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Abstract: Indoor WLAN fingerprint localization systems have been widely applied due to the
simplicity of implementation on various mobile devices, including smartphones. However, collecting
received signal strength indication (RSSI) samples for the fingerprint database, named a radio map,
is significantly labor-intensive and time-consuming. To solve the problem, this paper proposes a
semi-supervised self-adaptive local linear embedding algorithm to build the radio map. First, this
method uses the self-adaptive local linear embedding (SLLE) algorithm based on manifold learning to
reduce the dimension of the high-dimensional RSSI samples and to extract a neighbor weight matrix.
Secondly, a graph-based label propagation (GLP) algorithm is employed to build the radio map by
semi-supervised learning from a large number of unlabeled RSSI samples to a few labeled RSSI
samples. Finally, we propose a k self-adaptive neighbor weight (kSNW) algorithm, used for radio map
construction in this paper, to realize online localization. The results of the experiments conducted in a
real indoor environment show that the proposed method reduces the demand for large quantities of
labeled samples and achieves good positioning accuracy. With only 25% labeled RSSI samples, our
system can obtain positioning accuracy of more than 88%, within 3 m of localization errors.

Keywords: indoor positioning; radio map; LLE; manifold learning; graph-based label propagation

1. Introduction

The radio map is the most important part of the WLAN fingerprint localization systems and the
key to ensuring the positioning accuracy of the system. Regardless of the deterministic or probabilistic
positioning algorithm, the radio map is required to provide accurate mapping from the received
signal strength indication (RSSI) sample to the physical location coordinates to complete localization.
Building a high-accuracy radio map requires engineers to set enough reference points (RPs) in the
positioning area, collect sufficient RSSI samples at these reference points, and these RSSI samples
should include the access points (AP) information in the area as much as possible. Therefore, in the
indoor complex environment where APs are densely deployed, building a high-accuracy radio map is
time-consuming and labor-intensive [1,2]. This high-cost radio map building method severely restricts
the application and development of a WLAN fingerprint localization system.

The essence of the WLAN fingerprint localization systems is a process of pattern recognition,
and the process of building a radio map is the calibrating of pattern recognition. In order to reduce
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the consumption of timing and labor cost when building a radio map, this paper proposes a radio
map construction method merging self-adaptive local linear embedding (SLLE) algorithm [3] and
graph-based label propagation (GLP) algorithm [4] based on the idea of manifold learning. It first uses
the SLLE algorithm to reduce the dimension of high-dimensional RSSI and extract the neighbor weight
matrix, then a GLP algorithm is employed to construct the radio map by semi-supervised learning from
a large number of unlabeled RSSI samples to a few labeled RSSI samples, finally, it proposes a kSNW
algorithm to realize online positioning under the radio map constructed in this paper. Our proposed
method greatly improves the usability of the indoor WLAN fingerprint localization systems.

This paper is organized as follows. Section 2 briefly introduces the related work. Section 3 presents
the method of radio map building by using the SLLE algorithm and GLP algorithm in detail. Section 4
describe the experimental testbed and conduction of the experiment, and then the experimental results
are analyzed and compared. Conclusions are drawn in the last section.

2. Related Work

With the increasing importance of location-based services, the construction of radio maps in indoor
environments has gradually formed a research point, especially in terms of reducing time-consumption
and labor costs. This includes methods based on crowdsourcing [5,6], semi-supervised learning [7–9]
or unsupervised learning [10,11], the path loss model [12,13], interpolation [14,15], and the merging
algorithm [16]. These methods generally reduce the cost of building a radio map. We will discuss some
representative works here.

The fundamental idea of crowdsourcing refers to allocating a workload to several participants, in
this case, including both professional surveyors and general users. Molé [5] and FreeLoc [6] have been
proposed to promote users to measure fingerprints with locations or semantic labels (e.g., corridors,
hallways, and rooms). Nevertheless, users are commonly reluctant to give precise location labels for
privacy considerations, significantly lowering the built radio map performance.

The authors in [7–9] employed semi-supervised methods, which is also the core method of this
paper. They [7,9] reduced the high-dimensional RSSI to two-dimensions through manifold alignment
to obtain the position information. However, this method will reduce the positioning accuracy, as the
dimension is fixed from the beginning. The researchers in 8 developed a semi-supervised learning
algorithm, termed Co-Forest, creating and repeatedly refining a random forest ensemble classifier that
exhibits high performance to estimate locations. However, it requires considerable location-labeled
fingerprints to start the learning, so a long period is taken.

