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Advantages in Delineation, Absorbed Dose-
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Purpose: The study’s purpose was to compare the performance of artificial intelligence (AI) in auto-contouring compared with a
human practitioner in terms of precision, differences in dose distribution, and time consumption.
Methods and Materials: Datasets of previously irradiated patients in 3 different segments (head and neck, breast, and prostate cancer)
were retrospectively collected. An experienced radiation oncologist (MD) performed organs-at-risk (OARs) and standard clinical target
volume delineations as baseline structures for comparison. AI-based autocontours were generated in 2 additional CT copies; therefore,
3 groups were assessed: MD alone, AI alone, and AI plus MD corrections (AI+C). Differences in Dice similarity coefficient (DSC) and
person-hour burden were assessed. Furthermore, changes in clinically relevant dose-volume parameters were evaluated and compared.
Results: Seventy-five previously treated cases were collected (25 per segment) for the analysis. Compared with MD contours, the mean DSC
scores were higher than 0.7 for 74% and 80% of AI and AI+C, respectively. After corrections, 17.1% structures presented DSC score
deviations higher than 0.1 and 10.4% dose-volume parameters significantly changed in AI-contoured structures. The time consumption
assessment yielded mean person-hour reductions of 68%, 51%, and 71% for breast, prostate, and head and neck cancer, respectively.
Conclusions: In great extent, AI yielded clinically acceptable OARs and certain clinical target volumes in the explored anatomic
segments. Sparse correction and assessment requirements place AI+C as a standard workflow. Minimal clinically relevant differences
in OAR exposure were identified. A substantial amount of person-hours could be repurposed with this technology.
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Introduction
Artificial intelligence (AI) is being increasingly related
to current advances in medical care worldwide.
Automation of processes and usage optimization of both
material and human resources are 2 aspects to highlight
among its advantages. The extent of its capabilities is a
subject of research in different medical areas, such as
oncology. In this regard, many opportunities arise in the
field of radiation therapy (RT).1

Closely linked to technological development, workflows
in RT depend in great manner on soft- and hardware avail-
ability. Quality assurance, treatment precision, and patient
r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adro.2023.101394&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gustavo.sarria@ukbonn.de
mailto:gustavo.sarria@ukbonn.de
https://doi.org/10.1016/j.adro.2023.101394
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adro.2023.101394


2 G.R. Sarria et al Advances in Radiation Oncology: March 2024
safety are important items related to the latter, which have
been historically performed by human practitioners.2 As a
part of these, a correct segmentation of organs at risk
(OARs) and treatment target volumes defines a starting
point for the subsequent involvement of other technological
components.3 This duty commonly lies on the professional
team of an RT department and is particularly time-consum-
ing, which could widely vary according to expertise and case
difficulty. The process involves interpreting complex medical
images and making critical decisions about where to target
the radiation delivery. Additionally, manual contouring is
subject to interobserver variability (ie, different clinicians
may contour the same image differently), leading to incon-
sistencies and potential errors.4,5 Nonetheless, AI has partly
replaced human-performed tasks, enhancing the overall effi-
cacy at all workflow levels.1

Modern AI solutions include deep learning algorithms,
such as convolutional neural networks (CNNs), which are
trained on large datasets of medical images. CNNs can iden-
tify patterns in medical images and learn to distinguish
between different anatomic structures, such as tumors and
healthy tissue.6 Despite these recent advances, AI still faces
certain challenges. There is a need for validation studies to
ensure that the AI algorithms are accurate and reliable.
These should focus on comparing AI-powered autocontour-
ing with manual contouring by experts to ensure that the AI
algorithm produces comparable or better results.7 On the
other hand, there are also concerns about a potential
replacement of human expertise with AI-powered autocon-
touring. Although AI can enhance the accuracy and consis-
tency of contouring, it cannot replace the knowledge and
clinical judgment of radiation oncologists, physicists, or radi-
ation therapists. Therefore, it is essential to ensure that AI is
used as a tool to support and optimize clinical decision-mak-
ing rather than as a replacement for human expertise.

