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Abstract

Background: Trauma is the number one killer of individuals 1–44 y of age in the United States. The prognosis and treatment
of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials
and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this
clinical condition.

Methods and Findings: We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ,400
clinical variables and longitudinally profiling leukocyte gene expression with ,800 microarrays. Marshall MOF (multiple
organ failure) clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor
outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a
robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes
associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of
functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK
signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination
among patient outcomes from expression changes during the 40–80 h window post-injury.

Conclusions: The genomic characterization provided here substantially expands the scope by which the molecular response
to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the
disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we
have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions.
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Introduction

Trauma is the number one killer of individuals aged 1–44 y [1],

a source of some of the top health care costs in the United States

[2], and a major global health priority [3,4]. Trauma injuries

frequently lead to infections, sepsis, and multiple organ failure

(MOF) [5,6], which contribute to 51%–61% of late trauma

mortality [7]. A number of clinical trials for treating late trauma

complications have failed, believed partly due to the inability to

identify a proper patient population as well as the limited

understanding of the interplay of biological processes underlying

post-injury inflammatory complications [8,9]. A more compre-

hensive characterization of the genomic response to trauma is

therefore required in order to increase our understanding of the

molecular basis of clinical outcomes, leading to improvements in

diagnosis and treatment.

Despite the public health implications of improved trauma care,

relatively few studies have been carried out to understand the

molecular basis of trauma recovery, particularly from a genome-

wide perspective [10]. An endotoxin experiment on healthy

volunteers [11] and a retrospective sepsis study [12] have shown a

strong genomic response to trauma-related phenotypes. However,

to date there has been no in-depth, prospective longitudinal

characterization of the genome-wide expression response to blunt-

force trauma that (a) identifies which pathways are funda-

mental determinants of the patient’s recovery trajectory, and (b)

elucidates the time period post-injury when these molecular

signatures are most informative. Uncovering these factors can

reveal new therapeutic strategies and the dynamic regimens for

their administration.

To this end, the ‘‘Inflammation and the Host Response to

Injury’’ (IHRI) research program conducted a large-scale, 28-d

prospective clinical genomics study involving 168 patients, 797

microarrays, and 393 clinical variables. The key statistical

challenge we faced was how to accurately associate early

longitudinal gene expression measured at multiple time points

with 28 d clinical trajectories captured by a constellation of clinical

variables. We developed and applied a tractable and robust

quantitative framework to analyze this complex clinical genomics

study. Specifically, we sought to capitalize on the longitudinal

structure within an individual, combining bioinformatics and

statistical tools to elucidate pathway dynamics from the gene

expression data.

We found that approximately one quarter of the genome

changes during early stages of treatment in concordance with the

observed variation in 28-d clinical outcomes. These expression

changes are coordinated into five distinct modules, which together

provide a fine-scale separation of patient outcomes. We pinpointed

several pathways that appear to be key drivers of these modules

and may be instrumental in furthering our understanding of the

disease process and identifying potential targets for therapeutic

intervention [13,14]. We investigated the dynamics of these

pathways and found that several discriminate among 28-d post-

injury patients trajectories. Specifically, we identified p38 MAPK

signaling pathway and MHC-class II genes as having the strongest

discrimination in the first 40–80 h. Such information is potentially

useful in determining the exact timing and effective dosage of

drugs targeting these pathways in trauma patients.

A lack of reproducibility of clinical genomics results [15] has

been shown to be largely due to patient heterogeneity, latent

sources of confounding, and platform-dependent non-biological

variation [16], all difficult to deal with when associating clinical

outcome with a single snapshot of gene expression. Taking

advantage of the longitudinal design of our study, we developed

and applied an approach modeling ‘‘within-patient’’ gene

expression dynamics for extracting robust signatures, thereby

accounting for patient-specific effects and being more likely to

reproduce in future patients. Our framework is likely applicable to

other complex clinical genomics studies, especially in rapidly

progressing clinical conditions.

Methods

Study Design and Patient Samples
In the IHRI prospective clinical genomics study, we studied a

cohort of 168 patients (ages 16–55 y; 107 males) from a larger

epidemiological study, involving 1977 severe blunt-force trauma

patients, conducted from 2003 to 2011 through 7 U.S. Level I

trauma centers across the United States. Figure 1 provides the flow

chart leading to the 168 patients analyzed in this paper (epide-

miological study: ClinicalTrials.gov identifier: NCT00257231).

These 168 patients were followed for up to 28 hospital days post-

injury, and their longitudinal genome-wide gene expression was

measured. To ensure patients were at risk of developing MOF,

infectious complications, and death (thereby satisfying the study

requirements), the consortium employed a set of inclusion/

exclusion enrollment criteria (Text S1). Patients with isolated

traumatic brain injury were excluded. Samples were taken at fixed

time points following injury according to study design and

independent of physician influence. Thus there was no physician

or severity of illness bias in the sample collection process.

The institutional review board of each center approved the

study, and written informed consent was obtained from all patients

or their legal next of kin. The same standardized patient care

protocol was used to minimize the impact of variability in clinical

care across centers. Patient clinical information, typically consist-

ing of .300 variables (some longitudinal), was collected by trained

nurses and entered into a central database to maintain conformity

and consistency across all participating centers. For each patient,

genome-wide longitudinal gene expression was measured for total

blood leukocytes isolated from peripheral blood samples (collec-

tion, processing, and normalization described in Text S1 and

Figure S1). The data (de-identified as defined by the Health

Insurance Portability and Accountability Act of 1996; see http://

www.gluegrant.org/trdb.htm) are freely available at http://www.

gluegrant.org; see http://www.gluegrant.org/glueadmin/register

_consortium.jsp for details.

Figure 1. Patient selection for the IHRI study.
doi:10.1371/journal.pmed.1001093.g001
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Statistical Analysis
Our proposed statistical framework (Figure 2), derived from two

a priori statistical hypotheses (Results), consists of three key steps:

Step 1. We used a time-dependent modified Marshall score

[17] (excluding the neurological component) as the measure of

developing MOF, providing an up-to-28-d Marshall score time

course trajectory for each patient. We applied hierarchical

clustering to the 168 patient Marshall score trajectories, yielding

five clusters (Figure 2, Step 1; Text S2). We used relevant patient

information, such as the 28-d mortality and morbidity rates, to

order these five subgroups (Figure 3; Table 1). This yielded a

clinically interpretable, ordered categorical MOF score (ocMOF)

ranging from i (good outcome) to v (bad outcome).