For reducing the calibration work, the authors in [10,11] employed a radio propagation model and
Hidden Markov Model (HMM) for rapidly implementing an indoor positioning mechanism. Giving
several independence assumptions, it adopts a distribution of discrete probability for expressing all
hypothetical positions, and such a probability distributing process is only advanced when novel RSSI is
collected or a user is moved. The position is estimated by weighting the different hypotheses. Such an
approach requires high computation overhead on the user terminal, and the accuracy is relatively low,
as the radio propagation model is not capable of modelling the realistic environment appropriately.

In [12], the system employed Weibull distribution to build the path loss model for the distribution
of the RSSI over time. By inheriting the updating method from [11], the authors in [13] presented a
novel algorithm to reconstruct a radio map by clustering the path-loss parameters of each reference
point. However, both of them hardly describe the RSSI fluctuating sample due to the complex indoor
propagation environment.

The researchers in [14,15] used the inverse distance weighted (IDW) and Kriging methods,
respectively, which are most widely used for building radio maps with approximate positioning accuracy.
The authors in [14] showed that IDW interpolation and extrapolation methods can improve both the
horizontal positioning accuracy and the floor detection probability. The researchers in [15] presented
an appropriate spatial interpolation method, which studied the signal propagation characteristic and
applied it to an interpolated database with the Kriging algorithm. These interpolation methods can
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achieve good positioning accuracy with a small enough sampling interval and a uniform sampling
density. When the sampling interval is large and there are many APs, their performance will
become poor.

The authors in [16] proposed an approach of radio map construction by incorporating
crowdsourcing, interpolation, and the path loss model. Such an approach is capable of acquiring the
identical positioning accuracy under sparse RP intervals set as 9.6 m, as the complete manual radio
map with the interval at 1.2 m. However, such an approach ignores the walls attenuation and device
heterogeneity, that makes it difficult to use in a real environment.

3. Proposed Method Merging SLLE and GLP

3.1. Feasibility Analysis of RSSI Sample Semi-Supervised Manifold Learning

There is an assumption in manifold learning that the processed data is sampled on a potential
manifold or that there is a potential manifold for this set of data. Different methods have different
requirements for the properties of the manifold, which also leads to the assumption of different
properties of the manifold. The local linear embedding (LLE) algorithm assumes that the sampled
data resides is locally linear in the low-dimensional manifold, and each sampling point can be linearly
represented by its nearest neighbors. Similar to manifold learning, in graph-based semi-supervised
learning methods, there are certain assumptions about the internal relationships of processed data. For
example, the GLP algorithm hopes that the data meets that: points with similar characteristics tend to
have the same label. Whether the semi-supervised learning or the manifold learning, all of them have
potential assumptions on the sample data. To achieve a good learning effect, the sample data must
meet the assumptions.

In order to verify whether the RSSI in the indoor complex environment meets the assumptions of
LLE and graph-based semi-supervised learning, we built a radio map of the office environment, and
select five adjacent reference points from the radio map. As shown in Figure 4 (in Section 4.1), the five
adjacent reference points are denoted as lm, le, ls, lw, and ln. lm is the middle reference point, and le, ls,
lw, and ln are the adjacent reference points of east, south, west, and north, respectively. The reference
point interval is 2 m. A total of 13 APs are deployed in the office. Table 1 shows the RSSI obtained by
sampling these reference points.

Table 1. The received signal strength indication (RSSI) samples in an indoor environment.

Location
RSSI (dBm)

AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11 AP12 AP13

lm −86 −73 −69 −63 −78 −58 −88 −65 −76 −56 −72 −80 −88

le −86 −74 −70 −63 −76 −57 −87 −69 −79 −56 −74 −80 −89

ls −85 −73 −68 −61 −75 −55 −90 −70 −80 −57 −77 −82 −90

lw −85 −73 −68 −62 −77 −56 −89 −66 −76 −56 −78 −82 −90

ln −87 −75 −71 −64 −79 −60 −86 −64 −73 −55 −69 −79 −87

First, we verify whether the RSSI samples meet the assumption of LLE. Taking lm as an example, it
can be clearly seen from Table 1 that the RSSI of each AP sampled at lm can be linearly represented by the
RSSI sampled at the remaining four RPs, which satisfies the assumptions of the LLE algorithm. We then
verify whether the RSSI samples meet the hypothesis conditions of graph-based semi-supervised
learning. We also observe the RSSIs of the five reference points in Table 1, the RPs that are adjacent to
each other, have approximate RSSIs. Conversely, the physical locations corresponding to two similar
RSSIs should also be similar. The RSSI distribution characteristics are in line with the graph-based
semi-supervised learning hypothesis.
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3.2. Method Design

