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Abstract: Eating disorders are psychiatric disorders characterized by disturbed eating behaviors.
They have a complex etiology in which genetic and environmental factors interact. Analyzing gene-
environment interactions could help us to identify the mechanisms involved in the etiology of such
conditions. For example, comethylation module analysis could detect the small effects of epigenetic
interactions, reflecting the influence of environmental factors. We used MethylationEPIC and Psy-
charray microarrays to determine DNA methylation levels and genotype from 63 teenagers with
eating disorders. We identified 11 comethylation modules in WGCNA (Weighted Gene Correlation
Network Analysis) and correlated them with single nucleotide polymorphisms (SNP) and clinical
features in our subjects. Two comethylation modules correlated with clinical features (BMI and
height) in our sample and with SNPs associated with these phenotypes. One of these comethylation
modules (yellow) correlated with BMI and rs10494217 polymorphism (associated with waist-hip
ratio). Another module (black) was correlated with height, rs9349206, rs11761528, and rs17726787
SNPs; these polymorphisms were associated with height in previous GWAS. Our data suggest that
genetic variations could alter epigenetics, and that these perturbations could be reflected as variations
in clinical features.

Keywords: comethylation modules; genetic polymorphisms; eating disorders; WGCNA

1. Introduction

Eating disorders (EDs) are severe psychiatric disorders characterized by disturbances
of eating behavior, affecting the health and quality of life of individuals. These disorders
have an early teenage onset and a hereditary component [1]. EDs have a complex etiology
in which genetic and environmental factors interact [2]. Genome-wide association studies
(GWAS) and other genetic studies have revealed loci and single nucleotide polymorphisms
(SNP) associated with ED [1,3,4]. The clinical characteristics of EDs have been associated
in genetic studies. In this sense, significant genetic correlations have been reported in
anorexia nervosa with psychiatric disorders, physical activity and metabolic, lipid and
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anthropometric traits [5]. In addition, genetic associations between ED and substance use
have been described [6]. Additionally, the genetic-environment relationship in ED has been
studied through DNA methylation, reporting perturbations in the methylation levels of
some genes (DRD2, SLC6A3, POMC, OXTR, among others) [2,7,8]. However, genes do
not function alone: on average, each gene is estimated to interact with another four or
eight genes, and to be involved with 10 biological functions. Furthermore, recent studies
suggest that gene networks provide the potential to identify hundreds of disease-related
genes [9]. Analyzing gene-environment interactions in EDs could help us to identify the
mechanisms involved in their etiology. Nowadays, new technologies evaluating thousands
of genes apply statistic approaches that integrate different information sources from gene
interactions (e.g., comethylation module construction) [10]. Comethylation modules are
clusters of highly interconnected CpG sites. These modules are detected through the
construction of a correlation network. Correlation networks are used to analyze large,
high-dimensional data sets. These correlation networks are constructed on the basis of
correlations among quantitative measurements (e.g., gene expression profiles, methylation
levels) [11]. Comethylation modules are formed by using methylation data as quantitative
measurements of gene-environment interactions [10]. Additionally, comethylation modules
alleviate various testing problems which are inherent to microarray data analyses, and
have been found to be useful for describing pairwise relationships among methylated
genes [9–11]. In brief, comethylation modules (1) consider all genes as interconnected,
(2) identify groups of CpG sites with similar methylation levels, (3) increase statistical
power, and (4) detect small effects of epigenetic interactions [9–11]. Thus, evaluating
correlations among genetic factors, comethylation modules, and clinical features in EDs
could be a means by which to identify biological markers in such disorders. The objective
of the present study was to detect comethylation modules from DNA methylation samples
from children and teenagers with an ED, and to correlate these modules with clinical
features and genetic variability.

2. Materials and Methods
2.1. Study Population

We included 63 subjects diagnosed with anorexia nervosa (AN), bulimia nervosa, (BN)
or binge eating disorder (BED) using DSM 5 criteria [12]. Individuals were recruited in the
outpatient center of the Children’s Psychiatric Hospital “Dr. Juan N. Navarro” from May
2014 to August 2016. Inclusion criteria were subjects with at least three generations of Mex-
ican lineage, 12–18 years of age, and individuals not using psychotropic or psychoactive
drugs. The clinical features of the sample are descripted in Table 1.