Given the abovementioned facts, we deemed relevant
to address these concerns and hypothesized that AI-pow-
ered autocontouring has the potential to produce human-
like contours, while avoiding major deviations in dose dis-
tribution and saving significant person-hours.
Methods and Materials
Target and OAR delineation

An internal assessment at our department among 5 radi-
ation oncologists was performed to determine which practi-
tioner could achieve the most precise and swift delineations
based on template cases defined according to the European
Society for Radiotherapy and Oncology, the American Soci-
ety for Radiation Oncology, or the Global Harmonization
Group contouring guidelines.8-11 This expert would assume
thereafter all manual contours, which were to be considered
the baseline standard for comparison.
Cases previously treated at our department encom-
passing prostate (PC), breast (BC), and head and neck
cancer (HNC) were screened for DICOM datasets. These
cases encompassed adjuvant treatment cases for BC, pri-
mary for PC, and both treatment modalities for HNC,
and were selected randomly until reaching the target
number, regardless of anatomic variants. Only cases with
nonanatomic elements (bolus, prostheses other than oral,
pacemakers, etc) were excluded. After selection, they were
anonymized and DICOM sets were tripled for intergroup
comparison. The medical doctor contours (MD) were
defined on the first DICOM set, in a controlled environ-
ment assuring no distractions and dedicated time, to emu-
late an ideal scenario. To this end, using built-in
autodelineation and interpolation tools was allowed. For
comparison purposes, the total contouring time was mea-
sured and registered. Baseline structures included OARs
in all cases and certain clinical target volumes (CTVs) in
PC and BC segments, according to recommendations
from international guidelines.8-10 These structures are
listed in Table 1. Once the MD-baseline contours were
created, deep learning−based autocontours were gener-
ated on the remaining 2 DICOM set copies with Limbus
Contour v.1.6.0 (Limbus AI Inc), yielding an AI-only and
AI plus MD corrections (AI+C) sets. The former
remained unmodified, while the same MD manually cor-
rected the latter, in order to achieve structures better fit-
ting the actual clinical practice, if necessary. Differences
between all contouring groups were assessed by means of
the Dice similarity coefficient (DSC). A 0.7 or lower value
was deemed as a geometric major difference. Corrections
from AI with a ≥0.1 difference were considered major as
well. All delineations were created with Eclipse version
15.5 (Varian Medical Systems).
Planning and dose delivery comparison

The original dose distribution was retrieved and placed
unmodified on the MD sets for baseline assessment. Fur-
thermore, these were also rigidly copied on the AI and AI
+C contours and raw differences in OAR exposure were
compared with the baseline, even if the constraints were
not met, as the purpose was to identify the magnitude of
deviations in organ exposure. Several constraints corre-
sponding to common practice were adopted for each seg-
ment (Table 1), according to different published trials or
guidelines (Appendix E1).
Time-consumption assessment

Times from AI processing, MD, and AI+C were col-
lected for descriptive purposes and person-hours were
calculated for comparison between groups.



Table 1 Anatomic segments, structures, and dose
constraints

Segment Structures Constraint

Breast Lungs D50 (b)

D35 (b)

D15 (b)

Breasts* D5 (c)

D0.1 cc (c)

Heart Dmean

D10

D5

LAD Dmean

V30

Spinal cord D0.035 cc

D2 cc

Thyroid Dmean

Esophagus Dmean

Prostate Bowel V45

Bladder V70

V45

Anal canal Dmean

Femurs V50 (b)

D0.035 cc (b)

Penile bulb V50

Rectum V72

V70

V45

Cauda equina D0.035 cc

Lymphatic pathways CTV -

Seminal vesicles -

Prostate -

Head and neck Plexi D3 cc (b)

D0.035 cc (b)

Oral cavity Dmean

Esophagus Dmean

V35

Submandibular Dmean (b)

Thyroid Dmean

Larynx Dmean

D0.035 cc

Lips Dmean

D0.035 cc

Pharyngeal constrictor Dmean

(continued on next page)