The RSSI collected in the indoor complex environment contains information of multiple APs,
which can easily form a Curse of Dimensionality [17], which increases the complexity of subsequent
semi-supervised learning and positioning. According to the conclusions in the previous section,
LLE can be used to find low-dimensional manifolds embedded in the high-dimensional RSSI sample
space to achieve dimensionality reduction. The LLE algorithm is a dimensionality reduction method
that recovers the non-linear structure of high-dimensional data from local linear fittings. LLE maps
high-dimensional inputs to a unified low-dimensional coordinate system. The optimization does not
involve local minimization. When the sample data meets the LLE assumption, the algorithm can
obtain the global optimal solution.

Given a set of RSSI samples X = {x1, x2, · · · , xn}, xi ∈ RD, is composed of N samples which have D
dimension vectors. Every sample is sampled from a potential manifold. By calculating the Euclidean
distance between all sample points, we can determine the k nearest neighbors for each sample point.

The selection of the parameter k plays a key role in the LLE algorithm. If k is too large, the LLE
cannot reflect local characteristics, may affect the smoothness of the entire manifold, and may even lose
some small-scale structures of the manifold. If k is too small, the LLE cannot maintain the topological
structure of the sample points in low-dimensional space. The LLE algorithm hopes that the data density
is approximately same in the observation space, to reduce the impact of the parameter k; however,
it is difficult to ensure that the sampling density of high-dimensional data is consistent in practical
operations. Therefore, it is not reasonable to use a fixed value of k for the nearest neighbor selection.

To overcome the problem, we propose a self-adaptive k method based on the genetic algorithm [18]
procedure to optimize the performance of the LLE algorithm. The steps are as follows:

(1) Chromosome coding

Take the parameter k as the chromosome, if there are N high-dimensional data, we can assume
that the value interval of k is [1,

√
N − 1] according to experience.

(2) Initialization

The population number M is
(√

N − 1
)
, and other genetic algorithm parameters do not need to be

set, because the search for k value will start from 1 at this time until the termination condition is met.

(3) Fitness Function

The k is proportional to the data density. In areas with a high data density, i.e., the more
neighboring points required to reflect the local geometric relationship of the sample points, the k
is larger. The fewer the required neighboring points, the k is smaller. Data density change can be
measured by the squared Euclidean distance between the sample point xi and k nearest neighbor point
x j. Let βi_max be the maximum Euclidean distance between the sample point and k nearest neighbors:

βi_max(k) = MAX||xi − x j||
2. (1)

Let βi_sum be the sum of the Euclidean distances between the sample points and k nearest neighbors:

βi_sum(k) =
k∑

j=1

||xi − x j||
2. (2)

Then let ρi be the data density change of the sample point xi:

ρi(k) =
βi_max

βi_sum
. (3)
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ρi represents the proportion of the Euclidean distance between βi_max and βi_sum. When k = 1, it
means that only one neighbor point is taken, then ρi = 1. In the case where the data density does
not change drastically, as k continues to increase, ρi continues to decrease, but once the data density
decreases, that is, βi_max greatly increases, ρi will appear as an inflection point. We chose the value of k
at the inflection point as the most suitable parameter for the sample point xi, and it is recorded as ki.

Figure 1 shows the variation of data density. Suppose xi has five nearest neighbors denoted as x j1,
x j2, x j3, x j4, and x j5, and their Euclidean distance to xi increases ascending. The five sub-graphs show
the change of ρi(k) when the parameter k is increasing. The inflection point of the data density appears
when k = 4.
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Therefore, we can use Equation (3) as the fitness function and select the best fit k with the
termination condition.

(4) Individual evaluation

ρi(k) of the sample point xi will be recorded as an individual evaluation.