Table 1. Clinical features of study population.

Features Sample (n = 50)

Age (years) 13.98 ± 1.74
Gender

Male 13 (26)
Female 37 (74)

Body Mass Index (BMI) zscore 1.03 ± 0.97
BMI classification

Underweight 1 (2)
Normal weight 20 (40)

Overweight 11 (22)
Obesity 18 (36)

Diagnosis
Binge eating disorder 17 (34)

Bulimia nervosa 22 (44)
Anorexia nervosa 11 (22)

Comorbidities
Any 46 (92)
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Table 1. Cont.

Features Sample (n = 50)

Major depressive disorder 21 (42)
Suicide behavior 16 (32)

Dysthymia disorder 18 (36)
Attention-Deficit/Hyperactivity Disorder 15 (30)

Generalized Anxiety Disorder 10 (20)
Oppositional Defiant Disorder 6 (12)

Conduct Disorder 5 (10)
Psychotic Disorder 5 (10)

Eating Attitudes
Fear of gain weight 35 (70)

Binge 34 (68)
Restriction 24 (48)

Vomit 21 (42)
Other behaviors 10 (20)

Features of subjects who satisfied inclusion criteria. Continuous variables are expressed as mean ± standard
deviation. Categorical variables are expressed as n (%).

This study followed the principles of the Declaration of Helsinki. Sample recollection
and processing were approved by the Ethics Committee of the Children’s Psychiatric
Hospital “Dr. Juan N. Navarro” with approval No. II3/01/0913 (11 October 2017), and
by the Ethics Committee of the National Institute of Genomic Medicine (INMEGEN) with
approval No. 06/2018/I.

2.2. Evaluation Instruments

BED was screened with the QEWP-R (Questionnaire on Eating and Weight Pattern-
Revised) [13]. AN was screened with EAT-26 (Eating Attitudes Test) [14]. We evaluated the
presence of psychiatric comorbidity with the Spanish version of MINI Kid (Mini Interna-
tional Neuropsychiatric Interview for Children and Adolescent) [15]. A pedopsychiatrist
performed all ED diagnoses.

2.3. DNA Extraction and Microarray Analysis

After diagnostic evaluation of each individual, a blood sample was collected using an
EDTA tube; DNA was subsequently extracted from this sample. We used the salting-out
method from the Gentra Puregene Blood (Qiagen, Germantown, MD, USA) commercial
kit. DNA extraction quality and integrity were evaluated by analysis with a NanoDrop
spectrophotometer (Thermofisher, Waltham, MA, USA) and 2% agarose gel. DNA samples
met the following quality criteria: visible genomic DNA band, 230/260 and 260/230 ratios
>1.8, concentration >50 ng/µL, and no signs of DNA degradation. For genotypification,
we hybridized DNA with commercial microarray Infinium Psycharray Beadchip (Illumina,
San Diego, CA, USA). For methylation analysis, DNA was bisulfite converted using an EZ
DNA Methylation Kit (Zymo Research, Irvine, CA, USA). Converted DNA was hybridized
with the Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA). Each
microarray was processed in the Microarray and Expression Unit of the National Institute
of Genomic Medicine.

2.4. Quality Control of Genotypification Data

We transformed fluorescence intensities from the Psycharray into genotypes using
the GenomeStudio (v. 2.0) software, and quality control was done with the PLINK (v. 1.9)
toolset [16]. We eliminated: (1) SNPs with less than 95% genotype calls, (2) individuals
with less than 95% genotype calls, (3) individuals with sex discrepancy, (4) SNPs located in
chromosomes X and Y, (5) SNPs with less than 0.05 minor allele frequency (MAF), (6) SNPs
deviating from Hardy-Weinberger equilibrium (p < 1 × 10−6), and (7) SNPs with A/T and
C/G alleles. Subsequently, filtrated data were exported to the R (v. 4.0) software [17], and



Nutrients 2021, 13, 3210 4 of 13

we removed SNPs with missing data and SNPs without homozygous individuals to minor
alleles. Only 193,314 SNPs passed the quality control.

