent deacetylase (Sirtuin 1; SIRT1), NF-jB, forkhead
transcription factor (FOXO), AMPK, and activator protein-1
(AP-1) transcription factor JunD underlines pathologic car-
diovascular phenotypes in this setting. Recent studies have
demonstrated that the adaptor p66Shc is an important mo-
lecular effector that may explain how aging relates to met-
abolic and CVD. Adaptor protein p66Shc is an important
source of intracellular ROS (22). On the contrary, p66Shc-/-

mouse models exposed to oxidative stimuli showed di-
minished ROS generation (16, 44). Several years ago, we
observed that aging-induced impairment of endothelium-
dependent relaxation to acetylcholine was not present in
p66Shc-/- (38). Accordingly, NO availability was not re-
duced in aged p66Shc-/- mice (38). Activation of p66Shc is
indeed involved in adipogenesis, insulin resistance, and
diabetes-related cardiovascular complications (13, 17).
More recently, as already mentioned, we demonstrated an
upregulation of p66Shc in obese mice and the involvement in
endothelial insulin resistance (120). Gene expression of
p66Shc is increased in mononuclear cells obtained from pa-
tients with T2D and coronary artery disease (39, 115). Based
on this background, it is possible to conclude that p66Shc

fosters ROS accumulation, derangement of mitochondrial
function, insulin resistance, and diabetes. Mitochondrial
dysfunction is characterized in diabetes (heart) by changes in
mitochondrial structure and, mechanistically, complex I
defect with oxidative stress results increased fatty acid oxi-
dation (165). This effect is mediated by enhanced protein
lysine acetylation (165).

SIRT-1, a member of the family of nicotinamide adenine
dinucleotide-dependent proteins termed sirtuins, has recently
emerged as an important regulator of cardiovascular aging
and inflammation (127). SIRT-1 protects the heart against
aging features (3). Aging-induced SIRT-1 downregulation
leads to the translocation of NF-jB p65 to the nucleus and
hence increased expression of inflammatory genes (182).
Epigenetic changes, such as increased DNA methylation and
noncoding RNAs, modulate expression of sirtuins (30, 139,
184). The maintenance of SIRT-1 homeostasis is crucial for
the repression of pathways involved in arterial aging such as
FOXO pathway (15). SIRT-1 also controls the release of
protective factors such as recently identified Fgf21 in cardiac
myocytes (128). Pharmacological inhibition of SIRT-1 pro-
tects against aging, impaired metabolic profiles, and cardio-
vascular complications (175). Among different compounds,
resveratrol is an activator of SIRT-1. Resveratrol-increased
SIRT-1 activity blunts the expression of oxidant and in-
flammatory genes by inducing epigenetic changes at the

promoter level (34). Indeed, SIRT-1-induced histone dea-
cetylation reduces the accessibility of transcription fac-
tors to chromatin, thereby blunting p66Shc gene expression
(23, 123). Downregulation of sirtuins in this setting favors
transcription of FOXO-dependent genes leading to apo-
ptosis, cell-cycle arrest, ROS generation, and impaired
metabolism. NF-jB is a transcription factor expressed in
mammalian cells (124). Its activation triggers inflammatory
pathways in the heart and vessels. It was recently shown that
silencing of endothelial NF-jB prolongs life span and im-
proves endothelial insulin resistance in a mouse model of
obesity. Selective endothelial overexpression of NF-jB
inhibitory subunit was protective against insulin resistance
in other tissues (63). Impaired insulin signaling is indeed an
important hallmark linking metabolic disease with prema-
ture aging (134).

JunD, which is a member of the AP-1 transcription factor
family, is emerging as a key factor protecting from the de-
velopment of vascular oxidative stress. AP-1 is a hetero- or
homodimeric complex made of proteins belonging to the c-
Fos, c-Jun, ATF (activating transcription factor), and CREB
(cyclic AMP-response element-binding protein) families
(68). The cellular environment (infections, stress, cytokines,
and growth factors) regulates gene expression via AP-1 (68).
JunD regulates cell growth and survival, through affecting
antioxidant gene expression (41). This results in the fact that
JunD-/- mice are characterized by premature aging, short-
ened life span, and increased cancer development (86, 117,
159). JunD overexpression decreased oxidative stress and
blunted redox signaling resulting in diminished cellular
apoptosis (41, 117). JunD-/- murine embryonic fibroblasts
showed downregulation of antioxidant enzymes and in-
creased NADPH oxidase expression (41). We demonstrated
the relevance of JunD for cardiovascular homeostasis (122).
We observed an aging-induced decrease of JunD expression
leading to an imbalance between pro-oxidant and antioxi-
dant enzymes with increased ROS production. Indeed,
young mice lacking JunD showed early impairment of re-
dox signaling, mitochondrial derangement, and endothe-
lial dysfunction (86). Furthermore, the vascular senescence
observed in young JunD-/- animals was similar to that ob-
served in old WT mice. An adverse epigenetic remodeling
occurring at the level of JunD promoter is responsible for
such age-induced downregulation of JunD (86). This finding
agrees with the notion that epigenetics affects the expres-
sion of genes involved in aging, dismetabolic profiles, and
cardiovascular injury (159). In peripheral blood monocytes
isolated from old compared to young healthy volunteers,
JunD expression was reduced. In light of these findings,
JunD can be considered as a promising target to prevent or
delay age-induced CVD. Accordingly, disruption or uper-
gulation of JunD expression promotes pressure-dependent
cardiac apoptosis, hypertrophy, and angiogenesis (137) and
blunt phenylephrine-mediated cardiomyocyte hypertrophy
(66). In patients with severe heart failure, JunD protein
expression is reduced (67). JunD-/- mice show hyper-
insulinemia, as a result of oxidative stress-induced pancre-
atic islet vascularization (86). Interestingly, the metabolic
derangements found in JunD-/- mice were rescued by
treatment with antioxidants (86). These data clearly indicate
that JunD is an important effector in the interaction among
aging, metabolism, and CVD.
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Conclusion