Step 2. For the gene expression analysis, we considered 126

patients with three or more arrays meeting the RNA quality

requirements among hours 12–250 (Text S2 and Figure S2). We

sought to characterize within-patient expression changes (WPEC)

by quantifying per hour log-fold change. To compute WPEC for

each probeset, we regressed log gene expression on time (in hours)

and extracted the linear slope (Figure 2, Step 2).

Step 3. We tested each probeset’s WPEC for an association

with ocMOF using an adjusted Spearman rank-based correlation

test and obtained a p-value for each probeset (Figure 2, Step 3;

Text S2). Associating WPEC with ocMOF through a rank-based

test enhances robustness, as WPEC values are used to establish an

ordering of directional changes across patients, but do not rely on

the actual magnitudes. Statistical significance of the 54,675

resulting p-values (Figure 4a) was assessed using the false

discovery rate (FDR) [18] yielding an estimate of the total

percentage of probesets associated with ocMOF as well as specific

probesets identified as significant at various FDR thresholds

(Figure 4b).

All the methodological, algorithmic, and data-filtering decisions

in Step 1 (clinical data) and in Step 2 (genomic data) were made

completely independently by two different analysts to avoid any

potential over-fitting.

Additional mathematical and algorithmic details about the

statistical methods can be found in Text S2. The R statistical

software environment (http://www.r-project.org/) was utilized to

perform all data analyses. Computer code that reproduces all

Figure 2. Schematic of the analysis framework. There are three fundamental steps in the analysis framework. Step 1: characterizing phenotypes
from longitudinal clinical data; Step 2: quantifying within-patient expression changes from the genomic data; and Step 3: statistical modeling and
hypothesis testing to relate the two.
doi:10.1371/journal.pmed.1001093.g002
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results is available as Dataset S1 with detailed documentation

provided in Text S2.

PCA-Based Analysis of WPEC Matrix
To assess the overall effectiveness of WPEC in explaining

trauma response, we performed principal component analysis

(PCA) [19] on the WPEC matrix and determined the number of

principal components (PCs) via the scree plot. We used these PCs

as explanatory variables to model each of the 393 measured

clinical variables and identified the top ten most significant clinical

variables (Text S3).

Assessment of Reproducibility
We took a principled strategy to assess reproducibility (Figure 4c

and 4d). Our strategy (a) obtains the most significant probesets

using a ‘‘discovery set,’’ (b) computes their corresponding p-values

in a ‘‘validation set,’’ and (c) assesses whether the validation set p-

values show systematic, reproducible significance. We complete

Figure 3. Order of the ocMOF subgroups. The ordering can be determined with the following clinical variables: days from injury to discharge/
death, proportion of ICU-free days, and proportion of ICU ventilation–free days. Note that all patients in ocMOF v died.
doi:10.1371/journal.pmed.1001093.g003

Table 1. Summary of the demographic and outcome variables of the 168 patients.

Variables
ocMOF i
(n = 68)

ocMOF ii
(n = 32)

ocMOF iii
(n = 47)

ocMOF iv
(n = 16)

ocMOF v
(n = 5) p-Value

Demographics

Age 31.9610.7 35.5612.4 35.9610.5 34.1612.3 31.866.5 0.1264a

Gender Female 28 (41%) 15 (47%) 16 (34%) 2 (12%) 0 (0%) 0.0128b

Gender Male 40 (59%) 17 (53%) 31 (66%) 14 (88%) 5 (100%)

Design

Sampling Phase 1 12 (18%) 10 (31%) 14 (30%) 3 (19%) 3 (60%) 0.0041b

Sampling Phase 2 24 (35%) 5 (16%) 9 (19%) 0 (0%) 0 (0%)

Sampling Phase 3 21 (31%) 8 (25%) 17 (36%) 8 (50%) 2 (40%)

Sampling Phase 4 11 (16%) 9 (28%) 7 (15%) 5 (31%) 0 (0%)

Outcomes

Death within 28 d 0 (0%) 0 (0%) 0 (0%) 2 (12%) 5 (100%) ,0.0001b

Multiple organ failure 0 (0%) 1 (3%) 30 (64%) 16 (100%) 5 (100%) ,0.0001b

Ventilator associated pneumonia 4 (6%) 7 (22%) 27 (57%) 12 (75%) 2 (40%) ,0.0001b

Non-infectious complications 8 (12%) 21 (66%) 38 (81%) 15 (94%) 5 (100%) ,0.0001b

Surgical site infections 6 (9%) 6 (19%) 14 (30%) 9 (56%) 2 (40%) ,0.0001b

Nosocomial infections 15 (22%) 19 (59%) 40 (85%) 15 (94%) 3 (60%) ,0.0001b

ICU tracheostomy 1 (1%) 2 (6%) 14 (30%) 5 (31%) 1 (20%) ,0.0001b

Days from injury to discharge/death 15.3612.3 24.669.9 31.3615.2 48.4628.7 12.266.6 ,0.0001a

Percentage of ICU-free days 60.1619.7 52.0618.9 30.9620.4 30.5620.9 4.068.9 ,0.0001a

Percentage of ICU ventilator–free days 76.2617.1 65.2616.2 45.8621.1 38.3623.1 6.0613.4 ,0.0001a

For non-categorical variables, the values represent the mean 6 standard deviation. For categorical variables, the values represent the total patients and the percentage
in the parentheses. To test for association and trend between the various variables and ocMOF as a numerical variable, the Spearman test (a) and Deviance test (b) of the
logistic or multinomial model were used, as appropriate. Order of the ocMOF subgroups could be determined based on the data for the outcome variables.
doi:10.1371/journal.pmed.1001093.t001
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the last step by comparing the validation set p-values to the Uniform

(0,1) distribution [18], which corresponds to the distribution of p-

values when there is no significance. We performed 20 cross-

validations by randomly splitting the study into discovery and

validation datasets (Text S3).