2.5. Quality Control of DNA Methylation Data

The fluorescence intensities of the MethylationEPIC microarray were transformed into
idat files, which were filtered with ChAMP pipeline (v.2.18) [18] for R (v. 4.0) software. Qual-
ity control removed: (1) probes with detection p-value > 0.01, (2) probes with <3 beads in at
least 5% of samples per probe, (3) non-CpG probes, (4) multihit probes, (5) probes located
in chromosome X and Y, and (6) individuals with sex discrepancy in their genotypification
data. We converted filtered methylation data into β-values, which were normalized using
the BMIQ (Beta-Mixture Quantile Normalization) method [19]. Afterwards, we evaluated
the presence of the batch effect with a singular value decomposition (SVD) method. We
preserved CpG sites with standard deviation (SD) > 0.05, keeping 105,393 sites. Likewise,
we made many cut points in SD (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20) to find an
optimal point for the construction of comethylation modules.

2.6. Comethylation Modules Construction

In order to identify comethylation modules, we processed methylation values with the
WGCNA (Weighted correlation network analysis) package [11,20] (R software). Later, we
applied the means method to achieve hierarchical clustering, and eliminated individuals
with atypical samples. For the final analysis, we only considered 50 subjects. Furthermore,
an analysis of network topology was used to determine a soft-thresholding power less
than 20 with suitable independence (>0.8) and mean connectivity (<1000). The CpG sites
with SD > 0.06 in their methylation values had the best network topology. We applied
blockwiseModules function (WGCNA package [11,20]) to detect comethylation modules,
using a minimum module size of 175 and a threshold of 20. In a subsequent analysis, we
discarded the CpG sites clustered in the grey module, and identified a new set of modules.
The 11 constructed comethylation modules included 11,418 CpG sites. Each module was
automatically assigned a color by WGCNA, indicating its size. The grey module was
discarded from further analysis as it groups unassigned CpG sites to other modules; thus,
these sites are unrelated.

2.7. Enrichment Analysis of Modules

The CpG sites inside modules were annotated using IlluminaHumanMethylationEPI-
Canno.ilm10b4.hg19 package [21]. Genes of CpG sites were extracted and enriched
using the WebGestalt online tool [22]. We accomplished the enrichments with Over-
Representation Analysis of KEGG Database (Kyoto Encyclopedia of Genes and Genomes) [23];
this was considered to be significant with an adjusted p-value by FDR ≤ 0.05.

2.8. Correlation of Comethylation Modules with Clinical Features and SNPs

The eigengene of each comethylation module was correlated with clinical data and
SNPs using Pearson’s correlations. We calculated the R2 and p values with cor and corPval-
ueStudent functions and set the significant value p < 5 × 10−3 for clinical data and p < 5
× 10−8 for SNPs. In order to find associations between SNPs and phenotypes, we used
the PheWAS tool on the GWAS Atlas website [24]. Associations were considered to be
significant for any phenotype with a p < 1 × 10−10.

3. Results
3.1. Description of Comethylation Modules

There were 11 modules in our study. Modules were turquoise (5073 sties), blue
(2928 sites), brown (193 sites), yellow (166 sites), green (151 sites), red (150 sites), black
(148 sites), pink (145 sites), magenta (135 sites), purple (111 sites), and grey (2218 sites).
The CpG sites of these modules were located in 4005 genes. According to relative position
to gene, the gene body was the most common annotated location, ranging from 40 sites
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(56.34%) in the purple module to 2430 sites (69.27%) in the turquoise module. Table 2 shows
the details of functional annotation of CpG sites from comethylation modules regarding
gene location.

Table 2. Comethylation module CpG sites classification.

Module TSS1500 TSS200 5′UTR Body 1stExon ExonBnd 3′UTR
Turquoise 359 (10.23) 97 (2.77) 436 (12.43) 2430 (69.27) 33 (0.94) 37 (1.05) 116 (3.31)

Blue 158 (7.85) 75 (3.72) 309 (15.34) 1366 (67.83) 23 (1.14) 16 (0.79) 67 (3.33)
Brown 14 (10.77) 4 (3.08) 23 (17.69) 78 (60.00) 2 (1.54) 3 (2.31) 6 (4.62)
Yellow 13 (12.15) 6 (5.61) 13 (12.15) 69 (64.49) 2 (1.87) 0 (0) 4 (3.74)
Green 11 (11.22) 3 (3.06) 13 (13.27) 68 (69.39) 1 (1.02) 1 (1.02) 1 (1.02)
Red 20 (18.52) 1 (0.93) 15 (13.89) 66 (61.11) 2 (1.85) 1 (0.93) 3 (2.78)

