
Research Article
ProGeRF: Proteome and Genome Repeat Finder Utilizing
a Fast Parallel Hash Function

Robson da Silva Lopes,1 Walas Jhony Lopes Moraes,1

Thiago de Souza Rodrigues,2 and Daniella Castanheira Bartholomeu3

1Department of Computer Science, Federal University of Mato Grosso, 78600-000 Barra do Garcas, MT, Brazil
2Federal Center of Technological Education of Minas Gerais, Belo Horizonte, MG, Brazil
3Department of Parasitology, Federal University of Minas Gerais, 31270-829 Belo Horizonte, MG, Brazil

Correspondence should be addressed to Robson da Silva Lopes; robsonsilvalopes@hotmail.com

Received 3 June 2014; Revised 19 January 2015; Accepted 31 January 2015

Academic Editor: Satoru Miyano

Copyright © 2015 Robson da Silva Lopes et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can
involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the
sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA
sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome,
displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions
from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool
allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-
alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table
approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity.

1. Introduction

Repetitive elements are found in large quantities in eukary-
otic genome, both in coding and noncoding region, and also
in intergenic regions of prokaryotes [1]. In humans repetitive
elements represent approximately 7% of the genome [2]; in
parasites protists the proportion of repetitions varies from
11% to 65% of the DNA [3] while in protozoa such asTheileria
parva, Plasmodium berghei, T. cruzi, and Toxoplasma gondii,
this value varies between 4% and 30% of repeating sequences
in genomes [4, PMID: 16020725].

Repetitive sequences can be categorized into two groups:
interspersed repeats and tandem DNA repeat. Interspersed
repeats are mainly active or inactive copies of transposable
elements dispersed throughout the genome and are divided
into DNA transposons and retrotransposons [5], while the
tandem repeats are ribosomal DNA sequences and satellite
DNA [4, 6].

Normally, tandem repeats are classified according to
the repetitive motifs length in microsatellites, minisatellites,
and macrosatellites. Microsatellites (also known as short
tandem repeats (STRs) or simple sequence repeats (SSRs))
are small stretches of DNA sequences (usually <200 bp), with
motif lengths between 1 and 6 bp. Minisatellites are large
repetitive sequences, with motif lengths of 5 to 25 bp, and the
macrosatellites are large regions of repeats with lengths larger
than 25 bp [4, 7, 8].

Microsatellites can be classified as perfect, imperfect,
and compound. Perfect repetitive elements are formed from
identical repetitive units. Imperfect repetitive elements are
units with small mutations and may have been caused by
insertions, deletions, or replacements. Repetitive compounds
elements are composed of sequences in which two or more
repetitions (perfect or imperfect) are arranged successively
with or without nucleotide bases between them [8].

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 394157, 9 pages
http://dx.doi.org/10.1155/2015/394157

http://dx.doi.org/10.1155/2015/394157


2 BioMed Research International

Repetitive elements, mainly microsatellites, have been
widely used as molecular markers in phylogenetic studies,
analyses of genetic populations, construction of geneticmaps,
paternity testing, and forensic medicine [7, 9]. The main
explanation given for the emergence of variation in the
amount of repetitions is a sliding model (slippage) of DNA
polymerase during DNA replication [10].

Given the importance of identifying repeating regions
and the possibility of identifying them in silico, many tools
for identifying repeating regions have been developed. Work
carried out by Lim et al. [2], Mudunuri et al. [8], and Leclercq
et al. [1] reviewed and tested the main tools for identifying
repeats. The following are the most commonly used tools for
extracting repeat regions of a genome: TRF [11], TROLL [12],
Misa [13],Mreps [14], SciRoKo [15], Sputnik [16], SSR Locator
[17], IMEX [18], and GMATo [19].

However, it should be taken into consideration that all of
the above software tools are unable to obtain all of the possible
sequences because they (a) locate only perfect repetitions
(GMATo, TROLL, and Misa); (b) make use of probabilistic
or statistical patterns heuristics that do not meet all possible
repetitions (TRF andMreps); and (c) are unable to execute on
large FASTAfiles (SciRoKo andMreps). Finally, none of these
tools can be executed in both DNA and protein datasets.

