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Abstract

Observed bimodal tree cover distributions at particular environmental conditions and theo-

retical models indicate that some areas in the tropics can be in either of the alternative stable

vegetation states forest or savanna. However, when including spatial interaction in nonspa-

tial differential equation models of a bistable quantity, only the state with the lowest potential

energy remains stable. Our recent reaction-diffusion model of Amazonian tree cover con-

firmed this and was able to reproduce the observed spatial distribution of forest versus

savanna satisfactorily when forced by heterogeneous environmental and anthropogenic var-

iables, even though bistability was underestimated. These conclusions were solely based

on simulation results for one set of parameters. Here, we perform an analytical and numeri-

cal analysis of the model. We derive the Maxwell point (MP) of the homogeneous reaction-

diffusion equation without savanna trees as a function of rainfall and human impact and

show that the front between forest and nonforest settles at this point as long as savanna tree

cover near the front remains sufficiently low. For parameters resulting in higher savanna

tree cover near the front, we also find irregular forest-savanna cycles and woodland-

savanna bistability, which can both explain the remaining observed bimodality.

Introduction

First analyses of the satellite-derived MODIS Vegetation Continuous Fields (VCF) tree cover

product [1] found strong evidence for the bistability hypothesis [2, 3]. They did this by show-

ing that tropical tree cover data are multimodal at intermediate rainfall values, i.e. they have

multiple maxima in their empirical probability distribution function. When taking the plausi-

ble assumption that more frequently observed tree cover values are more stable, such multi-

modality implies multistability. [3] found forest-savanna bistability, from the observation that

the tree cover data has a bimodal distribution in a rainfall range of intermediate rainfall, with

as modes savanna (about 20% tree cover) and forest (about 80% tree cover). Similarly, [2]

found forest-savanna-treeless tristability, with an extra treeless state (about 0%). The treeless

state was not found by [3], most likely because they excluded areas with bare soil. A scatterplot
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of tree cover versus rainfall revealed how the stability of the states depends on rainfall. In such

a scatterplot, the modes—stable states according to the dynamical interpretation—show up as

regions with high point density. With increasing mean annual rainfall, the inferred probability

of being in a higher tree cover mode increases. Hence it was concluded that rainfall can be

seen as the bifurcation parameter in a dynamical system with a hysteresis loop. From here, we

restrict our focus to forest-savanna bistability.

If the bistability model is valid, the low density regions between the modes indicate instabil-

ity due to positive feedbacks. To explore the potential mechanisms driving the positive feed-

back between savanna and forest and to check whether there are additional forcing variables,

[3] set up a nonlinear statistical model of tree cover with as predictors mean annual rainfall,

dry season length, soil sand content and fire occurrence. They found that both savanna and

forest can exist in a regime with mild seasonality (<7 dry months) and intermediate rainfall

(1000-2500mm/y). In this regime, forest occurrence is highly predictable from recent fire

occurrence, suggesting that fire is an important factor that can explain the positive feedback

between the savanna and forest states. The hypothesized mechanism in savannas involves a

feedback between grassy cover and fire spread. Fire spread requires a spatially well-connected

grassy fuel layer that occurs only below a certain tree cover threshold; below this threshold, fire

spread opens up the canopy more, promoting yet better fire spread. Such a mechanism is con-

sistent with previous theoretical and empirical research [4]. The existence of bistability implies

that shocks such as forest clearance or drought could lead to a dramatic increase of fire occur-

rence and tip an area of forest into a savanna state. This area of savanna would then remain

locked until large enough increases of rainfall or release of human pressures allow forests to

grow back faster than they are lost by intermittent fires.

However, because the empirical studies that support the bistability hypothesis [2, 3] only

rely on spatial data, bimodality could be a result of spatially heterogeneous confounding fac-

tors, such as climate, plant physiology, soils and human impact. [5–7]. Indeed, in our recent

work [8], we showed that, at least in the Amazon region, much of the bimodality is most

likely not a consequence of bistability but of spatial heterogeneity due to factors other than

rainfall, including rainfall seasonality, soils and human impact. Nonetheless, some bimodality

remained in the data, which might still indicate existence of bistability, albeit on smaller scales

than claimed previously. One earlier empirical study [9] explored the possibility of more lim-

ited bistability than initially inferred. That they still found wide bistability ranges is most likely

because they only considered the separate instead of the joint effect of rainfall and seasonality

and because they controlled for fewer confounding factors.