Black 11 (11.22) 2 (2.04) 9 (9.18) 66 (67.35) 2 (2.04) 2 (2.04) 6 (6.12)
Pink 13 (13.00) 2 (2.00) 9 (9.00) 71 (71.00) 2 (2.00) 1 (1.00) 2 (2.00)

Magenta 10 (11.36) 4 (4.55) 12 (13.64) 56 (63.64) 1 (1.14) 0 (0) 5 (5.68)
Purple 8 (11.27) 5 (7.04) 8 (11.27) 40 (56.34) 1 (1.41) 2 (2.82) 7 (9.86)

CpG sites were annotated with the IlluminaHumanMethylationEPICanno.ilm10b4.hg19 [21] package. Data expressed as n of sites, (%) by
rows. TSS: Transcription Start Site. UTR: Untranslated Region. ExonBnd: Exon Boundaries.

Concerning the distribution of CpG sites with respect to CpG islands, a majority
of comethylation modules corresponded to Open Sea (71.11–84.56%, 85–4207 sites); on
the other hand, the purple comethylation module had a high percentage of CpG sites
annotated on islands (15.32%, 17 sites) (Table 3). CpG sites in comethylation modules were
heterogeneously distributed among chromosomes (Table S1). Additionally, we observed
two groups of comethylation modules given the methylation levels from beta values. One
group had partially methylated values (0.2 < β value < 0.8) (turquoise, blue and purple),
while the other group had hypermethylated values (β value ≥ 0.8) (brown, yellow, green,
red, black, pink and magenta) (Table S2).

Table 3. CpG site position with respect to CpG islands.

Module OpenSea Island N Shore S Shore N Shelf S Shelf
Turquoise 4207 (82.93) 13 (0.26) 247 (4.87) 212 (4.18) 202 (3.98) 192 (3.78)

Blue 2476 (84.56) 15 (0.51) 128 (4.37) 83 (2.83) 104 (3.55) 122 (4.17)
Brown 153 (79.27) 6 (3.11) 9 (4.66) 17 (8.81) 4 (2.07) 4 (2.07)
Yellow 125 (75.30) 1 (0.60) 14 (8.43) 10 (6.02) 12 (7.23) 4 (2.41)
Green 114 (75.50) 5 (3.31) 10 (6.62) 8 (5.30) 9 (5.96) 5 (3.31)
Red 121 (80.67) 1 (0.67) 6 (4.00) 2 (1.33) 8 (5.33) 12 (8.00)

Black 115 (77.70) 1 (0.68) 7 (4.73) 6 (4.05) 11 (7.43) 8 (5.41)
Pink 114 (78.62) 6 (4.14) 7 (4.83) 7 (4.83) 8 (5.52) 3 (2.07)

Magenta 96 (71.11) 6 (4.44) 9 (6.67) 9 (6.67) 8 (5.93) 7 (5.19)
Purple 85 (76.58) 17 (15.32) 4 (3.60) 3 (2.70) 1 (0.90) 1 (0.90)
Total 7606 (82.67) 71 (0.77) 441 (4.79) 357 (3.88) 367 (3.99) 358 (3.89)

CpG sites were annotated with the IlluminaHumanMethylationEPICanno.ilm10b4.hg19 [21] package. Data expressed in n of sites, (%) by
rows.

3.2. Enriched Pathways on Each Module

We found significant enriched pathways of genes annotated on the CpG sites from
turquoise and blue modules (Table S3). Genes in the turquoise module were enriched for the
longevity regulating pathway (adjusted p value = 0.0047), GnRH (Gonadotropin-releasing
hormone) signaling pathway (adjusted p value = 0.0042), glioma (adjusted p value = 0.0126),
cholinergic synapse (adjusted p value = 0.0091), human cytomegalovirus infection (ad-
justed p value = 0.0126), and endocytosis (adjusted p value = 0.0126). Genes from blue
comethylation module were enriched in pathways for Th1 and Th2 cell differentiation (ad-
justed p value = 6.8672 × 10−7), allograft rejection (adjusted p value = 0.0185), endometrial
cancer (adjusted p value = 0.0111), and TNF signaling pathway (adjusted p value = 0.0007).
Another enrichment pathways within the same module included the AGE-RAGE signaling
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pathway in diabetic complications (adjusted p value = 0.0033), phosphatidylinositol sig-
naling system (adjusted p value = 0.0074), glioma (adjusted p value = 0.0365), longevity
regulating pathway (adjusted p value = 0.0325), human cytomegalovirus infection (adjusted
p value = 0.0008), and focal adhesion (adjusted p value = 0.0039).