Dominant Expression Trajectories and Dynamic Co-
expression Modules

We utilized the DAVID software package to classify probesets

with FDR ,10% into 54 functionally related gene sets. We further

aggregated these gene sets into five modules according to the

similarity of their dominant trajectories across the ocMOF

subgroups (Text S4). We used the average Pearson correlation of

dominant trajectories across ocMOF subgroups as the similarity

metric. If the signs of these Pearson correlations were inconsistent

across ocMOF subgroups, then the similarity metric was set to

zero (no similarity). Next, we used Ward as the agglomeration

method and performed hierarchical clustering to obtain five

modules.

Specifically, to obtain the five dominant expression trajectories

for a gene set, we first removed patient–probeset-specific effects by

standardizing the gene expression values (scaling each patient

using the sample standard deviation of all of its probesets and

separately mean-centering each scaled probeset), and subsequently

fitted a loess curve to each ocMOF subgroup. These five dominant

trajectories were aligned to a common initial reference.

Figure 4. Statistical significance and reproducibility for the IHRIP data. (a) The histogram of 54,675 p-values from our framework. (b) The
number of significant probesets at various FDR cut-offs. These results indicate strong statistical significance. (c) Our strategy to assess reproducibility.
(d) Reproducibility assessment of our framework: 20 quantile-quantile plots for 20 cross-validations. Consistently large downward deviations from the
diagonal (dashed line) indicate reproducibility.
doi:10.1371/journal.pmed.1001093.g004

Inflammation by Within-Patient Expression Changes

PLoS Medicine | www.plosmedicine.org 5 September 2011 | Volume 8 | Issue 9 | e1001093



For each module, the five dominant trajectories were obtained

by averaging the corresponding gene sets trajectories (Text S4).

We then applied Ingenuity Pathways Analysis (IPA) to identify

significant (p-value,0.002, after Bonferroni correction) canonical

pathways among the probesets making up each module. The exact

settings employed for DAVID and IPA are discussed in Text S4.

Results

We conducted a large-scale 28-d prospective clinical genomics

study involving 168 patients, 797 microarrays, and 393 clinical

variables (Methods) in order to understand the molecular basis of

clinical responses to trauma from a genome-wide perspective. To

this end, the central data-analytic challenge we faced was to

associate longitudinal gene expression and 28-d Marshall score

time course trajectories without over-fitting the data and while

maintaining clinical interpretability. To address this challenge, we

developed a within-patient longitudinal gene expression frame-

work (Figure 2), derived from the following a priori statistical

hypotheses: (a) there are several distinct trauma recovery

trajectories (or physiological responses to trauma), reflected in

the time varying clinical measures of interest, and (b) by using each

patient as her/his own internal control while modeling the gene

expression, inter-patient heterogeneity and confounding are

reduced. The framework collapses Marshall score trajectories into

clinically interpretable, ocMOF scores and longitudinal gene

expression into within-patient expression changes (WPEC). We

associated ocMOF and WPEC for each probeset using a rank-

based correlation test (Methods).

Composite Longitudinal ocMOF Score Captures Relevant
Clinical Variation

The ocMOF score is designed to capture the clinical variation

among patients across the 28-d treatment window (Table 1;

Figure 3; Text S5). Note that ocMOF is not introduced here to

replace standard clinical measures, but instead serves as a 28-d

longitudinal composite of overall patient variation and outcomes

in which the higher the score, the worse the patient experience.

The ocMOF i subgroup captures uncomplicated recovery with

minor or no inflammatory and infectious complications, whereas

ocMOF v group captures complications leading to MOF and death.

Figure 2, Step 1 shows the average Marshall score trajectories for

the five ordinal patient subgroups. Note, for example, that the

patients with ocMOF iii (0% mortality rate) and v (100% mortality

rate) have very similar Marshall score trajectories during the first

7-d (Figures S3 and S4), and hence are difficult to separate using

just Marshall scores (e.g., for the first 7-d mean Marshall scores,

the two-sample t-test p-value is 0.506).

WPEC Measure Robustly Captures Relevant Clinical
Variation

Instead of associating absolute expression values with ocMOF,

which is the de facto analysis strategy, we instead sought to

associate the within-patient change in gene expression with clinical

outcome. For each probeset and patient, a within-patient

expression change (WPEC) was formed by quantifying per-hour

log-fold change over hours 12–250 post injury (i.e., regressing log

gene expression on time and estimating the linear slope), which

was adequate (Text S6 and Figures S5 and S6).

We first performed a PCA-based analysis to assess the overall

effectiveness of WPEC in explaining trauma response (Text S6).

Eight PCs were obtained from the WPEC matrix (54,675

probesets by 126 patients), capturing 31% of total variation

(Figure S7a). Among the 393 clinical variables, those related with

Marshall and Denver scores are among the top ten most

significant clinical variables associated with these eight PCs

collectively, with ocMOF being the most significant (Table S1).

We repeated the same analysis on the mean expression matrix

(taking the mean across the time course, which effectively

combines baseline expression and WPEC) for hours 12–250

(eight PCs, 62% variation, Figure S7b) and found sampling phase

and trauma center among the ten most significant variables

(Table S2), implying patient-specific baseline expression is

susceptible to confounders.

Significance Analysis of WPEC Associations with 28-d
Trauma Outcome

We then performed a test of association between each probeset’s

WPEC measure and ocMOF to identify probesets that show a

statistically significant association with clinical outcome (Methods).

Both the resulting p-values (Figure 4a) and the FDR calculations

(Figure 4b) indicate strong statistical significance. This information

and mean WPEC for each ocMOF subgroup for all 54,675

probesets are provided in Table S3. The estimated percentage of

probesets associated [18] with ocMOF was $24%, indicating that

at least one-quarter of the genome undergoes early within-patient

expression changes associated with 28-d trauma outcome.

A lack of reproducible results has been a major hurdle for

translational research in clinical genomics [20,21]. With thousands

of genes tested for association and many being involved in the

disease, it is important to assess the reproducibility of our associa-

tion analysis. Therefore, we developed and applied a principled

cross-validation strategy to assess reproducibility of significance

(Figure 4c). We consistently observed small p-values for the top

100 probesets (Figure 4d), suggesting strong reproducibility of

significant associations.