Table 1 (Continued)

Segment Structures Constraint

Parotids Dmean (b)

D7 cc (b)

Spinal cord D0.035 cc

Mandible -

Abbreviations: b = bilateral; c = contralateral; CTV = clinical target
volume; D = dose delivered at relative (%) volume (or absolute if
indicated); LAD = left anterior descending artery; V = volume
receiving certain dose (Gy).
* Breast contours were used as both organs at risk and CTV.
Structure and constraint list per anatomic segment. The constraint
references are listed in the Appendix E1.
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Statistical analysis

Mean DSC values plus standard deviation (SD) were
registered for each studied anatomic segment in AI and
AI+C and matched to those MD-generated for descriptive
purposes. Differences in the resulting mean OAR-doses
for each constraint were compared with the unpaired t
test for independent variables. A P < .05 value determined
a significant difference. The analysis was performed with
MATLAB R2020b (The MathWorks Inc).
Ethics statement

Institutional review board release was obtained before
initiation, due to the retrospective nature of this study. All
datasets were anonymized before inclusion. This investi-
gation was conducted according to the principles of the
Declaration of Helsinki.
Results
Seventy-five cases were collected (25 for each anatomic
segment) for the analysis. For BC structures, the overall
mean DSCs were 0.82 (SD § 0.19) for AI+C and 0.79 (SD
§ 0.18) for AI. All structures showed DSC scores higher
than 0.7, excepting for the left anterior descending artery
(LAD) with 0.37 (SD § 0.11) and 0.36 (SD § 0.11) for AI
+C and AI, respectively (Fig. 1). For PC, the overall mean
DSC were 0.84 (SD § 0.09) and 0.75 (SD § 0.18). Major
differences were detected for anal canal (0.68, SD § 0.14,
and 0.27, SD § 0.1) and penile bulb (0.69, SD § 0.13, and
0.60, SD § 0.17). The cauda equina and seminal vesicles
showed major differences only in the AI group (0.64, SD
§ 0.09, and 0.62, SD § 0.15; Fig. 2). Regarding HNC, the
overall mean DSC were 0.72 (SD § 0.15) and 0.70 (SD §
0.16). Major differences were found in brachial plexi right
(0.42, SD § 0.07, and 0.37, SD § 0.11) and left (0.43, SD



Figure 1 Dice similarity coefficient scores in breast cancer. MD baseline contours were compared with AI alone and AI
plus MD corrections. Abbreviations: AI = artificial intelligence; MD = experienced radiation oncologist.

Figure 2 Dice similarity coefficient scores in prostate cancer. MD baseline contours were compared with AI alone and AI
plus MD corrections. Abbreviations: AI = artificial intelligence; MD = experienced radiation oncologist.
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§ 0.06, and 0.41, SD § 0.09), lips (0.57, SD § 0.09, and
0.45, SD § 0.09), and pharyngeal constrictor (0.62, SD §
0.06, and 0.61, SD §0.07; Fig. 3). Major corrections were
required for anal canal, bowel bag, cauda equina, breasts,
and lips, which represent 17.1% of all structures.

In terms of OAR exposure, significant dose distribu-
tion differences were identified for BC AI in contralateral
breast D0.1 cc (P = .041). For PC AI+C and AI in mean
bowel V45 (P = .0007 and P < .0001), anal canal Dmean

(P = .0051 and P = .0013) and cauda equina D0.035 cc (AI
only, P < .0001). In HNC, only mean lips D0.035 cc

(P = .02 and P = .014) were significantly different. These
translate into 10.4% of all structures presenting with
dose-absorption deviations. The absolute dose differences
per each constraint and box plots can be observed in
Appendix E1 and E2, respectively.
The time consumption analysis yielded mean MD seg-
mentation times (seconds) of 475 (SD § 70), 752 (SD §
80), and 644 (SD § 45), for BC, PC, and HNC, respec-
tively. Similarly, the mean correction times of AI-gener-
ated contours were 153 (SD § 40), 367 (SD § 91), and
187 (SD § 15), and the AI processing times were 354 (SD
§ 25), 201 (SD § 18), and 140 (SD § 48). Proportionally,
these represent mean person-hour reductions of 68%,
51% and 71% for each of the explored anatomic segments,
respectively (Fig. 4).
Discussion
CNNs have shown great promise in the field of automa-
tion in medicine. They have proven quite robust at analyzing