3.3. Correlations of Modules with Clinical Features in Our Population

In our results, seven clinical features and comorbidities correlated with different
comethylation modules (Figure 1). The yellow comethylation module correlated with body
mass index (BMI) zscore (R2 = 0.47, p = 0.0006), conduct disorder (R2 = −0.41, p = 0.0030),
and psychotic disorder (R2 = −0.45, p = 0.0010). Meanwhile, the purple comethylation
module correlated with gender (R2 = −1, p < 1 × 10−50), suicidal behavior (R2 = 0.41,
p = 0.0030), and attention-deficit/hyperactivity disorder (R2 = −0.59, p = 6 ×10−6). Finally,
the black module correlated with height (R2 = 0.4, p = 0.0040). Notably, clinical features did
not correlate with more than one module at a time.
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3.4. Correlations of SNPs with Modules

Seven comethylation modules had correlations with any SNP (brown, green, yellow,
magenta, red, black and pink) (Table S4). SNPs were located mostly in intronic regions,
ranging from 33.96% in the red module (18 SNPs) to 55.56% in the yellow module (15 SNPs).
Another frequent location was intergenic regions, ranging from 14.81% in the yellow
module (4 SNPs) to 31.71% in the black module (13 SNPs). The most frequent location in
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the green module was intergenic regions (28.13%, 9 SNPs), followed by intronic regions
(21.88%, 7 SNPs).

The most correlated SNPs (89.95%, 206 SNPs) were in nonprotein-coding transcript
regions, while 10.05% (23 SNPs) were in protein-coding regions (synonymous and mis-
sense). Seventeen SNPs (7.42%) were annotated as missense variants; the red and black
modules had four missense SNPs each. Meanwhile, six correlated SNPs (2.62%) were
annotated as synonymous variants, with two SNPs per module (brown, yellow, and red).
We observed 10 correlated SNPs (4.37%) in regulatory regions, although no SNPs were
found in the yellow comethylation module. The magenta comethylation module had
no SNPs annotated in the upstream and downstream regions. Finally, correlated SNPs
annotated in 3′ untranslated regions (UTR) were the least frequent (2 SNPs, 0.87%), found
within the magenta and red modules (Table 4).

Table 4. Annotations of SNPs correlated with modules.

Brown Green Yellow Magenta Red Black Pink Total

3′UTR 0 (0.00) 0 (0.00) 0 (0.00) 1 (5.88) 1 (1.89) 0 (0.00) 0 (0.00) 2 (0.89)
Downstream 0 (0.00) 2 (6.25) 1 (3.70) 0 (0.00) 4 (7.55) 1 (2.44) 1 (5.00) 9 (4)
Intergenic 7 (17.95) 9 (28.13) 4 (14.81) 5 (29.41) 13 (24.53) 13 (31.71) 4 (20.00) 55 (24.4)

Intron 19 (48.72) 7 (21.88) 15 (55.56) 7 (41.18) 18 (33.96) 14 (34.15) 7 (35.00) 87 (38.67)
Missense 3 (7.69) 1 (3.13) 2 (7.41) 1 (5.88) 4 (7.55) 4 (9.76) 2 (10.00) 17 (7.56)

Non coding
transcript 3 (7.69) 8 (28.13) 2 (7.41) 1 (5.88) 6 (13.21) 5 (14.64) 3 (20.00) 28 (12.44)

Regulatory 1 (2.56) 3 (9.38) 0 (0.00) 2 (11.76) 2 (3.77) 1 (2.44) 1 (5.00) 10 (4.44)
Synonymous 2 (5.13) 0 (0.00) 2 (7.41) 0 (0.00) 2 (3.77) 0 (0.00) 0 (0.00) 6 (2.67)
Upstream 4 (10.26) 1 (3.13) 1 (3.70) 0 (0.00) 2 (3.77) 2 (4.88) 1 (5.00) 11 (4.89)

dbSNP codes were annotated with InfiniumPsychArray-24v1-3_A1_b150_rsids file. Coding regions were annotated with Ensembl Variant
Effect Predictor. Data expressed as n of SNPs, (%) by columns.