Models of tropical tree cover bistability have remained nonspatial [7, 10, 11]. However,

interaction between patches is known to be important in tropical forests and savannas, via pro-

cesses such as seed dispersal, fire spread and water recycling. When allowing spatial interaction

under the form of diffusion in single-species reaction-diffusion models with a bistable reaction

term, hysteresis and bimodality disappear; instead, there is an environmentally determined

point that separates both states [12–14]. Only under the environmental conditions at this

point, coined the Maxwell point (MP), can both states coexist. The MP is a well-understood

concept in phase transitions theory [15], used in e.g. materials science, plasma physics and

mathematical biology. In such applications, it is the point of external conditions (e.g. pressure

or temperature) where two separate equilibrium phases of the considered system have the

same free energy. Away from the MP, there is always one state that has lower free energy. If

the system is spatially homogeneous, perturbations (either diffusion or stochastic effects) will

cause invasion fronts by which the state with the lowest free energy will perpetuate throughout

the domain. When there is a gradient of external conditions, the front between the stable

steady states pins (i.e. it settles) at the MP [8, 12]. This is exactly what we found in our recently
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PLOS ONE | https://doi.org/10.1371/journal.pone.0218151 June 27, 2019 2 / 16

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0218151


developed spatiotemporal model for Amazonian tree cover [8], which consists of a system of

equations for several vegetation cover types, including forest and savanna tree cover. While the

model without diffusion produces bistability between tree cover states, the spatial model did

not produce bistability, but a sharp forest-savanna front, being a function of mean annual rain-

fall, rainfall seasonality, soils and human impact. Taken together with the limited bimodality

in the Amazonian data, this suggests that Amazonian tree cover dynamics can be modeled rea-

sonably well with a single reaction-diffusion equation exposed to heterogeneous external con-

ditions. Nonetheless, the limited amount of remaining bimodality in the data indicates that

global bistability, i.e. bistability despite spatial interaction, may still play a role. Alternatively,

bimodality can also have arisen from endogenously generated cyclic behavior [10, 16], with

cycle periods up to centuries or millennia, posing a real challenge to falsification of the model

[16], not least because climatic forcing changes on the same time scales.

Here, we present an analysis of our reaction-diffusion model of tropical tree cover first used

in the simulations of [8]. We did not include noise terms as noise was treated extensively in

[16]. This model is an expansion of the nonspatial bistability model by [10] through inclusion

of spatial effects (diffusion and heterogeneity) and human intervention. In this paper, we refer

to the model without savanna trees [S, T = 0; F 6¼ 0 in (1)] as the forest model and to the full

model with savanna trees [S, T, F 6¼ 0 in (1)] as the forest-savanna model. We focus in this

work on the analytical derivation of the MP in the homogeneous forest model and its compari-

son to the front location in the heterogeneous forest model and to simulation results of the het-

erogeneous forest and forest-savana models. We will show that the MP of the homogeneous

forest model is a good predictor of the front between forest and nonforest in the heterogeneous

forest-savanna model when savanna tree presence is low. With increasing savanna tree pres-

ence, the MP becomes decreasingly accurate at predicting the front. In this regime, savanna-

woodland bistability and forest-savanna cycles occur, as shown earlier by [16]. We further

show that in the spatial model, the savanna-woodland bistability persists and the forest-

savanna cycles can turn irregular.

Methods

Forest-savanna model

The full system of partial differential equations representing cover types as a function of space

and time, hereafter referred to as the forest-savanna model, can be written as

@tS ¼ Rsð1 � S � T � FÞT � Q0½1 � hFðT; FÞ�S � MSS � RFSF þ DSr
2S;

@tT ¼ Q0½1 � hFðT; FÞ�S � MTT � RFTF;

@tF ¼ RFð1 � FÞF � bFðT; FÞF � MFF � CF þ DFr
2F;

ð1Þ

where

FðT; FÞ ¼
t� 1Y4

c

Y4
c þ ðT þ FÞ4

; ð2Þ

and S is savanna sapling cover, T savanna adult tree cover, F forest tree cover, and F fraction

of area burnt. This model can be obtained by starting from the model of [10] and adding diffu-

sion terms and human impact. RY, MY are growth and mortality rates for Y 2 {S, T, F}. Yc is

the critical value below which fire spread occurs and τ the maximum fire return time. Q0(1 −
hF) is the recruitment rate of savanna saplings into adult savanna trees; a linearly decreasing

function of burnt area fraction F. b is the sensitivity of forest tree cover to fire, which we

choose to be constant here. The forest removal rate C is a function of distance from human

Tropical tree cover in a heterogeneous environment
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cultivation z, or C = C(z). F is burnt area fraction, which is a monotonic decreasing and sig-

moid-shaped function of nonherbaceous cover 1 − G − S = T + F.