Figure 3 Dice similarity coefficient scores in head and neck cancer. MD baseline contours were compared with AI alone
and AI plus MD corrections. Abbreviations: AI = artificial intelligence; MD = experienced radiation oncologist.

Figure 4 Mean (§ standard deviation) segmentation
times in seconds for MD, AI, and AI+C contours in all 3
investigated anatomic segments. Abbreviations:
AI = artificial intelligence; C = corrections;
MD = experienced radiation oncologist.
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images and identifying patterns, making them optimal for
the task of automated target volume delineation.12 Advances
in the past few years have led to a migration from atlas-
based autocontouring to deep learning−based autocontours,
which might adjust better to variabilities in daily practice
and outperform the former, even suggesting corrections to
clinically validated models.13 In our study, we challenged the
capacities of the Limbus Contour software against a highly
experienced practitioner and evaluated the reach this could
have on clinical routine. The 3 evaluated segments were
selected as representative indications for patients treated at
any RT department, according to their frequency.

The DSC is a useful statistical tool for contour compar-
ison, by taking 2 different segmentations and measuring
their overlap ratio. These values range from 0 to 1, where
1 represents full accordance between both structures.
Although occasionally this might be subject to bias,
depending on factors such as structure volume or number
of voxels, it still represents one of the strongest available
methods for performing these measurements.14 In our
analysis, the DSC showed overall acceptable correlations
between the MD, AI, and AI+C delineations. Most signifi-
cant differences were identified in small or long organs,
albeit without major clinical meaning. In addition, it
should be considered that all corrections (AI+C) were
done until achieving clinically acceptable standards, as
per the MD’s judgment. The low correction rates of the
AI-generated contours (17.1% of organs had DSC change
>0.1) demonstrates a quite impressive accuracy, requiring
minor to no correction at all. Moreover, the dosimetric
analysis showed that, even after modifications, these
almost never led to significant changes in the clinically
relevant DVH parameters. In BC cases, the most remark-
able differences were identified in LAD contours. This is
relatively common, as pointed out in different studies
assessing this structure, and highly dependent on imaging
quality and anatomic configuration.15-17 Nevertheless, the
MD deemed these differences of little clinical relevance,
as most of them were related to discrepancies at width,
upper end, or lower end. Further minor differences were
identified in esophagus, thyroid, and spinal cord, also
linked to the previously mentioned. Noteworthy, the AI
+C breast contours were converted into CTVs with great
similarity to the standard MD (DSC 0.92). Our results are
consistent with other previous studies addressing this
same topic.6,18,19 We must mention that no lymphatic
pathway contours were considered in this segment, due to
technical reasons. The software version available at the
moment of the study counted with the American Society
for Radiation Oncology templates, while our contours are
routinely performed according to the European Society
for Radiotherapy and Oncology recommendations. In
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regard to PC, the most notable differences were observed
in the anal canal, lymphatic pathways, penile bulb, and
seminal vesicles. The first showed substantial deviations
between MD and AI contours. A reason for this might be
related to the template used by the software, which evi-
dently differs from the Global Harmonization Group con-
sensus guidelines,8 creating smaller structures not
reaching the outer sphincter. A similar situation was
observed for the seminal vesicles, perhaps due to their
variable anatomy. Likely, differences in total volume and
cranial or caudal length led to lower DSC scores in the
remaining OARs, mostly not clinically relevant (eg, cauda
equina). Worth highlighting, the lymphatic pathways
reached a satisfactory configuration with minor editing
(DSC 0.85). These outcomes resemble those of Cha et al,
although we included more OARs in our analysis, provid-
ing additional robustness.20 For the HNC segment, no
CTV analysis was considered, due to a higher inhomoge-
neity in volume prescription. Several differences in DSC
scores were found in more organs than in the other
explored segments, possibly due to the smaller nature of
these structures. Yet, most of them were slightly below a
0.8 DSC score and above our 0.7 lower-limit score. Cer-
tain specific cases, such as the brachial plexus, presented
with higher deviations. For practical reasons, our plexus
contour includes the bony structures between foramina.
This is to ensure a homogeneous dose distribution along
the plexus area and minimize possible hotspots nearby. In
this sense, the AI algorithm provides a more anatomic
delineation, respecting the vertebral bodies, and in accor-
dance with international guidelines.8 Moreover, the
plexus portions between both scalene muscles, which are
the ones potentially closer to the treated volumes, were
rather similar in all 3 groups. Clinically judged and
despite the DSC outcomes, these differences were consid-
ered of minor relevance. Regarding metrics, we deem rele-
vant to stress some points. The arbitrary cut-off point was
adopted according to previous publications,21-23 although
no strong consensus has been reached to date. A reason
for this might lie on a difference between metrics and
clinical applicability, as the former does not necessarily
guarantee the latter.24,25 Consequently, these values must
be taken as reference but should not directly affect clinical
decision-making. Further metrics were not considered for
the analysis (eg, Hausdorff distance) because single linear
metrics do not provide a proper oversight of volume over-
lap. Instead, we deemed relevant to measure the differen-
ces in dose distribution among the 3 investigational
groups, to achieve a better appreciation of a potential clin-
ical effect. By placing the actual irradiated plan on the MD
contours and assuming this as the baseline standard, we
found that only 5 of 48 dose-volume parameters varied
according to the segmentation method. These changes
were located mostly in organs with large size or challeng-
ing anatomy. Furthermore, as we mainly report statistical
differences, these could mean either lower or higher
exposure rates (details in Appendix E1). Regardless of
this, most differences were minimal and could be deemed
clinically not relevant, supporting our findings based on
the DSC coefficient.