3.5. Correlated SNP PheWAS

Regarding clinical features, BMI, body fat, and height were the most frequent pheno-
types associated with SNPs (Figure 2).

Concerning psychiatric disorders, we found several SNPs to be associated with three
comethylation modules. The brown comethylation module had a SNP associated with
depressive symptoms and neuroticism (rs4598994). Meanwhile, the pink comethylation
module was associated with depressive affect (rs4800995); two SNPs were associated with
schizophrenia (rs3129012 and rs356971) in the black comethylation module. Moreover,
seven correlated SNPs with four comethylation modules were associated with autoimmune
diseases. The magenta comethylation module was associated with rheumatoid arthritis
and Crohn’s disease (rs1893217). Likewise, the red (rs3095345) and pink (rs9267546 and
rs9267547) comethylation modules were associated with rheumatoid arthritis and type 1
diabetes. The black module was associated with primary sclerosing cholangitis (rs3129012
and rs356971), autoimmune vitiligo, and systemic lupus erythematosus (rs356971). Finally,
the yellow and black comethylation modules were correlated with clinical features in our
population (BMI zscore, conduct disorder, psychotic disorder, and height); likewise, these
comethylation modules were correlated with SNPs associated with similar phenotypes.
Meanwhile, the yellow module correlated with one SNP (rs10494217) associated with the
waist–hip ratio in PheWAS, and the black comethylation module correlated with three
SNPs associated with height (rs9349206, rs11761528 and rs17726787).
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4. Discussion

Several studies have evaluated the clinical features, genetic variants, and single
DNA methylation sites involved in ED, but none has considered these factors together to
date [1,5,7]. As such, little information is available about the integration of these different
levels of biological information. As far as we know, this is the first study to integrate clinical
features, genetic variants, and DNA methylation using a comethylation network analysis
in teenagers with EDs.

BMI is an important clinical characteristic of the individuals diagnosed with ED, and it
has a high impact on metabolic profiles [25]. Low BMI is a diagnosis criterion for anorexia
nervosa [12]; on the other hand, bulimia nervosa and binge-eating disorder are related to
risk of overweight/obesity [26]. In our analysis, the yellow module could be important in
the changes in BMI found in individuals with EDs. The yellow module was correlated with
BMI and rs10494217. This SNP is a missense genetic variant changing a histidine aminoacid
for an asparagine in position 50 of TBX15 gene (p.His50Asn). Previously, GWAS associated
rs10494217 with waist-hip index, a variable related to BMI [27]. The TBX15 gene is a
member of the T-box gene family, i.e., transcriptional regulators which play an important
role in the development of skeletal elements of limbs, vertebral column, and head, as well
as other organs [28,29]. Likewise, this gene was reported as a regulator of metabolism of
adipose tissue and muscle fibers, and shown to indirectly regulate body fat and BMI [30–32].
TBX15 is highly expressed in adipose tissue, and it binds to the promoter of PRDM16 gene.
PRDM16 is essential for the browning of adipose tissue; reduced expression of its protein
promotes obesity with high-fat diet and increases visceral fat [33]. As a missense variant,
rs10494217 could reduce the binding of TBX15 protein to the promoter of PRDM16, and
thus disturb adipose tissue function and alter BMI in individuals diagnosed with an ED. A
possible alteration of PRDM16 expression could induce epigenetic reprogramming, as it is
found in the yellow module in this study. CpG sites of the yellow module were enriched in
alpha-linolenic acid metabolism (PLA2G4E and PLB1) and VEGF signaling pathway (AKT3,
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NFATC2, PLA2G4E and SHC2); both pathways are involved in adipose tissue function and
BMI [34–37].