(5) Termination condition

The search is terminated when an inflection point occurs in ρi(k). That is, when ρi(k− 1) > ρi(k)
and ρi(k) < ρi(k + 1), ki = k. The search result is shown in Figure 2.
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After searching for the parameter k of each RSSI sample in sequence, we obtained the best fit ki for
xi. Then we can select the nearest neighbor of xi for local linear embedding according to ki.

LLE hopes that each sample point and its neighboring points have local linear structural features.
Using linear coefficients to describe this local geometric feature, each sample point can be reconstructed
through its neighboring points. This reconstruction error can be calculated by the following cost
function [19]:

ε(W) =
N∑

i=1

xi −

ki∑
j=1

wi jx j
2. (4)

ε(W) is the sum of the squared distances of sample points and their reconstruction, where wi j is
the weight of the nearest neighbor point x j of the sample point xi when reconstructing xi. To minimize
the cost function, we propose two constraints: First, each sample point is reconstructed only by its ki
nearest neighbors. If x j does not belong to the ki nearest neighbors of xi, let wi j = 0. Second, the sum of
each row of the weight matrix should be equal to 1, that is,

∑
j

wi j = 1. As ki is different for each sample

point, the weight matrix must be created according to the maximum value of ki, and the blank parts
are filled with zero.

Consider any RSSI sample point x, whose k neighbor points are η j and the sum of its reconstruction
weights W j is 1. We can write the reconstruction error as:

ε = ||x−
k∑

j=1

W jη j||
2 = ||

k∑
j=1

W j
(
x− η j

)
||

2
=

∑
jk

W jG jkWk (5)

where G jk is the covariance matrix:

G jk =
(
x− η j

)
(x− ηk). (6)

G jk has characteristics of symmetry and is positive semi-definite due to its construction method.
Therefore, we can analyze the minimization problem of reconstruction error by the Lagrange multiplier
under the constraint of

∑
j

wi j = 1. According to the inverse of the covariance matrix, the optimal

weight can be given by:

W j =

∑
k G−1

jk∑
lm G−1

lm

. (7)

If Equation (7) has a unique solution, then the covariance matrix G should be a non-singular
matrix. If G is a singular matrix in actual operation, then G must be regularized. The specific method
is to add a small multiplier to the matrix. At this point we can calculate the reconstruction weights.
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In order to minimize the reconstruction error, the weight matrix W must obey an important
symmetry: For all specific sample points, after undergoing various transformations such as rotation,
rearrangement, and transformation between them and their nearest neighbors, the topological structure
between them must remain unchanged so that the reconstruction weights can accurately describe
the basic geometric characteristics of each neighbor. Therefore, it can be considered that the local
geometric features of the data in the high-dimensional original space and the local topology on the
low-dimensional manifold after the mapping are completely equivalent. Then, we can use the obtained
weight matrix to reconstruct in a low-dimensional space and work out the low-dimensional embedding
Y, by minimizing the reconstruction error.

Before mapping X to Y, we need to determine the dimension d of the low-dimensional space.
At present there have been some studies on intrinsic dimension estimation of high-dimensional
data [20–22]. Considering the complexity of the LLE algorithm and its method of using Euclidean
distance to determine the nearest neighbors, we use a method similar to principal component analysis
(PCA) to find the intrinsic dimension [23]. When calculating the reconstruction weight matrix of each
sample point, the LLE algorithm must construct a local covariance matrix Gi, so the output dimension
of the sample point can be calculated by the following formula.∑d

j=1 λ j∑k
j=1 λ j

≥ θ∗. (8)

λ j is the eigenvalue of Gi, and is arranged in descending order. θ∗ is the threshold value of the
projection space retention information, and usually takes a value greater than 80%. Equations (5)–(8)
consider that the ratio of the sum of the top d eigenvalues to the sum of all eigenvalues is not less than
80%, which can satisfy the low-dimensional embedding of the original data information. Each sample
point needs to calculate the output dimension, and the average value of the output dimensions of all
sample points is specified as the output dimension of the sample space.