Dynamic Co-expression Modules Discriminating Trauma
Outcome

We took a functional genomics approach to characterize the

dynamic expression variation driving the WPEC and trauma

outcome associations (Methods). We first applied DAVID [22,23],

a state-of-the-art classification algorithm that groups genes based

on their co-occurrences in annotation terms, to functionally cluster

1,256 of the 3,663 probesets with FDR ,10% (Table S4). We

further aggregated these gene sets into five modules according to

the similarity of their dominant trajectories across the ocMOF

subgroups (Figure S8). These modules were then organized in

descending order of their average pairwise similarity metric,

Module A (largest) to Module E (smallest); their dominant

trajectories are provided in Figures S9, S10, S11, S12, S13. The

average dominant trajectory of each ocMOF subgroup in each

module shows highly coordinated dynamic co-expression patterns

that discriminate the ocMOF groups in an ordered manner

(Figure 5), especially in the early time window post-injury.

We then applied IPA, a hand-curated database of biological

interactions and functional annotations, to identify statistically

significant canonical pathways among the probesets making up

each module (Methods). In general, the significant canonical

pathways within each module were relevant and related to

inflammation and immunity (see Figure 5 caption and Table S5).

Module A’s dominant trajectory for ocMOF v is notably different

from the other ocMOF subgroups, and its significant canonical

pathway is oxidative phosphorylation. Metabolic dysfunction from

trauma and infections has adverse effects on organ systems, and it

generally originates from the mitochondrion, which is involved in

the metabolism processes through oxidative phosphorylation

Inflammation by Within-Patient Expression Changes

PLoS Medicine | www.plosmedicine.org 6 September 2011 | Volume 8 | Issue 9 | e1001093



[24,25]. For Module E, the most significant canonical pathway is

protein ubiquitination; targeting ubiquitin-mediated signaling is

thought to regulate nuclear factor-kB (NF-kB), currently of interest

as a therapeutic target in inflammatory diseases [26].

Key Pathways Associated with Trauma Outcome
To identify the key drivers of the genomic response to trauma,

we performed ontological analyses on the top 500 most significant

probesets using DAVID and IPA. For these 500 probesets, the

heatmap of all the gene expression data collected throughout the

study (stratified by day and ocMOF outcome) is provided in Figure

S14. We sought to identify gene sets that are enriched for

biological processes leading to poor trauma outcomes, show tightly

coordinated dynamic expression trajectories, and have strong

discriminatory power for post-injury MOF.

The top six canonical pathways (p-values,2.261025) identified

by IPA are dendritic cell maturation, Toll-like receptor (TLR)

signaling, p38 mitogen-activated protein kinase (p38 MAPK)

signaling, interleukin(IL)-6 signaling, production of nitric oxide

and reactive oxygen species in macrophages, and antigen

presentation (see Table S6 for the top 20). All six are involved

in cellular immune responses, implying a common theme. Two of

the pathways, TLR and p38 MAPK signaling, were recently

identified in a genome-wide expression study on early sepsis [12].

We applied DAVID to functionally cluster the top 500 probesets

(Table S7), yielding five gene groups that strongly support the IPA

results. Both analyses identified several genes that have been

individually targeted in previous model system studies [27,28]. We

discuss below two gene sets identified from the analyses, with

analogous results being shown for three others.

Antigen presentation pathway. The top gene group from

DAVID is enriched with the major histocompatibility complex

class II (MHC-II) genes, in which 16 of the 17 probesets in that

group are MHC-II, with four being in top 50. One of the top six

canonical pathways from IPA is antigen presentation (p-

value = 2.261025), which also consists of MHC-II genes (Text

S7 and Figure S15). The MHC-II molecules are relevant to MOF

because they present foreign antigens on the cell surface, which is

essential for adaptive or innate immunity [29,30]. We used the 16

MHC-II probesets (representing HLA-DMB, HLA-DPA1, HLA-

DPB1, HLA-DQA1, HLA-DRA, HLA-DRB1, HLA-DRB3,

HLA-DRB4, LOC100294318, and LOC100133678 genes)

identified by DAVID to comprise the MHC-II gene set for

subsequent analysis (Figure 6a–6c).

Figure 5. Dynamic co-expression modules and their dominant trajectories across the five ocMOF subgroups. We used DAVID to obtain
54 functionally related gene sets from the 3,663 most significant probesets (10% FDR), which were then clustered into five modules according to the
similarity of their dominant trajectories across the ocMOF subgroups. Modules A, B, C, D, and E contain 47, 37, 577, 231, and 364 probesets,
respectively. We applied IPA to identify enriched pathways within each module. This IPA analysis shortlisted the following pathways as statistically
significant (p-value,0.002, after Bonferroni correction; see Table S5): Oxidative Phosphorylation (Module A); RAN, IL-10 and IL-6 signaling, and the
Glycosphingolipid Biosynthesis-Lactoseries Pathway (Module C); Allograft Rejection Signaling, Antigen Presentation Pathway, Cytotoxic T
Lymphocyte-mediated Apoptosis of Target Cells, OX40 Signaling Pathway, Nur77 Signaling in T Lymphocytes (Module D); and Protein Ubiquitination
Pathway, Hypoxia Signaling, and Cleavage and Polyadenylation of Pre-mRNA in the Cardiovascular System (Module E). Note that Module A contains
47 probesets and one statistically significant pathway, and Module B contains 37 probesets and no statistically significant pathway.
doi:10.1371/journal.pmed.1001093.g005
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Figure 6. ocMOF and gene expression dynamics of MHC-II and p38 MAPK. For each ocMOF group, the dominant trajectory (thick colored
line) was obtained by averaging all the standardized MHC-II (a) and p38 MAPK (d) probesets trajectories (gray lines) of patients within the ocMOF
subgroup. Generally, the dominant trajectory for MHC-II increases with time for ocMOF i and ii, initially decreases and then increases for ocMOF iii, and
decreases for ocMOF iv and v. For p38 MAPK, the early dominant trajectory decreases with time for ocMOF i and ii, initially increases and then
decreases for ocMOF iii, and increases for ocMOF iv and v. The dominant trajectories within the first 100 h suggest that early expression changes (gray
region) of MHC-II (b) and p38 MAPK (e) correlate with patient outcome. The number of up-regulated MHC-II (c) and p38 MAPK (f) probesets
(computed using the two sampling time points closest to the 40–80 h post-injury interval) separates patients with ocMOF i, ii, and iii from patients
with ocMOF iv and v (p-value of the Kruskal-Wallis test is 0.00004 for MHC-II and 0.00668 for p38 MAPK).
doi:10.1371/journal.pmed.1001093.g006
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The boxplots of WPEC suggest that, in moving from ocMOF i to

v, the WPEC decreases for all 16 MHC-II probesets, exhibiting a

dosage effect (Figure S16). The dominant expression trajectories

also exhibited a similar trend (Figure 6a). The difference among

dominant trajectories is particularly pronounced during the 40–

80 h window, suggesting that early expression changes can be used

to discriminate among the patient ocMOF scores (Figure 6b).