The time-sparing analysis yielded interesting differen-
ces along all 3 groups. For instance, the AI output was evi-
dently faster in the PC and HNC contours. Although it
was also faster in the BC sets, this advantage appeared to
be minor. This could be related to the number of struc-
tures per segment and their complexity. In addition, inter-
polation and integrated autodelineation tools perform
better usually in larger organs, such as lungs or breasts.
As expected, the AI+C times were considerably shorter
than the MD’s, resulting in a significant reduction of per-
son-hours. It must be remarked that the MD contours
were defined in a controlled, favorable environment,
which is practically impossible to reproduce in daily prac-
tice. Moreover, our expert MD has vast experience in the
field and has practiced for several years as contouring
trainer. We established this ideal scenario in order to chal-
lenge the AI as much as possible. In a real-life setting, the
benefit could be even more noticeable if other distracting
factors are to be accounted for.

However, it is important to note that AI algorithms
are not perfect, and there are some limitations to their
accuracy. For example, they may struggle with low-qual-
ity images, artifacts, anatomic variants, or unusual posi-
tioning settings. Additionally, there is a considerable
risk of overreliance on autocontouring algorithms,
which can potentially lead to errors or skipping thor-
ough assessments. To mitigate these risks, it is manda-
tory to incorporate manual review of autocontours into
the treatment planning process. Therefore, we estab-
lished AI+C as our standard workflow. Another impor-
tant consideration is the risk of de-skilling among
radiation oncologists and physicists, as manual contour-
ing may be less frequently used with the increased use of
AI solutions. To address these issues, it is compulsory to
ensure training in the use of AI and acquire the skills
necessary to review and adjust autocontours as needed.
This can help ensure that the AI is used as a tool to
improve clinical workflow, rather than a replacement
for human expertise.