After determining the weight matrix W and the output dimension d, we rewrite the cost function
of the reconstruction error as follows:

φ(Y) =
N∑

i=1

||yi −

ki∑
j=1

wi jy j||
2. (9)

Equation (9) is similar to Equation (4), but the weight wi j is fixed at this time, and the
low-dimensional coordinate yi needs to be optimized. In order to limit the uniform distribution
of low-dimensional data and prevent the data set from collapsing to the coordinate origin in low
dimensions, we added two constraints to Y:

∑N
i=1 yi = 0 and 1

N .
∑N

i=1 yiyi
T = I, where I is a

N-dimensional identity matrix. Under such constraints, the problem of minimizing reconstruction
errors in low-dimensional space can be simplified as:

minφ(Y) =
N∑

i=1

||YIi − YWi||
2 =

N∑
i=1

||Y(Ii −Wi)||
2 = tr

(
YMYT

)
. (10)

Ii represents the ith column of the identity matrix I, and M = (I−W)T(I−W). Using the Lagrange
multiplier method again, combined with constraints, the solution is MYT = λYT. To minimize the
value of the cost function, take the eigenvector corresponding to the minimum d non-zero eigenvalues
of M as the low-dimensional embedded coordinate Y. During the processing, the eigenvalues of M
are arranged ascending, and the first eigenvalue is almost close to zero, so the first eigenvalue is
discarded. Usually, the eigenvectors corresponding to the eigenvalues between 2 ∼ (d + 1) are taken
as the output results.



Sensors 2020, 20, 767 8 of 16

In order to compare the performance of the traditional LLE algorithm with our proposed parameter
k adaptive LLE algorithm, we use them to reduce the dimensionality of the Swiss volume graph, and
the results are shown in Figure 3. It can be clearly seen that the choice of parameter k has a great impact
on the dimensionality reduction results. As we discussed before, if the k is inappropriate, the expansion
of high-dimensional data in low-dimensional space will shrink or deform, and the local linear structure
of high-dimensional data cannot be retained. Due to the diversity of data, the k is difficult to grasp,
and most of the time it is set based on human experience. In contrast, for our proposed self-adaptive
LLE algorithm, as it can adaptively select the k according to the data density of each sample point,
its dimension reduction effect is significantly better than the traditional LLE algorithm. As shown in
Figure 3f, we fully expand the 3D graphics in the 2D space.
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2
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𝑃𝑖𝑗 = 𝑃(𝑖 → 𝑗) =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑘
𝑁
𝑘=1

 (12) 
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Figure 3. The effect with different choices for parameter k on dimensionality reduction performance:
(a) Swiss roll, (b) 2000 sampling points, (c) k = 4, (d) k = 12, (e) k = 36, (f) self-adaptive k.

After obtaining a low-dimensional RSSI set, we will use the GLP algorithm to perform
semi-supervised learning on this data set. The data set will be redefined below. The letters and labels
used in the definition have nothing to do with the previous content.

The RSSI set contains N samples, of which the first l is labeled data and the rest is unlabeled data.
The labeled data can be recorded as

{
(x1, y1) · · · (xl, yl)

}
, where y ∈ {C1, C2, · · · , Cm} is the label set of

the data, we assume that all labels are already known and all appear in the labeled data. Unlabeled
data can be written as

{
xl+1, · · · , xl+u

}
, where l + u = N. Next, we will respectively use L and U to

represent labeled and unlabeled data. Our mission is to use the GLP algorithm to predict the labels of
the data in U through the label information in L.

The GLP algorithm is a graph-based semi-supervised learning algorithm. We need to use the
relationship of sample data to build a fully connected graph. The nodes of the graph are data points
and contain all labeled and unlabeled data. The edges of nodes i and j in the graph represent the
similarity of the two nodes. The weight of the edges between nodes is proportional to the similarity of
the nodes. The edge weights of nodes i and j are defined as follows:

wi j = exp

−||xi − x j||
2

α2

 (11)

where α is the hyper-parameter and is used to control the weight wi j. After getting the weights of all
edges, we can propagate labels through the edges between nodes. The greater the weight of the edge,
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the easier for the label to propagate. For label propagation, we define an N ×N probability transition
matrix P:

Pi j = P(i→ j) =
wi j∑N

k=1 wik
(12)

Pi j represents the transition probability from node i to node j. Then we define a label matrix YL

with l rows and M columns, and the i-th row represents the label indication vector (i ∈ l) of the labeled
sample data (xi, yi), that is, if the i-th sample is classified as j, The j-th element of the row is 1, the
others are 0. Similarly, we also define a u×M matrix YU for u unlabeled sample data. After merging
the two matrices, we have an N ×M matrix F = [YL; YU]. Each row in the matrix F represents the
classification probability distribution of a sample data. For unlabeled data, we randomly initialize the
row it represents, as long as the sum of each row is 1. The GLP algorithm steps are as follows:

(1) Execution propagation: F← PF .
(2) Lock the marked data by replacing the first l rows of F with YL: FL = YL.
(3) Repeat steps (1) and (2) until F converges.
(4) Assign labels to unlabeled data according to F.