Using the two time points closest to 40–80 h post-trauma, we

counted the number of up-regulated MHC-II probesets within

each patient, and observed consistently high counts for ocMOF i, ii,

and iii and low counts for ocMOF iv and v (Figure 6c).

p38 MAPK signaling pathway. All of the top five canonical

pathways from IPA contain the mitogen-activated protein kinase

14 (MAPK14) gene, and all four probesets representing it are

among the top 500 with three being in top 50. The MAPK14 gene

is an isoform of the p38 MAPK gene, the signaling pathway of

which (one of the top five canonical pathways, Figure S17) is

known to play an important role in driving the inflammatory

response to either microbial products (via PAMPs), endogenous

danger signals (via DAMPs or alarmins), and pro-inflammatory

cytokines by phosphorylating transcription factors, resulting in the

further expression of inflammatory mediators [31,32,33]. This

suggests that the p38 MAPK signaling pathway is an integral

signaling mechanism for the other top five canonical pathways and

hence the presence of MAPK14 in those pathways. Using IPA, we

obtained an additional eight (out of the top 500) probesets

representing the genes involved in the p38 MAPK signaling

pathway (Text S7), giving us the p38 MAPK gene set (12

probesets, representing MAPK14, CREB5, IL1R1, IL1RN,

IRAK2, IRAK3, MAP2K6, and TIFA) for further analysis

(Figure 6d–6f).

For the p38 MAPK probesets, we observed a trend opposite

that of the MHC-II probesets. Generally, WPEC increased in

moving from ocMOF i to v (Figure S18), and the early dominant

trajectories also discriminated the ocMOF groups (Figure 6e–6f).

A similar analysis was performed on three other gene sets,

representative of the remaining top six canonical pathways,

suggesting trends similar to those of p38 MAPK (Text S7 and

Figures S19, S20, S21, S22, S23, S24).

Using a controlled endotoxin experiment dataset [11], which

served as a corroborative experiment, we obtained dominant

trajectories for MHC-II and p38 MAPK among healthy

individuals administered with endotoxin (Text S7). The trends of

these trajectories from $5 h were similar to those seen with

ocMOF i and ii (Figure S25).

Discussion

In this paper we have provided a comprehensive analysis of the

longitudinal IHRIP study, taking into account all major sources of

collected data. Despite inherent complexities in clinical genomic

data, we showed that robust and relevant genomic signatures can

be obtained with our framework, aimed at facilitating straightfor-

ward translation into a clinical setting. Our results have

implications for the design and analysis of future large-scale

clinical genomics studies.

We showed that clinical association using WPEC is straight-

forward to calculate and appears to be robust to confounders.

Our framework collapses Marshall score trajectories and

longitudinal gene expression into clinically interpretable quanti-

ties, permitting reliable statistical modeling without over-fitting

the data. Using our framework we identified genes whose WPEC

discriminate among the ocMOF outcomes. One of the main

advantages of utilizing WPEC is that it leads more directly than

do other measures to a clinical translation of the results, because

it captures the change in expression within a patient, regardless of

the patient’s baseline value, which is susceptible to patient

heterogeneity, confounders, and technical effects. On the other

hand, any snapshot, baseline, or average expression profile will be

susceptible to these effects. We repeated the above analyses using

both an estimate of the hour 12 expression value and the average

over the entire time course. Both measures showed evidence of

being influenced by confounders (particularly batch and trauma

center effects), and neither produced biological significance

greater than WPEC.

We performed a global functional genomics analysis of the top

3,663 statistically significant WPEC associations with trauma

outcome (FDR = 10%), identifying five dynamic co-expression

modules highly enriched for immune pathways. We also

performed a more focused pathway analysis of the top 500

associations (FDR = 0.6%) and identified a number of relevant

gene sets. We pinpointed the MHC-II and p38 MAPK gene sets,

showing that their expression dynamics suggest their potential as

biomarkers. Moreover, our analysis suggests that the strongest

discrimination occurs in the first 40–80 h post-injury.

From the dynamic co-expression modules results, one can

consider the configuration of ocMOF-specific trajectories within

and among these modules along with the biological significance of

the modules to construct a spectrum of biologically relevant gene

expression variation discriminating the clinical outcomes (ocMOF

i to v). For example, our module-based analysis pointed to the NF-

kB pathway. Previous studies have indicated that this pathway,

which is downstream of the TLR, is critical in the context of post-

traumatic immune dysfunction-induced poor outcomes [34,35].

Taken as a whole, this systems analysis revealed a large and

coordinated gene expression response to trauma, characterized by

the modules and gene sets, indicating that something is to be

gained from a systems-level understanding [36] of the molecular

biology of post-injury MOF in forming therapeutic targets and

prognostic procedures.

Our findings on the down-regulation of MHC-II genes among

patients from ocMOF iv to v are consistent with persistently low

HLA-DR expression that has been associated with septic

complications [37,38], because a marked depression of cell-

mediated immune function (i.e., immunosuppression) is believed

to play a role in sepsis after severe trauma. HLA-DR is a

promising molecular surrogate marker for treating post-injury

inflammatory complications [39], and monitoring HLA-DR

expression to treat trauma patients with immunomodulatory

drugs such as interferon-c has been studied. Importantly, our

genome-wide approach suggests the association of the entire

MHC-II gene set (represented by 16 probesets, Kruskal-Wallis p-

value = 0.00004, Figure 6c), besides HLA-DR (represented by five

of these 16 probesets, Kruskal-Wallis p-value = 0.00029), may be

more informative. Persistent systemic inflammatory response

syndrome (SIRS) is shown to be predictive of nosocomial infection

in trauma patients [40,41], which is consistent with the up-

regulation of genes in the p38 MAPK signaling pathway among

patients from ocMOF iii to v.