Our study carries certain shortcomings. Its single-cen-
ter and single-practitioner character could yield variable
outcomes, when trying to reproduce this methodology.
The software and hardware version available at different
centers could also contribute to the latter. Besides the
abovementioned, our outcomes might not be comparable
to those of MRI-guided RT, as these could result in even
more accurate segmentations.26 Notwithstanding, AI-
based contouring has the potential to save person-hours,
and to improve contouring consistency and workflows in
comparison to human-performed manual contouring. As
this technology continues to evolve, it has the potential to
revolutionize the field of RT.
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Conclusion
In great extent, AI yielded acceptable OARs and certain
CTVs in the explored anatomic segments. Sparse correction
and assessment requirements place AI+C as a standard
workflow. Minimal clinically relevant differences in OAR-
exposure were identified. A substantial number of person-
hours could be repurposed with this technology.
Disclosures
The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.
Supplementary materials
Supplementary material associated with this article can
be found in the online version at doi:10.1016/j.adro.2023.
101394.
References

1. Vandewinckele L, Claessens M, Dinkla A, et al. Overview of artificial
intelligence-based applications in radiotherapy: Recommendations
for implementation and quality assurance. Radiother Oncol.
2020;153:55-66.

2. Munbodh R, Roth TM, Leonard KL, et al. Real-time analysis and
display of quantitative measures to track and improve clinical work-
flow. J Appl Clin Med Phys. 2022;23:e13610.

3. Hernandez V, Hansen CR, Widesott L, et al. What is plan quality in
radiotherapy? The importance of evaluating dose metrics, complexity,
and robustness of treatment plans. Radiother Oncol. 2020;153:26-33.

4. Patrick H M, Souhami L, Kildea J. Reduction of inter-observer con-
touring variability in daily clinical practice through a retrospective,
evidence-based intervention. Acta Oncol. 2021;60:229-236.

5. van der Veen J, Gulyban A, Nuyts S. Interobserver variability in
delineation of target volumes in head and neck cancer. Radiother
Oncol. 2019;137:9-15.

6. Wong J, Fong A, McVicar N, et al. Comparing deep learning-based
auto-segmentation of organs at risk and clinical target volumes to
expert inter-observer variability in radiotherapy planning. Radiother
Oncol. 2020;144:152-158.

7. Savjani RR, Lauria M, Bose S, Deng J, Yuan Y, Andrearczyk V.
Automated tumor segmentation in radiotherapy. Semin Radiat
Oncol. 2022;32:319-329.

8. Mir R, Kelly SM, Xiao Y, et al. Organ at risk delineation for radiation
therapy clinical trials: Global Harmonization Group consensus
guidelines. Radiother Oncol. 2020;150:30-39.

9. Offersen BV, Boersma LJ, Kirkove C, et al. ESTRO consensus guide-
line on target volume delineation for elective radiation therapy of
early stage breast cancer, version 1.1. Radiother Oncol. 2016;118:
205-208.

10. Hall W A, Paulson E, Davis BJ, et al. NRG Oncology updated Inter-
national Consensus Atlas on pelvic lymph node volumes for intact
and postoperative prostate cancer. Int J Radiat Oncol Biol Phys.
2021;109:174-185.

11. Brouwer C L, Steenbakkers RJ, Bourhis J, et al. CT-based delin-
eation of organs at risk in the head and neck region:
DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG,
NCRI, NRG Oncology and TROG consensus guidelines. Radio-
ther Oncol. 2015;117:83-90.

12. Poortmans PMP, Takanen S, Marta GN, Meattini I, Kaidar-Person
O. Winter is over: The use of artificial intelligence to individualise
radiation therapy for breast cancer. Breast. 2020;49:194-200.

13. Rhee DJ, Cardenas CE, Elhalawani H, et al. Automatic detection of
contouring errors using convolutional neural networks. Med Phys.
2019;46:5086-5097.

14. Zou KH, Warfield SK, Bharatha A, et al. Statistical validation of
image segmentation quality based on a spatial overlap index. Acad
Radiol. 2004;11:178-189.

15. Chin V, Finnegan RN, Chlap P, et al. Validation of a fully automated
hybrid deep learning cardiac substructure segmentation tool for
contouring and dose evaluation in lung cancer radiotherapy. Clin
Oncol (R Coll Radiol). 2023;35:370-381.