Step (1) is to left-multiply matrix P by matrix F, so that each node propagates its own label to
other nodes with probability P. The similarity between the two nodes is directly proportional to the
probability of their label propagation. Step (2) is very important, as we need to keep the original label
data unchanged, so each time the execution of the propagation is completed, we need to restore FL

to the original label. As the label data continues to propagate its labels, the class boundary will pass
through the high-density area and stay in the low-density interval in step (3). In the last step we assign
labels based on the specific application.

In the process of the GLP algorithm, we found that after calculating F in step (1), step (2) is needed
to lock the labeled data YL. In fact, what we really care about is the change of the label in the YU part,
so we can simplify the steps by calculating only the YU part. First, we re-divide the matrix P:

P =

[
PLL

PUL

PLU

PUU

]
. (13)

Then there are:
FU ← PULYL + PUUFU. (14)

We iterate Equation (14) until convergence. It can be seen from Equation (14) that the label
distribution FU of unlabeled data depends not only on the label of the labeled data and its transition
probability, but also on the current label of the unlabeled data and its transition probability, thus, this is
a kind of semi-supervised algorithm using unlabeled data learning.

3.3. Radio Map Construction by Proposed Method and Online Positioning

3.3.1. Radio Map Construction

In the indoor WLAN area, we obtained a small number of location fingerprints (labeled data) and
a large number of high-dimensional RSSI samples. The location fingerprints consist of RSSI samples
and their corresponding physical location. The individual RSSI samples are unlabeled data. Our task
is to use the method proposed in this paper to reduce the dimensionality of RSSI samples, and predict
the physical location corresponding to each unlabeled RSSI sample through the physical location
information of a small number of location fingerprints.

When collecting individual RSSI samples and location fingerprints, we need to pay attention to
two things. The first is to ensure that the data dimensions of all RSSI samples are equal, which is a
necessary condition for using the LLE algorithm for dimensionality reduction. Due to the interference
in a complex indoor environment, it is difficult for us to observe the RSSI of all APs at each location.
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In this case, we can record the RSSI of the missing AP as −99 dBm, so that all RSSI samples have the
same dimension. The second is to try to ensure that the radio map can cover the entire localization
area. In the GLP algorithm we assume that all labels are known and appear in the labeled data. In a
radio map, the physical location is the data label, but unlike the traditional classification problem, we
cannot collect the location fingerprints for all physical locations. In order to satisfy the assumption of
the GLP algorithm, we need to collect the position fingerprint in a sparse but full-coverage manner,
which can be achieved by choosing a larger RP interval when building a radio map.

We assume that there are N samples in the RSSI sample set, where the physical locations of the
first m are known, and the physical locations of the remaining samples are unknown. The i-th sample
can be expressed as (xi, li), where xi ∈ RD represents a D-dimensional vector, and li ∈

{
C1, C2, · · · , C j

}
is a known physical location label. The steps to construct a radio map using the method proposed in
this paper are as follows:

(1) For each RSSI sample xi, use the self-adaptive method to calculate its most suitable neighbor
number ki.

(2) The ki nearest neighbor samples are obtained by comparing the Euclidean distance between xi
and other samples.

(3) The SLLE algorithm is used to reduce the dimension of the RSSI sample xi, to obtain its
low-dimensional embedding yi.

(4) Replace the high-dimensional data with low-dimensional data to establish a new sample set.
(5) Use the GLP algorithm to label the physical location of yi(i > M) and get the N ×M matrix F.

Each row in the matrix F represents the probability of a low-dimensional sample yi appearing
at a physical location. The probability distribution of yi is

{
pi1, pi2, · · · , pi j

}
, and this satisfies∑M

j=1 pi j = 1.