It has been posited that MOF is an outcome of an inappropriate

generalized inflammatory response, involving the interplay

between mediators (e.g., cytokines and chemokines) and effector

cells (e.g., neutrophils and macrophages) [42]. The SIRS and

compensatory response syndrome (CARS) are proposed to be

involved in the etiology of MOF [7]. It may well be that the

increase in p38 MAPK expression seen here after severe trauma

reflects the development of SIRS while a persistent decrease in

MHC-II expression reflects the development of CARS (Text S8),
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which is supported from our agnostic, genome-wide analysis.

Beyond the definitions of CARS and SIRS, the modern concept of

post-traumatic immune suppression is also believed to be a major

cause of secondary infections or organ dysfunction [43,44].

Although it was to date the largest clinical genomic study on

trauma response of which we are aware, the current study has

certain limitations. Since gene expression was measured for total

blood leukocytes isolated from peripheral blood samples, some of

the differential expression changes identified could be confounded

by changes in individual leukocyte subpopulations. Arguably, the

predictive utility of the identified biomarkers still exists.

In this study, we identified relevant pathways and gene sets

showing a coordinated pattern of expression variation associated

with response to trauma at a genome-wide scale. These findings

potentially provide the most comprehensive picture of the gene

expression response to trauma to date, thereby demonstrating the

power of moving beyond candidate gene studies [45] of this

clinical condition. The expression variation at the genomic level

that we have characterized among patients may help to provide a

more comprehensive set of drug targets and a means to identify

relevant subsets of patients for which these may be effective.

Supporting Information

Dataset S1 Annotated scripts that reproduce the results
in the paper. The scripts run the entire analysis in R statistical

software (cran.r-project.org). See Text S2 for the details and

http://genomine.org/trauma/ for instructions on obtaining the

full dataset.

( )

Figure S1 Microarray collection time points by patient.
X-axis is the time from injury and Y-axis patient IDs. Each circle

represents a microarray collected. Intended sampling was on days

0, 1, 4, 7, 14, 21, and 28 since injury, but depending on the total

days from injury to discharge/death, the number of microarrays

per patient ranged between 2 to 7.

(PDF)

Figure S2 Heatmap of patient–patient correlations.
Using the WPEC matrix we computed patient–patient

correlations for 129 patients. The heatmap of dichotomized

correlations (black = negative; gray = positive) identified two

patients as outliers with completely opposite correlations from

the rest. We removed these two patients due to potential array

quality issues.

(PDF)

Figure S3 Heatmap of the modified Marshall scores on
day 0, 2, 3, …, 20 and the dendrogram of the
hierarchical clustering. Hierarchical clustering was performed

on the modified Marshall score trajectories, where missing scores

were imputed using k-nearest neighbor. The left plot is the

dendrogram of the hierarchical clustering from which we obtained

five subgroups: ocMOF i to v. Patients from ocMOF i to iii tend to

have low modified Marshall scores, with patients with ocMOF

i recovering to 0 first, followed by ocMOF ii and iii, while patients

from ocMOF iv and v tend to have high modified Marshall scores

throughout the first 20 d.

(PDF)

Figure S4 Marshall score trajectories and ocMOF. Thin

dashed lines in gray correspond to patient-specific Marshall score

trajectories, and thick solid lines to the mean trajectories of the

ocMOF subgroup. Only the observed modified Marshall scores

are used to make these plots, but the actual clustering was

performed on imputed data. Note that four out of five patients

with ocMOF v died on or before day 10 post-injury, and that the

red dashed line is for the remaining patient who died on day 24

post-injury. Mean ocMOF trajectories, together with other

relevant patient clinical information, allowed us to order the

ocMOF clusters in terms of overall patient severity. In particular,

ocMOF i = good outcome (fast and uncomplicated recovery) and

ocMOF v = very bad outcome (death).

(PDF)

Figure S5 Probesets with different dynamics. (a–d)

Expression trajectory of probesets in the time window 0–250 h

(shown in a and c) and 12–250 hours (shown in b and d). Patient-

specific trajectories are represented by gray lines, and population

average trajectories and population average linear trajectories are

represented by the black and red lines respectively. (a) and (b)

correspond to the most non-significant probeset from the DWPEC

analysis, where the differences between the average trajectory and

average linear trajectory are minimal. (c) and (d) correspond to the

most significant probeset from the DWPEC analysis, where the

differences between the average trajectory and average linear

trajectory are large in time window 0–250 h but are reduced in

time window 12–250 h.

(PDF)

Figure S6 Reasoning to exclude hours ,12. Boxplots of

mean-square difference (MSD) between the population average

trajectory and average linear trajectory for the 5,000 most non-

significant (ns) and significant (sig) probesets from the DWPEC

analysis. We investigated the MSD for four different time

windows: hour 0–250, hour 4–250, hour 8–250 and hour 12–

250. The MSDs for the non-significant probesets are very similar

across all four time windows, but the MSDs for the significant

probesets are generally high for hour 0–250 and tend to decrease

as we progressively exclude the early hours.

(PDF)

Figure S7 The scree plots to determine the number of
principal components. (a) corresponds to the WPEC matrix

and (b) to the mean expression matrix.

(PDF)

Figure S8 The dendrogram for grouping the 54 func-
tional related gene sets into five modules according to
the similarity of their dominant trajectories across the
ocMOF subgroups.

(PDF)

Figure S9 The dominant trajectories for Module A. For

each ocMOF subgroup, where (a)–(e) correspond to ocMOF i to v,

the dominant trajectories of the module (thick colored lines) are

obtained by averaging all dominant trajectories of gene sets

belonging to the module (gray lines). (f) plots all five ocMOF

subgroup dominant trajectories for Module A in one plot by

aligning them to a common initial reference.

(PDF)

Figure S10 The dominant trajectories for Module B. See

the caption for Figure S9 for details.

(PDF)

Figure S11 The dominant trajectories for Module C. See

the caption for Figure S9 for details.