We show a systematic way for deriving the model (1) in Supporting Information, Section

Model construction. In our previous treatment, we included spatial heterogeneity by letting

RY, MY and Yc be functions of natural environmental forcing variables, such as climate and

soils (S1 Table), which in turn depend on space. In this work, we strive to make mathematical

analysis as simple as possible, while keeping the model’s essential features. Therefore, we keep

rainfall seasonality and soils fixed at their average values, leading to parameters that are only a

function of mean annual rainfall P or distance to human cultivation z. The resulting simplified

functional forms and parameter values are shown in Table 1. By assuming that growth rate sat-

urates to a constant maximum rY and mortality stabilizes to a constant minimum m0,Y where

water limitation is less severe, we have chosen

RYðPÞ ¼ max ½0; rYð1 � e� kRY PþaRY Þ�;

MYðPÞ ¼ mo;Y þ e� kMY PþaMY ;

where for RY, Y 2 {S, F} and for MY, Y 2 {S, T, F}. ki controls the steepness of the functions and

ai the horizontal position on the P axis. Finally, we took

YcðPÞ ¼ max½0;Yc;0 þ kcP�;

where Yc,0 > 0 and kc< 0. Yc(P) captures the assumed decreasing percolation threshold (criti-

cal value of T + F) with rainfall. In drier environments, the effective connectivity between areas

in space is higher, leading to a higher value of tree cover where fire spread becomes important.

To introduce spatial heterogeneity, and having already chosen how RY, MY and Yc depend

on P, we still have to choose how P depends on space. We do this by taking

PðxÞ ¼ x: ð3Þ

The resulting rainfall gradient of 1mm/km lies in the range of what can be expected in the

tropics.

Table 1. Model parameters and functional forms of the forest-savanna model when fixing rainfall seasonality and soils at their average (1). These were obtained by

filling in the average for rainfall seasonality and soils in the equations of S1 Table.

process and equation parameter value units

cover expansion rate

RYðPÞ ¼max½0; rYð1 � e� kRY PþaRY Þ�

rS, rF 0.09,0.20 y−1

kRS
; kRF

0.005,0.003 mm−1

aRS
; aRF

0.25,1.54 -

cover reduction rate by drought

MYðPÞ ¼ mY;o þ e� kMY PþaMY

mS,o = mT,o, mF,o 0.023,0.041 y−1

aMS
¼ aMT

; aMF
-,-2.15 -

kMS
¼ kMT

; kMF
0.008,0.008 mm−1

savanna tree cover recruitment rate

Q(F) = Q0(1 − hF)

Q0, h 0.04,0.85 y−1,-

burnt area fraction

FðT; F; PÞ ¼ 1

t

Yn
c

Yn
c þðTþFÞn ;

τ, n 2.7,4 y,-

critical cover value for fire spread

Yc(P) = max[0, Yc,0 + kcP]

Yc,0 0.56 -

kc -1.43e-04 mm−1

forest cover fire sensitivity deforestation rate

C(z) = ce−kC z
b 0.46 -

c, kC 0.092,0.0015 -,m−1

diffusion coefficient of S, F DS, DF 0.2,0.1 km2y−1

https://doi.org/10.1371/journal.pone.0218151.t001
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Forest model (S,T = 0)

We now set up the spatial model of forest cover (and its complement 1 − T, grass cover). This

is done by setting S = T = 0 in (1), leading to

@tF ¼ RFðPÞFð1 � FÞ � MFðPÞF � bFFðFÞ � CðzÞF þ DFr
2F: ð4Þ

It will be helpful in the analysis that follows to produce a nondimensional version of this model.

We first take u = F and rescale t! bt/τ. We take as nondimensional constants (see Table 1),

r ¼
rF
b
t; m ¼

eaMY

b
t; m0 ¼

mF;o

b
t; g ¼

c
b
t; dF ¼

DF

b
t;

and replace kr ¼ kRF
; km ¼ kMF

; a ¼ aRY
; uc;0 ¼ Yc;0 for lighter notation. We further take as

nondimensional functions

rðPÞ ¼ 1 � e� krPþa;

mðPÞ ¼ e� kmP;

f ðu; PÞ ¼
ucðPÞ

4

ucðPÞ
4
þ u4

;

ucðPÞ ¼ max ½0; uc;0 þ kcP�;

cðzÞ ¼ e� kCz:

When putting everything together, the following dimensionless form of the PDE is obtained,

@tu ¼ rrðPÞð1 � uÞu � mmðPÞu � uf ðu; PÞ � gcðzÞu � m0uþ dFr
2u:

With rescaling x!
ffiffiffiffiffi
dF

p
x we then obtain

@tu ¼ rrðPÞð1 � uÞu � mmðPÞu � uf ðu; PÞ � gcðzÞu � m0uþr2u:

When making the further substitutions,

aðP; zÞ ¼ rrðPÞ � mmðPÞ � gcðzÞ � m0;

bðPÞ ¼ rrðPÞ;

we obtain

@tu ¼ aðP; zÞu � bðPÞu2 � uf ðu; PÞ þ r2u: ð5Þ

We will show that the front between forest and grassland as a function of the forcing variables

can be found analytically. While this model does not include savanna tree cover, we can com-

pare the forest-savanna model with this one to see how the presence of savanna trees affects the

results.