(6) The weighted sum of the probability distribution of yi is used to estimate its physical location:

li = (C1 × pi1) + (C2 × pi2) + · · ·+
(
C j × pi j

)
=

M∑
j=1

C j.pi j. (15)

3.3.2. Online Positioning

During online positioning, the system collected a high-dimensional RSSI, and needed to reduce the
dimensionality before using the propagation algorithm for localization. However, due to the limitation
of the LLE algorithm principle, we must reduce the dimensionality of the newly collected RSSI and
the original RSSI together to maintain the integrity of the manifold. It is not economical to perform
dimension reduction and label propagation learning for each localization. Aiming at this problem, and
considering the linear relationship between high and low-dimensional data and its physical location,
this paper proposes an algorithm that uses the corresponding position labels of low-dimensional data
and neighbor weights to achieve localization, bypassing the problem of dimensionality reduction of
new RSSI.

(1) Use the self-adaptive method to calculate the most suitable neighbor number k for the RSSI
samples collected online.

(2) Find the k nearest neighbor sample points by comparing the Euclidean distance between xi and
other sample points.

(3) Construct the weight W j for xi and its neighbors according to the SLLE algorithm.
(4) Use W j and location labels corresponding to known low-dimensional data to estimate the location

to be measured lx, lx =
∑k

j=1 W j.l j.

As the location is obtained by multiplying the positions of the self-adaptive k neighbors by the
neighbor weights, it is called k self-adaptive neighbor weights algorithm (kSNW).
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4. Experiments and Discussion

4.1. Experimental Testbed Introduction

The fourth floor of YiFu building and the DaYueCheng library were selected as the experimental
scene. We deployed 13 APs on the 4th floor of the YiFu building, and a radio map was built with 48 RPs
and a 2 m interval. The RSSI fingerprint of each RP is a 13-dimensional vector, as shown in Figure 4. We
deployed 19 APs in the library area, and the RP interval was also 2 m. There were 600 RPs in the radio
map. The RSSI fingerprint of each reference point is a 19-dimensional vector, as shown in Figure 5.
The RSSI collected equipment for the above two experimental testbeds is XIAOMI HM2. In order to
test the method proposed in this paper, we will use these two radio maps for dimensionality reduction
and positioning experiments. The performance of the algorithm is evaluated by comparing the effect
of the data dimension on the complexity of the algorithm, the impact of the amount of labeled data on
the positioning accuracy, and the positioning accuracy is obtained by different positioning algorithms.Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 
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4.2. Algorithm Performance Test and Analysis

4.2.1. Dimensionality Reduction Performance

We use the SLLE algorithm proposed in this paper to reduce the dimensions of two radio maps and
analyze the complexity of the k nearest neighbors algorithm (KNN) [24] when the RSSI has different
dimensions. The experimental results are shown in Table 2. The fourth column in the table refers to
the complexity when using the KNN algorithm for positioning, and the complexity can be expressed
as O(dN), where d represents the sample dimension and N represents the sample size, indicating that
the complexity is mainly related to the sample dimension and sample size.

Table 2. KNN algorithm complexity comparison.

Localization Area Status RSSI Dimension KNN Algorithm
Complexity

Fourth floor of the YiFu
building

Before dimensionality reduction 13 O(13N)

After dimensionality reduction 4 O(4N)

Library Before dimensionality reduction 19 O(19N)

After dimensionality reduction 3 O(3N)

As can be seen from Table 2, both radio maps have achieved better dimensionality reduction
results using the SLLE algorithm. At the same time, we found that although the RSSI dimension of the
library area before the dimensionality reduction was higher than fourth floor of the YiFu building, the
eigen dimension after the dimensionality reduction became smaller. This happens because, compared
with the library area, the signal propagation in a narrow indoor environment is more complicated, and
a larger eigen dimension is required to more accurately express its signal characteristics.
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4.2.2. Localization Performance

This section uses the reduced-dimensional RSSI samples to test the performance of the label
propagation algorithm. Considering the sample size, the experiment only selects the radio map of
the library area. The experiment is designed as follows: The established radio map of the library
area contains the location fingerprints of 600 RPs, we took the fingerprints of 50, 100, 150, and 300
RPs, according to Table 3. Correspondingly, 550, 500, 450, and 300 RSSI samples were randomly
collected by volunteers as unlabeled samples to form five data sets of the same sample size. Through
semi-supervised training of DS2~5 with GLP algorithm, we built five radio maps (RM1–5) with the
same density.

Table 3. The radio map construction scheme in the Library area.