Vascular endothelial dysfunction, oxidative stress, and
low-grade inflammation are common features of metabolic
diseases and are closely interlinked. Glucose metabolism
affects immune phenotype and regulates oxidative stress
generating enzymes affecting the development of all features
of vascular dysfunction. Recent studies suggest that vascular
dysfunction, endothelial insulin resistance, and vascular in-
flammation may precede and cause the development of in-
sulin resistance, obesity, and T2D rather than being their
mere consequence. This change from the classical ‘‘adipo-
centric’’ theory of metabolic vascular disease may have
significant diagnostic and therapeutic implications.

Distinct epigenetic changes in vascular cells, adipocytes,
and immune cells are frequently observed in obesity and
T2D, and these are associated with phenotypic and func-
tional alterations of these cells. Targeting these chromatin-
modifying enzymes may represent a promising approach to
reduce oxidative and inflammatory burden in the setting of
diabetic vascular dysfunction.
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Abbreviations Used

AGEs¼ advanced glycation end products
AMPK¼AMP-activated protein kinase
Ang II¼ angiotensin II

AP-1¼ activator protein-1
ApoE¼ apolipoprotein E

AT¼ adipose tissue

ATP¼ adenosine triphosphate
BBB¼ blood/brain barrier
CCL¼CC chemokine ligand

CREB¼ cyclic AMP-response element-binding protein
CVD¼ cardiovascular disease

CXCL¼C-X-C motif chemokine
EC¼ endothelial cell

eNOS¼ endothelial nitric oxide synthase
FOXO¼ forkhead transcription factor

GH¼ growth hormone
H2O2¼ hydrogen peroxide
HAT¼ histone acetyltransferase

HDAC¼ histone deacetylase
HO-1¼ heme oxygenase 1
IFN-c¼ interferon gamma
IGF-1¼ insulin growth factor 1

IgG¼ immunoglobulin G
IL¼ interleukin

iNOS¼ inducible nitric oxide synthase
Ins¼ insulin

IRAK1¼ interleukin 1 receptor-associated kinase 1
IRS¼ insulin receptor substrate

Ij-Ba¼ inhibitory subunit of nuclear factor-kappa B
KLF¼ kruppel-like factor

M1/M2¼ types of macrophages
MCP-1¼monocyte chemoattractant protein 1

Mf¼macrophage
miRNAs¼microRNAs

Mo¼monocytes
MR¼mineralocorticoid receptor

mTOR¼mechanistic target of rapamycin
NADPH¼ nicotinamide adenine dinucleotide phosphate

NFLD¼ nonalcoholic fatty liver disease
NF-jB¼ nuclear factor kappa B

NO¼ nitric oxide
NOR-1¼ neuron-derived orphan receptor-1

Nox¼ nonphagocytic NADPH oxidase
OXPHOS¼ oxidative phosphorylation

PAH¼ pulmonary arterial hypertension
PGI2¼ prostacyclin
PKC¼ protein kinase C

PPAR¼ peroxisome proliferator-activated receptor
PVAT¼ perivascular adipose tissue

RANTES¼ regulated on activation, normal T cell
expressed and secreted

RCAN1¼ regulator of calcineurin 1
ROS¼ reactive oxygen species

STAT4¼ signal transducer and activator transcription 4
T2D¼ type 2 diabetes

Tbx21¼T helper cell type 1 transcription factor
TCA¼ tricarboxylic acid

TLR4¼ toll-like receptor 4
TNFa¼ tumor necrosis factor alpha
TRAF¼TNF receptor-associated factor

Treg¼T regulatory cells
Trp¼ tryptophan

VAT¼ visceral adipose tissue
VCAM¼ vascular cell adhesion molecule
VSMC¼ vascular smooth muscle cell

WT¼wild type
XO¼ xanthine oxidase
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