Parameters, simulation and figures

All parameter values have roughly the same values as those in [8]. S1 Table summarizes the

parameters and functions used in the model. The forest growth rate can be easily inferred

from the data (see Supporting Information Section Forest growth rate). We ran the 1D model

in MATLAB [17] with the ode45 algorithm based on Runge-Kutta 4th and 5th order temporal

discretization (variable Δt) and central difference spatial discretization (Δx = 0.67), no-flux

boundary conditions and random initial conditions. The chosen left and right boundaries are

0km and 3000km.

Tropical tree cover in a heterogeneous environment
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We made two types of figures: a phase plot with the front location in parameter space (Fig

1), and, scatterplots of cover types versus rainfall in the heterogeneous models (Figs 2 and 3).

To create the phase plot of the heterogeneous models in Fig 1, we needed to extract the rainfall

value at the front from the model output. For the simulations (markers in Fig 1), we did this

Fig 1. Maxwell point in the homogeneous forest model and pinning rainfall in the heterogeneous models. (A)

Maximum eigenvalue of (13) for a range of z values in the heterogeneous forest model (i.e. along the solid blue line in

panel B). (B) Front between forest and savanna/grassland in (P, z) space for different models. The dashed red line

shows the theoretically derived MP from the homogeneous forest model and the solid blue line the location of the

forest front in the heterogeneous forest model obtained by a numerical continuation. Markers show at which rainfall

value the front settles in the heterogeneous models for given z values: (+) forest model (4), (^) forest-savanna model

(1) with rS = 0.09 and Q0 = 0.04, (−) forest-savanna model (1) with rS = 0.13 and Q0 = 0.09.

https://doi.org/10.1371/journal.pone.0218151.g001

Fig 2. Simulation results and the effect of human impact for the models under low impact of savanna trees (rS = 0.09, Q0 = 0.04,

τ = 2.7). (A) Forest model (4) under natural (green) and impacted conditions (blue, 1km from cultivated areas). (B) Forest-savanna

model (1) under natural conditions. (C) Forest-savanna model (1) with human impact (1km from cultivated areas). The red dashed

line shows the derived value of the MP in the natural forest model. The red dash-dotted line shows the derived value of the MP in the

forest model with human impact. Rainfall can also be seen as a spatial coordinate because the model was forced by heterogeneous

rainfall P(x) = x.

https://doi.org/10.1371/journal.pone.0218151.g002

Tropical tree cover in a heterogeneous environment
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via a robust curve fitting method, fitting the logistic function (goodness of fit R2 > .9),

F�ðPÞ ¼
A

1þ exp ½� kðP � Pf Þ�
; ð6Þ

and extracting Pf, with the MATLAB [17] curve fitting tool. In the numerical continuation of

the heterogeneous forest model (solid blue line in Fig 1), we did this via

Pf ¼ arg maxF�xðPÞ; ð7Þ

where F�x is the spatial derivative of the front solution. We used (6) instead of (7) in the simula-

tions because in the forest-savanna model, savanna species can induce gradients of F away

from the front. The two methods give the same results when there are no savanna trees (com-

pare + and solid blue line in Fig 1).

The analysis of the homogeneous model almost exclusively required symbolic analysis,

which we did with Mathematica [18].

Results

In the first section below, we derive the MP of the homogeneous forest model. In the second

section, the front pinning location in the heterogeneous forest model is derived via a numerical

continuation. The third section shows simulation results of the heterogeneous forest and for-

est-savanna models.

Maxwell point of the homogeneous forest model

For simplicity we shall consider one spatial dimension, which gives rise to scalar fronts rather

than domain boundaries in the form of line fronts. While the approach in 2D is identical once

Fig 3. Simulation results of the forest-savanna model (1) with higher savanna sapling growth rate (rS = 0.13) and: (A,D) higher

sapling recruitment into adults (Q0 = 0.09), (B,E) higher recruitment into adults and lower fire return interval (Q0 = 0.2, τ = 1).

(C,E) Same as in (B,E) but without forest trees. The upper panels show cover fraction versus rainfall at the end of the simulation and of

all cover types. The lower panels show forest (D,E) or of savanna adult tree cover over the spatial domain (with the location indicated

by its rainfall) as a function of time. The MP of the corresponding forest model is shown with the dashed red line. See Fig 1 for legend.

https://doi.org/10.1371/journal.pone.0218151.g003

Tropical tree cover in a heterogeneous environment
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one chooses a direction of propagation of any invasion front, front dynamics will, unlike in

1D, be influenced by front curvature, but this is minimal for the spatial scales considered

[8, 19]. Because we first assume forcing to be homogeneous, we can further treat p and z as

parameters. We further also assume that the front width is very small compared to the domain

size, such that it is justified to take the domain size as approximately infinite.