(PDF)

Figure S12 The dominant trajectories for Module D. See

the caption for Figure S9 for details.

(PDF)
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Figure S13 The dominant trajectories for Module E. See

the caption for Figure S9 for details.

(PDF)

Figure S14 The heatmap of ranked gene expressions for
all 168 patients over 28 d for the 500 most significant
probesets from our analysis. For each probeset, we ranked

the expression values across all 168 patients over 28 d, i.e. 797

microarrays (green = low rank, black = average rank, red = high

rank). The columns are microarrays ordered by days, and within

each day by ocMOF values. The intended sampling was on days 0,

1, 4, 7, 14, 21, and 28 since injury.

(PDF)

Figure S15 The antigen presentation pathway. The

MHC-II genes have negative spearman correlation coefficients

between WPEC and ocMOF (colored blue).

(PDF)

Figure S16 ocMOF and gene expression dynamics of
MHC-II. (a) Boxplots of WPEC versus ocMOF indicate a

negative dosage effect as we go from ocMOF i to v (p-value of the

Spearman’s test ,10215). (b) For each ocMOF group, the

dominant trajectory (thick colored line) was obtained by averaging

all the standardized MHC-II probeset trajectories (gray lines) of

patients within the ocMOF subgroup. Generally, the dominant

trajectory increases with time for ocMOF i and ii, initially decreases

and then increases for ocMOF iii, and decreases for ocMOF iv and v.

Both WPEC and the dominant trajectories exhibit similar trend.

(c) The dominant trajectories within the first 100 h suggest that

early expression changes (gray region) correlate with patient

outcome. (d) The number of up-regulated MHC-II probesets

(computed using two time points near hour 40–80) separates

patients with ocMOF i, ii, and iii from patients with ocMOF iv and v

(p-value of the Kruskal-Wallis test is 0.00004).

(PDF)

Figure S17 The p38 MAPK signaling pathway. Among the

top 500 probesets, 15 are in this canonical pathway (representing

11 genes). Those genes in blue and red have negative and positive

Spearman correlation coefficients between WPEC and ocMOF,

respectively. TRADD, MEF2, and Max were removed from

further analysis because their correlations were inconsistent with

those identified by IPA.

(PDF)

Figure S18 Gene expression profiles of the 12 probesets
involved in the p38 MAPK signaling pathway. (a) Boxplots

of WPEC versus ocMOF indicate a positive dosage effect as we go

from ocMOF i to v (p-value of the Spearman’s test ,10215). (b) For

each ocMOF group, the dominant trajectory (thick colored line)

was obtained by averaging all the standardized p38 MAPK

probeset trajectories (gray dotted lines) of patients within the

ocMOF subgroup. Generally, the early dominant trajectory

decreases with time for ocMOF i and ii, initially increases and

then decreases for ocMOF iii, and increases for ocMOF iv and v.

Both WPEC and the dominant trajectories exhibit similar trends.

(c) The dominant trajectories within the first 100 h suggest that

early expression changes (gray region) correlate with patient

outcome. (d) The number of up-regulated p38 MAPK probesets

(computed using two time points near hour 40–80) separates

patients with ocMOF i, ii, and iii from patients with ocMOF iv and v

(p-value of the Kruskal-Wallis test is 0.00668).

(PDF)

Figure S19 The Toll-like receptor (TLR) pathway.
Among the top 500 probesets, 12 are in this canonical pathway

(representing nine genes). Those genes in blue and red have

negative and positive Spearman correlation coefficients between

WPEC and ocMOF, respectively. JNK1 was removed from

further analysis because its correlation was inconsistent with that

identified by IPA.

(PDF)

Figure S20 Gene expression profiles of probesets in-
volved in the TLR pathway. Similar to p38 MAPK signaling

pathway. See Figure S18 for details. Altogether 11 probesets

(representing eight genes) were used for this pathway. For (a) the

p-value of the Spearman’s test ,10215 and for (d) the p-value of

the Kruskal-Wallis test is 0.02092.

(PDF)

Figure S21 The Interleukin (IL)-6 signaling pathway.
Among the top 500 probesets, 14 are in this canonical pathway

(representing ten genes). Genes in blue and red have negative and

positive Spearman correlation coefficients between WPEC and

ocMOF, respectively. JNK was removed from further analysis

because its correlation was inconsistent with that identified by IPA.

(PDF)

Figure S22 Gene expression profiles of probesets in-
volved in the IL-6 signaling pathway. Similar to p38 MAPK

signaling pathway. See Figure S18 for details. Altogether 13

probesets (representing nine genes) were used for this pathway. For

(a) the p-value of the Spearman’s test ,10215 and for (d) the p-

value of the Kruskal-Wallis test is 0.00898.

(PDF)

Figure S23 The production of nitric oxide and reactive
oxygen species in macrophages pathway. Among the top

500 probesets, 18 are in this canonical pathway (representing 13

genes). Genes in blue and red have negative and positive

Spearman correlation coefficients between WPEC and ocMOF,

respectively. JNK and PP1/PP2a were removed from further

analysis because their correlations were inconsistent with those

identified by IPA. IkB and p38 MAPK were removed because of

their complexity in this pathway.

(PDF)

Figure S24 Gene expression profiles of probesets in-
volved in the production of nitric oxide and reactive
oxygen species in macrophages pathway. Similar to p38

MAPK signaling pathway. See Figure S18 for details. Altogether

11 probesets (representing nine genes) were used for this pathway.

For (a) the p-value of the Spearman’s test ,10215 and for (d) the

p-value of the Kruskal-Wallis test is 0.01370.

(PDF)

Figure S25 Gene expression profiles of MHC-II and p38
MAPK in a controlled endotoxin experiment. (a,b) The

mean of the log-expression of MHC-II (a) and p38 MAPK (b).

The black and red lines correspond to the healthy patients

administered with placebo and endotoxin, respectively. After

hour 5 (the region to the right of the dotted vertical line), the

mean trajectories corresponding to healthy patients administered

with endotoxin are similar to the dominant trajectories of ocMOF

i and ii.

(PDF)

Table S1 The ten most significant clinical variables (out
of 393) associated with the eight principal components
from the WPEC matrix. Legend: *Clinical variables are

treated as categorical variables, and R2 corresponds to McFad-

den’s pseudo R2.