The black module could also be related to BMI in ED-diagnosed individuals. This
module was correlated with rs11761528, a SNP associated with BMI and androsterone
sulfate metabolism [27,38]. rs11761528 is an intronic polymorphism of the ZKSCAN5 gene.
There is little information about ZKSCAN5 (zinc finger with KRAB and SCAN domains
5) and its mechanism; however, animal models suggest that this gene is correlated with
adipocyte volume, systolic blood pressure, and cardiac mass [39]. Similarly, rs17726787
was previously associated with height and trunk fat-free mass in GWAS [24,40]. This SNP
is an intronic variant of the CELF1 gene. Disturbances in gene expression of CELF1 are
related with cardiopathies [41–43]. The black module was enriched in mTOR signaling
pathway (IGF1R, LPIN1 and RPS6KA2), suggesting that genetic variations like rs11761528
and rs17726787 could alter the epigenetics of this pathway. The mTOR signaling pathway
is essential for cardiac development [44,45]. Heart complications are frequent in anorexia
nervosa patients, reaching 80% in some studies. Severe anorexia nervosa can change cardiac
structure, although most structural abnormalities are reversible [46,47]. Nevertheless, there
is a lack of analyses which explore the relationships between altered genes in the module,
genetic variation, and cardiopathies in ED-diagnosed individuals.

Although schizophrenia was not correlated in our sample, we found genes and SNPs
associated with the disorder. Schizophrenia and other psychiatric disorders are associated
with anorexia nervosa [3,5]. Also, there is reportedly a high prevalence of schizophrenia
among individuals with eating disorders [48]. CpG sites conforming the black module
were enriched in morphine addiction (GABBR2, GABRP and PDE4B), and polymorphisms
of the PDE4B gene have been associated with susceptibility to schizophrenia [49]. rs356971
and rs3129012 SNPs were correlated with the black module; these SNPs are associated
with schizophrenia [50] and waist–hip index [27]. Furthermore, rs356971 and rs3129012
are associated with phenotypes related with the immunological system, hemoglobin con-
centration, white blood cells, and platelet count [51]. These SNPs are also associated with
primary sclerosing cholangitis [52], autoimmune vitiligo [53], IgA deficiency [54], and
systemic lupus erythematosus [55]. Immune-mediated mechanisms have been suggested
in the development of EDs; an increased risk for autoimmune diseases in EDs has been
reported [56,57]. Likewise, a locus in chromosome 12 was associated with anorexia nervosa,
diabetes type 1, and autoimmune diseases [3].

Some modules could have comethylation of CpG sites which was not altered by a
genetic effect in individuals diagnosed with an ED, like the turquoise and blue modules.
These modules were enriched in pathways associated with the immunological system (Th1
and Th2 cell differentiation, TNF signaling pathway, focal adhesion). The same modules
were also enriched in pathways related with development status. The construction of
these modules could be influenced by the developmental stage of individuals in the
sample, i.e., mainly teenagers [58]. One pathway is the GnRH (Gonadotropin Release
Hormone) signaling pathway, which is activated at the beginning of pubertal development,
and it depends on neuroendocrine signaling [59–61]. Another enriched pathway was
associated with adiponectin (adiponectin/CaMKK/AMPK) [62,63]. Many authors suggest
that adiponectin levels change with pubertal development [64,65]. Also, partial methylation
of these modules suggests transcriptional activation of these pathways. The detection of
these modules is more likely to be an effect of background epigenetic alterations and the
cell development stage in the tissue (white blood cells) used for the analysis.

Our study has some limitations. Firstly, we note the absence of a control group.
However, in this exploratory study, our primary aim was to detect comethylation modules
in ED patients and assess the relationship between such modules and clinical phenotypes
in ED. Second, we had a small sample with many variables evaluated. Although these
conditions could affect the statistic power of our analysis, comethylation modules aggregate
covarying CpGs and evaluate grouped CpGs, reducing the number of tests needed. Besides,
WGCNA requires at least 20 samples to construct biologically meaningful modules [66].
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Third, our data was from a sample made up of Mexican teenagers; therefore, our results
should not be applied to all populations with EDs.

5. Conclusions

This is the first study integrating clinical features, genetic variants, and DNA methy-
lation using comethylation network analysis in teenagers with ED. Our findings showed
that two comethylation modules correlated with physical features as well as with SNPs
previously associated with metabolic and psychiatric phenotypes. These data suggest that
genetic variations could alter epigenetics, and that these perturbations could be reflected
as variations in clinical features.
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