16. Harms J, Lei Y, Tian S, et al. Automatic delineation of cardiac sub-
structures using a region-based fully convolutional network. Med
Phys. 2021;48:2867-2876.

17. Spoor DS, Sijtsema NM, van den Bogaard VAB, et al. Validation of
separate multi-atlases for auto segmentation of cardiac substructures
in CT-scans acquired in deep inspiration breath hold and free
breathing. Radiother Oncol. 2021;163:46-54.

18. Choi MS, Choi BS, Chung SY, et al. Clinical evaluation of atlas- and
deep learning-based automatic segmentation of multiple organs and
clinical target volumes for breast cancer. Radiother Oncol. 2020;153:
139-145.

19. Buelens P, Willems S, Vandewinckele L, et al. Clinical evaluation of
a deep learning model for segmentation of target volumes in breast
cancer radiotherapy. Radiother Oncol. 2022;171:84-90.

20. Cha E, Elguindi S, Onochie I, et al. Clinical implementation of deep
learning contour autosegmentation for prostate radiotherapy.
Radiother Oncol. 2021;159:1-7.

21. Aoyama T, Shimizu H, Kitagawa T, et al. Comparison of atlas-based
auto-segmentation accuracy for radiotherapy in prostate cancer.
Phys Imaging Radiat Oncol. 2021;19:126-130.

22. Pera O, Martinez A, Mohler C, et al. Clinical validation of Siemens’
syngo.via automatic contouring system. Adv Radiat Oncol. 2023;8:
101177.

23. Dolz J, Kirisli H A, Fechter T, et al. Interactive contour delineation
of organs at risk in radiotherapy: Clinical evaluation on NSCLC
patients.Med Phys. 2016;43:2569.

24. Sherer MV, Lin D, Elguindi S, et al. Metrics to evaluate the perfor-
mance of auto-segmentation for radiation treatment planning: A
critical review. Radiother Oncol. 2021;160:185-191.

25. Rhee DJ, Akinfenwa CPA, Rigaud B, et al. Automatic contouring
QA method using a deep learning-based autocontouring system. J
Appl Clin Med Phys. 2022;23:e13647.

26. Sritharan K, Dunlop A, Mohajer J, et al. Dosimetric comparison of
automatically propagated prostate contours with manually drawn
contours in MRI-guided radiotherapy: A step towards a contouring
free workflow? Clin Transl Radiat Oncol. 2022;37:25-32.

https://doi.org/10.1016/j.adro.2023.101394
https://doi.org/10.1016/j.adro.2023.101394
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0001
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0001
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0001
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0001
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0002
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0002
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0002
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0003
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0003
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0003
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0004
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0004
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0004
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0005
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0005
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0005
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0006
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0006
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0006
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0006
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0007
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0007
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0007
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0008
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0008
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0008
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0009
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0009
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0009
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0009
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0010
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0010
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0010
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0010
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0011
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0011
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0011
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0011
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0011
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0012
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0012
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0012
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0013
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0013
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0013
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0014
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0014
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0014
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0015
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0015
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0015
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0015
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0016
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0016
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0016
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0017
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0017
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0017
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0017
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0018
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0018
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0018
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0018
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0019
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0019
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0019
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0020
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0020
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0020
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0021
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0021
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0021
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0022
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0022
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0022
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0023
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0023
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0023
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0024
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0024
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0024
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0025
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0025
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0025
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0026
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0026
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0026
http://refhub.elsevier.com/S2452-1094(23)00222-1/sbref0026

	Artificial Intelligence-Based Autosegmentation: Advantages in Delineation, Absorbed Dose-Distribution, and Logistics
	Introduction
	Methods and Materials
	Target and OAR delineation
	Planning and dose delivery comparison
	Time-consumption assessment
	Statistical analysis
	Ethics statement

	Results
	Discussion
	Conclusion
	Disclosures
	Supplementary materials
	References