When starting from (5), hiding the dependence on p and z, grouping common factors, and

indicating further @tu by ut and @2u/@x2 by uxx, we obtain

ut ¼ ½a � bu � f ðuÞ�uþ uxx: ð8Þ

As the nonlinear term causes bistability, we expect traveling front solutions [see e.g. [13, 14,

20]] between the stable steady states of the form u(ξ) with ξ = x − ct and c the wave speed, with

boundary conditions u(−1) = u− and u(1) = u+ such that we can rewrite our equation as

� cu0 ¼ ½a � bu � f ðuÞ�uþ u@;

where u0 = du/dξ and u@ = d2u/dξ2. When multiplying by u0, we obtain

� cðu0Þ2 ¼ ½a � bu � f ðuÞ�uu0 þ u@u0:

Integrating this with respect to ξ over the real axis, we further obtain

� c
Z 1

� 1

ðu0Þ2dx ¼

Z 1

� 1

½a � bu � f ðuÞ�uu0dxþ
Z 1

� 1

u@u0dx;

¼

Z uþ

u�

½a � bu � f ðuÞ�udu �
Z uþ

u�

u0du0;

¼

Z uþ

u�

½a � bu � f ðuÞ�udu � ½
1

2
u02�uþu� :

As the solution is flat at the boundaries, we have 1

2
u02

� �uþ
u�
¼ 0, such that

� c
Z 1

� 1

ðu0Þ2dx ¼
Z uþ

u�

½a � bu � f ðuÞ�udu:

As the integrand of the left hand side of this expression is always positive, we have

signðcÞ ¼ � signf
Z uþ

u�

½a � bu � f ðuÞ�udug ¼ signðDVÞ; ð9Þ

where we have defined,

DV � �

Z uþ

u�

½a � bu � f ðuÞ�udu

¼ ½� au2=2þ bu3=3�
uþ
u�
þ

Z uþ

u�

f ðuÞudu:

Hence, we see that the dynamics can be derived from the potential by

ut ¼ � Vu þr
2u:

At the MP, the front is stationary, i.e. c = 0, such that according to (9),

DV ¼ ½� au2=2þ bu3=3�
uþ
u�
þ

Z uþ

u�

f ðuÞudu ¼ 0:

Tropical tree cover in a heterogeneous environment
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This allows calculation of an expression for the MP as a function of the parameters α and β.

These parameters, in turn, are a function of the external forcings of the model.

If we choose f(u) as in equation S1 in S1 Text with Y = u,

f ðuÞ ¼
u4

c

u4
c þ u4

; ð10Þ

then
R

f(u)du can be calculated analytically as

Z

f ðuÞdu ¼
u2

c

2
arctan½ðu=ucÞ

2
�;

such that

VðuÞ ¼
bu3

3
�
au2

2
þ

u2
c

2
arctan½ðu=ucÞ

2
�:

ΔV = V(u+) − V(u−) can be found analytically if u+ and u− can be found analytically. How-

ever, u+, u− can only be found analytically when the (integer) exponent in equation S1 in

S1 Text is 1� n� 3. As we chose n = 4, this step has to be done numerically. From here, the

MP can be calculated by finding the root of ΔV as a function of its parameter(s). Also this

is only possible numerically. The result of this calculation is shown as the dashed red line in

Fig 1. For the parameters shown in Table 1, without human impact, and, at average rainfall

seasonality and soils, the MP of the forest model lies at a mean annual rainfall of 1438mm.

Areas receiving P> 1438mm will experience an invasion of forest while areas receiving

P< 1438mm will experience loss of forest. When including human impact, forest is only

considerably affected by human impact when it is less than z� 2km away from agricultural

areas.

Without spatial interaction in the forest model, there is a wide range where forest is bistable

with grassland (�1200-3500mm, upper branch and lower zero branch indicated with solid

lines in S1 Fig). Hence, we showed here that including spatial interaction causes the bistability

range to collapse into one point—the MP. Note that when there are N forcing variables, the

MP is not a point but a N − 1 dimensional surface in phase space. Away from the MP, the only

stable state is the one with lowest potential energy V. The alternative state with lower potential

energy is now metastable. It can persist when: (1) the whole spatial domain is homogeneously

in that state, and (2) that this homogeneous state is not sufficiently perturbed. Nonetheless,

neither of these conditions are easily met in reality.