(PDF)
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Table S2 The ten most significant clinical variables (out
of 393) associated with the eight principal components
from mean expression matrix. Legend: *Clinical variables

are treated as categorical variables, and R2 corresponds to

McFadden’s pseudo R2.

(PDF)

Table S3 Ranking of the 54,675 probesets according to
the significance analysis of WPEC associations with 28-d
trauma outcome.
(XLS)

Table S4 Fifty-four functional related gene sets from
DAVID for the 3,663 significant (FDR = 10%) probesets.
(XLS)

Table S5 The top five canonical statistically signifi-
cant (p-value,0.002, after Bonferroni correction)
pathways for the five dynamic co-expression modules.
For each canonical pathway we report the p-value of Fisher’s

exact test that ascertains enrichment and the proportion of

genes in the pathway that were actually in the module within

the brackets, and the gene names (in italics). Note that N.A.

denotes no significant pathways with three or more genes were

identified.

(PDF)

Table S6 The top 20 canonical pathways for the top 500
probesets from WPEC and ocMOF association analysis
(IPA, obtained May 2010). Legend: p, p-value of Fisher’s exact

test for ascertaining enrichment; and ratio, the proportion of genes

in the pathway that are in the top 500.

(PDF)

Table S7 Detailed results of DAVID analysis on the top 500
probesets from WPEC and ocMOF association analysis.
(PDF)

Text S1 Inclusion/exclusion criteria and gene expression

information.

(PDF)

Text S2 Additional details on statistical framework.

(PDF)

Text S3 Details on assessing WPEC robustness and reproducibility.

(PDF)

Text S4 Details on module, pathway, and gene set analysis.

(PDF)

Text S5 Marshall MOF-derived clinical outcomes.

(PDF)

Text S6 Results on assessing WPEC robustness.

(PDF)

Text S7 Key pathways associated with trauma outcomes.

(PDF)

Text S8 p38 MAPK and MHC-II as biomarkers for SIRS and

CARS.

(PDF)
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Editors’ Summary

Background. Trauma—a serious injury to the body caused
by violence or by an accident—is a major global health
problem. Every year, events that include traffic collisions,
falls, blows, and fires cause injuries that kill more than 5
million people (9% of annual global deaths). Road traffic
accidents alone are responsible for 1.3 million deaths a year
and, if current trends continue, will be the fifth leading cause
of death worldwide by 2030. Moreover, in many countries,
including the US, trauma is the number one killer of
individuals aged 1–44 y. Trauma can kill people rapidly
through loss of blood or serious physical damage to internal
organs, but it can also lead to localized infections and to
sepsis, an infection of the bloodstream that is characterized
by an amplified, body-wide (systemic) inflammatory
response. Inflammation—redness, pain, and swelling—is an
immune system response that normally provides protection
against infections, but systemic inflammation can result in
multiple organ failure (MOF) and death.

Why Was This Study Done? Inflammatory complications
of trauma are responsible for more than half of late trauma
deaths, but at present it is impossible to predict which
patients with major injuries will recover and which will spiral
down into MOF and death, because the biological processes
that underlie post-injury inflammatory complications are
poorly understood. If the changes in gene expression (the
process that converts the information encoded in genes into
functional proteins) that accompany systemic inflammation
could be elucidated, it might be possible to improve the
diagnosis of MOF and to develop better treatments for post-
trauma inflammatory complications. In this prospective,
longitudinal clinical genomics study (part of the Inflammation
and Host Response to Injury multi-disciplinary research program
[IHRI]), the researchers developed an approach to associate early
within-patient gene expression changes with later clinical
outcomes. A prospective study is one in which patients with a
specific condition are enrolled and then followed to see how
various factors affect their outcomes; a longitudinal study
analyzes multiple samples taken at different times from
individual patients; a clinical genomics study investigates how
genes and gene expression affect clinical outcomes.

What Did the Researchers Do and Find? The researchers
followed 168 patients for up to 28 d after they experienced
blunt-force trauma (injuries caused when the human body
hits or is hit by a large object such as a car). Using a
molecular biology tool called a DNA microarray, they
determined gene expression patterns in leukocytes (a type
of immune system cell) isolated from multiple blood samples
collected from each patient during the first few days after
injury. Using clinical information collected by trained nurses,
they organized the patients into five outcome categories
based on a measure of MOF known as the Marshall score.

Finally, they developed a statistical method (an analysis
framework) to associate the early changes in gene
expression with clinical outcomes.
A quarter of the patients’ genes showed early expression
changes that were associated with longer-term post-injury
inflammatory complications. Among the associations re-
vealed by this analysis, down-regulation (reduced expres-
sion) of MHC-class II genes (which encode proteins involved
in antigen presentation, the process by which molecules
from foreign invaders are presented to immune cells to
initiate an immune response) and up-regulation of genes
encoding components of the p38 MAPK signaling pathway
(which helps to drive inflammatory responses) between 40
and 80 h post-injury were particularly strongly associated
with longer-term post-injury complications and provided the
strongest discrimination between patient outcomes.

What Do These Findings Mean? The statistical approach
used in this study to link the early changes in gene
expression that occur after trauma to clinical outcomes
provides a detailed picture of genome-wide gene expression
responses to trauma. These findings could help scientists
understand why some patients develop inflammatory
complications of trauma while others do not, and they
could help to identify those patients most at risk of
developing complications. They could also help to identify
targets for therapy, although further studies are needed to
confirm and extend these findings. Importantly, the
quantitative approach developed by the researchers for
analyzing associations between within-patient gene changes
over time and clinical outcomes should provide more robust
predictions of outcomes than single measurements of gene
expression and could be applicable to genomic studies of
other rapidly progressing clinical conditions.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001093.

N More details about the Inflammation and Host Response to
Injury research program are available; the program’s
website includes a link to an article that explains how
genomics can be used to understand the inflammatory
complications of trauma

N The World Health Organization provides information on
injuries and on violence and injury prevention (in several
languages)

N The US National Institutes of Health has a factsheet on
burns and traumatic injury in the USA

N The US Centers for Disease Control and Prevention has
information on injury and violence prevention and control

N MedlinePlus provides links to further resources on injuries
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