Number East–West Interval North–South
Interval

Labeled
Fingerprint

Unlabeled RSSI
Sample

DS 1 2 m 2 m 600 0
DS 2 4 m 2 m 300 300
DS 3 4 m 4 m 150 450
DS 4 6 m 4 m 100 500
DS 5 6 m 8 m 50 550

Next, we used the kSNW algorithm and RM2–5 to conduct a positioning test. Figure 6 shows
the positioning accuracy under different proportions of labeled fingerprints. When the number of
labeled fingerprints increases, the positioning accuracy also improves. When the proportion of labeled
fingerprints reaches 25%, the probability of errors within 3 m using the kSNW algorithm is close to
90%. When the proportion of labeled data continues to increase, although the positioning accuracy is
still improving, the range of change is small. In order to balance positioning accuracy and labor cost,
we determine that the proportion between labeled sample size and total sample size is satisfied when
it is up to 25%.Sensors 2020, 20, x FOR PEER REVIEW 13 of 16 
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Next, the merits of the established approach are shown in the positioning performance following
the comparison of estimated locations with those in [7–9,15]. In line with the DS3 dataset, the datasets
of [7–9,15] are adopted for constructing the radio map, separately. Figure 7 illustrates the positioning
errors by different radio maps. The proposed approach outperforms the others for positioning accuracy.
The probabilities of errors within 3 m by the proposed radio map is 88.30%, which is 5.30%, 11.20%,
14.19%, and 15.30% higher than the one by [9], [15], [7], and [8], respectively.
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In order to compare the performance of different positioning algorithms, we used kSNW and
KNN algorithms (k = 4), and the probabilistic positioning (PL) algorithm [25,26] 2526 under RM1 and
RM3 to perform positioning tests. The results are shown in Figure 8. The PL algorithm calculates the
conditional probability of RSSI samples and selects the RP with the maximum conditional probability
as the estimated location. When using RM1 for positioning, both the KNN algorithm and the PL
algorithm have achieved good positioning accuracy. In particular, the KNN algorithm can make full
use of the sample statistical information to obtain the best positioning accuracy. When using RM3 for
positioning experiments, the kSNW algorithm is better than the KNN algorithm and the PL algorithm.
The probability of errors within 3 m by the proposed radio map is 88.30%, which is 10.30% and 21.20%
higher than the KNN algorithm and PL algorithm, respectively. In the case of a random collection of
unlabeled data, the RP’s distribution of the radio map is non-uniform, so the positioning accuracy
of deterministic matching positioning algorithms such as KNN will inevitably decline. Notably, the
positioning accuracy of kSNW-RM3 was reduced by up to 21% (at 1 m) compared to KNN-RM1, but
the labeled samples were reduced by 75%.Sensors 2020, 20, x FOR PEER REVIEW 14 of 16 
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Figure 8. The positioning errors by different algorithms with different radio maps.

In order to show the performance of the kSWN method, we also used the merging method
proposed in this paper for localization. With the same positioning results, the kSWN algorithm takes
about 7/8 less time than the merging method. The computation time of five experiments is shown in
Table 4.
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Table 4. The computation time of five experiments.

Number Computation Time of kSWN Computation Time of Merging Method

1 108 ms 951 ms
2 98 ms 871 ms
3 121 ms 784 m
4 78 ms 610 m
5 89 ms 709 ms

5. Conclusions

In the present study, a novel cost-effective method is proposed, merging the SLLE algorithm
and GLP algorithm for building a radio map. This method noticeably lowers the calibration effort
of location fingerprints and enhances the localization accuracy and robustness. This method first
employs the SLLE algorithm for reducing the dimensions of RSSI samples and subsequently adopts
a limited number of labeled location fingerprints for propagating the labeling data to those that are
unlabeled. Lastly, the kSNW algorithm is developed for incorporating the local linear property to
online positioning. In the experiment, we demonstrate that the proposed method has the acceptable
positioning accuracy with the radio map construction under only 25% labeled fingerprints, and this
has better results than the compared method. The kSNW algorithm has better adaptability than the
KNN and PL algorithms with incomplete labeled fingerprints. This method reduces the time and labor
cost of building a radio map by 75% while maintaining acceptable positioning accuracy. Future studies
will focus on the optimization of the proposed method, for instance using the novel unsupervised
learning method [27] and multi-tools fusion [28].
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agreed to the published version of the manuscript.
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