Front pinning in the heterogeneous forest model

When external conditions are heterogeneous, the parameters p, z and the solutions u+, u− are

functions of x and the approach in the previous section cannot be used any more. However,

one can expect that when the spatial dependence is weak, it can still be used as an approxima-

tion. It can then be expected that in the limit of t!1, areas receiving P> PMP will have forest

while areas receiving P< PMP will not have forest, with the front pinned at PMP. The stability

of the pinned front solution can be verified via a linear stability analysis. When writing the

reaction term of (8) as R½u;P�, we have

ut ¼ R½uðxÞ; PðxÞ� þ uxx: ð11Þ

At the front solution u = u�(x), we perturb the solution with δu(x, t)� 1 and see how this

Tropical tree cover in a heterogeneous environment
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perturbation grows by substituting u�(x) + δu(x, t) and neglecting higher order terms in δu,

½u�ðxÞ þ duðx; tÞ�t ¼ R½u�ðxÞ þ duðx; tÞ; PðxÞ� þ ½u�ðxÞ þ duðx; tÞ�xx;

½duðx; tÞ�t ¼ R½u�ðxÞ; PðxÞ� þ
@R
@u
½u�ðxÞ; PðxÞ�½duðx; tÞ� þ ½u�ðxÞ þ duðx; tÞ�xx;

½duðx; tÞ�t ¼
@R
@u
½u�ðxÞ; PðxÞ�½duðx; tÞ� þ ½duðx; tÞ�xx;

where the second step is possible because Rðu�; PÞ þ u�xx ¼ 0 as u� is a solution of (11). There-

fore, the front solution is only stable with respect to perturbation when all eigenvalues of the

operator,

LðxÞ ¼
@R
@u
½u�ðxÞ; PðxÞ� þ @xx; ð12Þ

have negative real parts. In our case, it is not possible to obtain the front solution u�(x) analyti-

cally. Therefore, linear stability can be evaluated numerically, by calculating the eigenvalues of

the discretized form of (12), which is the n × n matrix

L ¼
@R
@u
ðu�;PÞIþ

L
Dx2

; ð13Þ

where u� = [u(x0), u(x1), . . ., u(xn−1)] and P = [P(x0), P(x1), . . ., P(xn−1)] are the discretized

front solution and rainfall values as a function of space, with xk = x0 + kΔx, L/Δx2 the discre-

tized Laplacian, and I the identity matrix. If we define max v as the maximum of a vector v’s

elements and λ as the vector with n eigenvalues of (13), the condition for stability is hence

max<ðλÞ < 0; ð14Þ

where < indicates that we take the real part. Because the front solution u� depends on all the

parameters, L is calculated for only one point in parameter space. To obtain information on

the stability of all front solutions in a given parameter range, one needs to obtain the solution

for a set of points in that range and evaluate L for each of them. Starting from a known front

solution, pseudo-arclength continuation [21–23] allowed us to find other front solutions of

(11) in parameter space. To compare the results with those of the previous section, we plot the

rainfall value at which the front pins in the heterogeneous equation as a function of z (distance

from human cultivation). We extracted the location of the front via (7) for each value of z. Our

analysis shows that the front solution of the heterogeneous forest model (solid blue line in Fig

1) is indistinguishable from the MP of the homogeneous forest model (dashed red line in Fig

1). Moreover, we found that for each value of z considered (14) is satisfied (solid red line in

Fig 1), indicating that each front solution is a stable steady state, or more specifically, a stable

node, as all eigenvalues of (13) are real. It can hence be concluded that, at least for our setup

with weak spatial dependence, the front of the heterogeneous forest equation pins at the MP of

the homogeneous forest equation.

Simulation of the heterogeneous models

Here we show steady state profiles of vegetation by the heterogeneously forced models. We

remind the reader that the used forcing is a linear relation between distance from the origin

and rainfall (3) such that at the chosen left and right boundaries P(0km) = 0mm and P
(3000km) = 3000mm, respectively. Therefore, the x-axis of the plots in Figs 2 and 3 is both dis-

tance from the origin in km or mean annual rainfall in mm.

Tropical tree cover in a heterogeneous environment
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Fig 2 shows the steady states of F as a function of rainfall by the forest model (5) and of S, T
and F by the forest-savanna model (1) for parameters leading to low savanna tree presence

(rs = 0.09, Q0 = 0.04, τ = 2.7), with and without human impact. Without human impact, all

models have their forest front pinned at a rainfall value of about 1400mm [Fig 2A (green), Fig

2B (green)], with forest occurring above and grassland or savanna below this value. Adding

human impact results in a shift of the forest front to higher rainfall values (Fig 2A blue versus

green; Fig 2C vs 2B). In the forest model, the MP obtained from the analysis of the homoge-

neous model (Fig 2, dashed lines without human impact and dash-dotted line with human

impact) accurately predicts the location of the forest front (Fig 2A). The model with savanna

trees (forest-savanna model) has its forest front at slightly lower rainfall values than the model

without savanna trees (Fig 2C vs 2B). The rainfall value at which the front pins is indicated by

markers in Fig 1 for a wider range of z values, confirming the good match [perfect match for

the forest model (+) and small bias for the forest-savanna model (^)] between the rainfall

value at which the front pins and the MP of the homogeneous forest model for the parameters

chosen here.

