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In this issue, Coronado et al. attempt to improve our understanding of the

factors affecting the response to immunotherapy in a large subset of high-

risk neuroblastoma with hemizygous deletion of chromosome 11q. By

using several computational approaches, the authors study potential tran-

scriptional and post-transcriptional pathways that may affect the response

to immunotherapy and further be leveraged therapeutically in a biomarker-

directed fashion.

While immune checkpoint inhibition (ICI) strategies

have shown significant activity in subsets of adult malig-

nancies, the pediatric clinical experience with these

agents has largely been disappointing [1,2]. This is per-

haps not too surprising due to low mutation burden and

general lack of an inflamed tumor microenvironment

(TME) for many childhood cancers. However, chimeric

antigen receptor-engineered T cells have shown spectacu-

lar efficacy in refractory acute lymphoblastic leukemia

[3], and a variety of monoclonal antibodies targeting the

disialoganglioside GD2 that induce antibody-dependent

cellular cytotoxicity (ADCC) have shown efficacy in

high-risk neuroblastoma [4–6]. Both of these strategies

target lineage-restricted cell surface molecules, and it is

currently unknown if efficacy can be enhanced in combi-

nation with ICI or other immunotherapeutic strategies.

Despite the efficacy of GD2-targeting immunothera-

pies in high-risk neuroblastoma, a pediatric cancer

arising from the developing sympathetic nervous sys-

tem, survival rates remain mired at ~ 50% despite

highly intensive chemoradiotherapy that typically pre-

cedes anti-GD2 therapy [7]. Of note, the therapy

shows significant on-target off-tumor toxicity as GD2

is expressed on pain fibers. While many investigators

are working on strategies for further improving neu-

roblastoma outcomes by combining anti-GD2 mono-

clonal antibodies with chemotherapy, including

incorporating into frontline induction chemotherapy,
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many others are in search for alternative immunother-

apeutic targets that may be more tumor-specific.

High-risk neuroblastoma is broadly subdivided into

two major cohorts: younger patients (toddlers) whose

tumors show MYCN amplification, 1p deletion, and

TERT overexpression; and older patients whose

tumors harbor 11q deletion, occasionally along with

other recurrent segmental chromosomal alterations

(SCAs), maintain chromosome ends via the alternative

lengthening of telomere mechanism, and generally

show a slightly more inflamed TME [8–11]. It remains

unknown if these or other genomic alterations are

associated with anti-GD2 efficacy or how they may

coordinate immune escape. Importantly, it has been

known since the 1980s that MYCN amplification is

directly associated with low major histocompatibility

complex expression [12], and it has been confirmed

more recently that MYCN-amplified neuroblastomas

have one of the most immune cell excluded TMEs of

all human cancer [13]. The 11q-deleted group does

show more of an immune infiltrate [11,14], but

whether this is sufficient to contribute to anti-tumor

immunity remains unknown.

In this issue, Coronado et al. begin to address these

questions by focusing on the large subset of high-risk

neuroblastoma that show hemizygous deletion of chro-

mosome 11q. Despite years of intensive research, the

mechanism by which 11q loss contributes to tumorige-

nesis remains poorly understood (Mlakar et al)[15].

The loss of one copy of several candidate protein-cod-

ing genes located on 11q has been proposed; however,

no recurrent second hit of a putative tumor suppressor

gene has been found to date. MicroRNAs (miRNAs)

may play a role, with let-7a-2 that maps to 11q shown

to directly suppress MYCN mRNA [16], perhaps

explaining, at least in part, the significant anti-correla-

tion of 11q deletion and MYCN amplification in high-

risk neuroblastoma [8]. Here, Coronado et al. extend

the published literature by further defining the mecha-

nisms of immune suppression in patients with high-risk

neuroblastoma harboring 11q deletion, such as overex-

pression of program death ligand 1 (PD-L1), inter-

leukin-10 (IL-10), tumor growth factor beta (TGF-

beta), and indoleamine 2,3-deoxygenase 1 (IDO1).

These might be leveraged therapeutically in a biomar-

ker-directed fashion, by combining anti-GD2

immunotherapy with ICI therapy in patient with 11q

deletion.

The authors used a well-described deconvolution

method to describe the immune cellular composition in

two published independent RNA sequencing neurob-

lastoma datasets used as discovery and validation

cohorts. They found in both datasets that tumors with

11q deletion showed a higher proportion of CD8+ and

resting CD4+ memory T cells, as well as of resting

(M0) and polarized macrophages (M1 and M2) com-

pared to neuroblastoma tumors without 11q deletion,

the majority of which show MYCN amplification.

There was some discordance regarding NK cells, with

the proportion of activated NK cells being significantly

lower in the 11q-deleted cohort in the discovery data-

set, but not in the validation cohort. As the efficacy of

anti-GD2-mediated tumor killing largely depends on

NK cells, which are the effectors of ADCC, it will be

crucial to investigate in additional collaborative

research whether the low numbers of activated NK

cells are a hallmark of 11q-deleted neuroblastoma

tumors. Overall, these analyses confirm and extend

prior analyses showing that older high-risk neuroblas-

toma patients whose tumors harbor 11q deletion do

have immune effectors cells in the TME, and these

may be poised to contribute to an adaptive immune

response.

While exploring the mechanisms potentially underly-

ing these observations, the authors then show that

known mediators of intra-tumoral immune suppression

such PD-L1, IL-10, TGF-beta, and IDO1 are differen-

tially overexpressed in cases with 11q deletion. They

then recapitulate the well-described fact that 11q dele-

tions often occur with other SCAs [17]. While aneu-

ploidy is associated with immune evasion and lack of

efficacy of ICI in adult cancers with whole chromo-

some gains [18], the role of near diploidy with segmen-

tal chromosomal arm aberrations as seen in

neuroblastoma is unclear and will be an important

question for future studies. Additionally, the authors

postulate that miRNAs may contribute to an immuno-

suppressive TME, an interesting finding that will

require mechanistic validation in appropriate model

systems.

Taken together, this work further highlights the

importance of defining clinically relevant molecular

subsets of human cancer to more precisely develop

immunotherapeutic and other anti-cancer strategies.

The authors hypothesize that 11q deletion may be a

biomarker for synergistic efficacy of anti-GD2

immunotherapy with ICI therapy. Due to the rarity of

high-risk neuroblastoma, more intensive international

cooperation will be necessary to both prove and

extend this hypothesis through rigorous biomarker-de-

fined clinical trials.
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