Fig 3A shows the cover types versus rainfall when we choose parameters leading to higher

savanna tree cover (rs = 0.13, Q0 = 0.09). As before, there is forest on the wet side and savanna

on the dry side of the x axis. However, now adult savanna trees reach higher cover values and

there is a larger difference between the MP and the location of the front (see − markers in Fig 1

for a wider range of z values). The MP becomes decreasingly accurate as predictor of the forest

front with increasing savanna tree cover (Fig 3B versus Figs 3A and 2D). Moreover, beyond

the point where savanna cover decreases, there is a range of rainfall values below the forest

front where forest and savanna tree cover show high variation due to irregular oscillations of

forest and savanna tree cover (Fig 3D). Fig 3B shows that when savanna tree recruitment is

increased further (Q0 = 0.2) and when also the fire return interval is decreased (τ = 1), savanna

tree cover becomes bistable below a rainfall of about 1000mm and the range of rainfall with

forest-savanna cycles widens. We will further refer to the low savanna tree cover state as

the savanna state and to the high savanna tree cover state the woodland state. Note that the

savanna tree cover bistability also occurs (for the same parameters) without forest trees (Fig

3C and 3F), but up to a rainfall of about 2500mm.

In Fig 4, we show the forest-savanna cycles in more detail. During the cycles, forest tree

cover lags behind savanna tree cover. The changes between states occur over decades, but the

periods of stability between the transitions can persist for several centuries (or longer, depend-

ing on the parameters). The nonspatial system only produces a regular cycle (Fig 4A) while the

spatially homogeneous system with diffusion (Fig 4B) has irregular cycles. The spatially hetero-

geneous system has similar irregular cycles (Fig 4C). The irregularity of these cycles can hence

be induced by diffusion alone.

Discussion

In this paper, we have provided a first analytical and numerical analysis of our spatially hetero-

geneous reaction-diffusion model of tropical tree cover. We have treated this model before

with a more realistic set-up [8] (in 2D, with noise and forced by observed climate, soil and

human impact), but we formulated it here in an as simple as possible form (in 1D, determin-

istic and forced by linear rainfall) for easier mathematical analysis. The heterogeneity was

captured with the relation (3), such that low x values represent dry and high x values represent

wet areas. From the homogeneous system without savanna trees/saplings [S = T = 0, (5)],

a Maxwell point was derived. We showed via a numerical continuation and linear stability

analysis of the spatially heterogeneous forest model that this MP is still of use for the spatially
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heterogeneous case because here, it is the parameter value at which the forest front pins. The

MP of the homogeneous forest model and the rainfall value at which the forest model’s front

pins as a function of external parameters (the dashed red line and the solid blue line in Fig 1

respectively) are indistinguishable and have the same shape as what was obtained in [8] by sim-

ulation. Existence of a MP in reaction-diffusion equation with a bistable reaction term [13, 14,

20] and pinning under heterogeneity [12] is consistent with previous work. For parameters

that lead to low cover of savanna trees, the MP of (5) is also a good predictor of the forest-

savanna model’s forest front [S, T 6¼ 0, (1)] (Fig 2C–2F). This is because the effect of savanna

trees on forest trees, mediated by burnt area [see (1)], remains negligible when savanna tree

cover near the forest front stays below the threshold where fire spread is inhibited, i.e. T< Yc.

Choosing parameters such that savanna tree cover near the forest front exceeds this threshold

(T≳ Yc) makes the forest front shift away from the MP of (5), towards drier areas (Fig 3A and

3B). In this regime where savanna tree cover affects forest tree cover, we also found forest-

savanna cycles and savanna-woodland bistability, which both can lead to bimodal tree cover

distributions under the same external forcings. These cycles are consistent with the existence

of Hopf bifurcations in the nonspatial system [16] above a certain value of the parameters

Fig 4. Cycles in the forest-savanna model with high savanna tree presence (rS = 0.13, Q0 = 0.2 and τ = 1): (A)

nonspatial model with P = 1500mm, (B) spatially homogeneous model with P = 1500mm, (C) Spatially

heterogeneous model at the point where P = 1500mm. See Fig 2 for legend.

https://doi.org/10.1371/journal.pone.0218151.g004
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equivalent to P and rs. For an explanation of the physical mechanism behind the cycles, we

refer to [16]. We found that the cycles can turn irregular by diffusion. That the irregular cycles

are produced endogenously suggests that close to the forest front, sudden and unpredictable

loss of forest can occur without climatic or anthropogenic perturbations. We speculate that the

irregularity is due to spatiotemporal chaos, which is known to occur in the wake of traveling

fronts [24, 25]. To prove this, it would need to be shown additionally that the cycles produced

by the deterministic system are truly aperiodic and that there is sensitivity to initial conditions

[26]. We further showed via simulation that bistability of a savanna and a woodland state can

arise in the savanna model (i.e. the model without forest trees) under a regime of high sapling

recruitment and high fire occurrence (Fig 3C and 3F). When introducing forest trees (under

the same conditions), the savanna-woodland bistability does not survive at higher rainfall,

due to competition between savanna and forest trees (Fig 3B). Instead, the irregular cycle

discussed above appears. Where it is too dry for forest, savanna tree cover bistability does

survive. To obtain a complete picture of the behavior of the spatial model and how it differs

from the nonspatial model, its bifurcation diagrams need to be made. A step towards increased

realism is then the consideration of two spatial dimensions instead of one, with a further step

towards increased realism being the verification of how this diagram is affected by spatial

heterogeneity.

Taking our results reported here together with the simulation results in our previous work

[8] and other recent work [16], the forest-savanna model can produce bimodal tree cover dis-

tributions in a range of external parameters due to: (i) bistability between savanna and wood-

land, (ii) existence of forest-savanna cycles, (iii) spatial heterogeneity of forcings other than

rainfall. Fitting our model for separate regions to data in empirically justified parameter ranges

might reveal differences between different regions or suggest which model components are

not adequately captured. That much of the tree cover bimodality in the Amazon region can be

attributed to spatial heterogeneity, leaving little remaining bimodality [8], indicates on one

hand that bistability and cyclic behavior play at most a small role in Amazonia. Nonetheless,

dry forests in Amazonia and elsewhere might still exist as an alternative state to moist forest

and/or savanna. In Africa, where there exist large areas of high tree cover savannas [27] and

where fire occurrence is higher [11], bistability and cyclic behavior can be expected to play a

larger role. A possibility other than the ones hitherto mentioned is that the observed bimodal-

ity is an artifact, resulting from data algorithms [28] or preprocessing methods [29]. Therefore,

the multistability hypothesis should be tested on tree cover data produced with methods that

are less likely to generate such artifacts.

Finally, there exist other types of feedbacks than assumed here and which can induce multi-

stability. These include feedbacks between soil fertility and vegetation [30], rainfall and vegeta-

tion [31–34], and, herbivore presence and vegetation. As all existing feedbacks may interact on

various scales [35], there is no doubt that tropical vegetation is not just complex but also com-

plicated. Nevertheless, the insight from complexity science that complicated dynamics can

emerge from simple rules suggests that they might be less complicated than we currently

think. In the search for such simple rules, spatiotemporal conceptual models like the one

developed here will be indispensable. On the other hand, even if the rules turn out to be sim-

pler than expected initially, their resulting dynamics may only be captured realistically when

they are implemented in models that are sufficiently individual based.

Supporting information

S1 Table. Model parameters of the forest-savanna model equation S3 in S1 Text. A = A(x).

The components of are: A1 = P (mean annual rainfall), A2 = M (Markham’s seasonality index),
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A3 ¼ p � �p (edaphic forest suitability). π captures the effect of soils on forest occurrence and

is taken from [8], i.e. A3 = 0.00238φs − 0.188φc − 5.99ρ − 0.183φcρ + 6.39, where ρ is topsoil

bulk density, φs topsoil sand fraction, and φc topsoil clay fraction. The components of the vec-

tors ki multiply the components of A. If a component is indicated as ‘-’, the considered equa-

tion is not a function of the corresponding component of A.

(PDF)

S1 Fig. Homogeneous steady states (HSS) of forest cover (F) in the forest model without

human impact [C(z) = 0 in (4)] as a function of mean annual rainfall (P) for average soils

and with rainfall seasonality (MSI) as indicated in the legend. Stable states are indicated

with solid lines and unstable steady states with dashed lines. HSS are steady states of the non-

spatial model (δ = DF = 0). These plots were obtained by finding the roots of the reaction term

in (4). The stable branches (solid) are metastable states in the spatial model—they can persist if

the whole domain is in the same state and if they are not exposed to perturbations larger than

a small threshold.

(EPS)

S2 Fig. Recovery time of undisturbed moist forest as a function of parameter rF when tak-

ing F� = 0.8 and when the initial forest cover F0 = 0.01, based on equation S5 in S1 Text.

(EPS)

S1 Text. Model construction. Forest growth rate rF.

(PDF)
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