Thus, this paper presents a fast and efficient algorithm
inspired by the concepts of “Sequence Search and Alignment
by Hashing Algorithm,” SSAHA [20], that stores information
about the locations of DNAwords into a hash table and based
on circular doubly linked lists for a fast and exhaustive iden-
tification of repetitive elements, both perfect and imperfect,
in large DNA or protein FASTA files.

2. Methods

2.1. Definitions. Some definitions are presented below to
facilitate understanding.

Sliding Window Method. To identify a given full-length
DNA or protein sequence, the sliding window approach is
employed to obtain sequences with variable length, where 𝑄
represents the sequence obtained for a sliding window and is
called a DNA or amino acid word and |𝑄| is word length.

Hash Table. This consists of an array where the data to be
searched is stored and is accessed via a special index called a
𝑘𝑒𝑦. In our case, we store information about eachmotif. Hash
table is allocated dynamically for eachmotif and there are 𝑟|𝑄|
positions, where 𝑟 is the radix (four for DNA and twenty for
amino acids), and |𝑄| is the length of the word (which in our
case is the sliding window length). With this, the hash table
can have a position for each combination of nucleotides or
amino acids of size |𝑄|.

Hash Function. A hash function that maps DNA or amino
acids to digits is based on the [21] conversion, where a hash
function𝑚 is defined as a function that maps each DNA base
or amino acid into digits, which in turn corresponds to a
position (index) in the hash table. For DNA, each nucleotide
is mapped as 𝑚(A) = 0, 𝑚(C) = 1, 𝑚(G) = 2, and 𝑚(T) = 3

and for amino acid residue it is mapped as 𝑚(G) = 0, 𝑚(P)
= 1, 𝑚(A) = 2, 𝑚(V) = 3, 𝑚(L) = 4, 𝑚(I) = 5, 𝑚(M) = 6,
𝑚(C) = 7, 𝑚(F) = 8, 𝑚(Y) = 9, 𝑚(W) = 10, 𝑚(H) = 11, 𝑚(K)
= 12, 𝑚(R) = 13, 𝑚(Q) = 14, 𝑚(N) = 15, 𝑚(E) = 16, 𝑚(D) =
17, 𝑚(S) = 18, and 𝑚(T) = 19. The DNA or amino acid word
(sliding window) is converted into a number applying the
general positional number system conversion function ℎ() to
𝑄𝑝 = {𝑞0𝑞1𝑞2 ⋅ ⋅ ⋅ 𝑞|𝑄|−1}, where ℎ() is defined by

ℎ (𝑄𝑝) =

|𝑄|−1

∑

𝑖=0

𝑚(𝑞𝑖) 𝑟
(|𝑄|−1)−𝑖
. (1)

Here 𝑄 is a DNA or amino acid word, 𝑚 is the hash
function, 𝑞 is one base of word, 𝑝 is the DNA or amino acid
word start position on the sequence, 𝑟 is the radix (four for
DNA and twenty for amino acids), and |𝑄| is the length of
the word (which in our case is the sliding window length).
For instance, the DNA word ACTGC is (0 ∗ 44) + (1 ∗ 43) +
(3 ∗ 42) + (2 ∗ 41) + (1 ∗ 40) = 121.

Single Bucket. It consists of a 5-tuple, inwhich the information
of each repetitive pattern for a given motif is recorded. It is
formed by ⟨𝑠𝑝, 𝑓𝑝,𝑚𝑡, 𝑔, 𝑙𝑡⟩, where 𝑠𝑝 and 𝑓𝑝 are the initial
and final positions of the repetitive pattern, respectively, 𝑚𝑡
is the repetitive motif, 𝑔 is the amount of gaps within the
repetitive sequence, and 𝑙𝑡 is the number of repetitions of
the motif 𝑚𝑡 inside of this substring. Each index 𝑘 of the
repetitive elements hash table contains a list of single buckets,
where every single bucket represents a repetitive sequence of
motifs mapped to the value 𝑘. A circular doubly linked list
has been utilized to implement the list of single bucket lists,
thus ensuring the insertion and deletion of a bucket quickly.

2.2. Architecture. ProGeRF is available in two execution
modes, as illustrated in Figure 1: as a stand-alone program,
fromwhich the users can download the source code, compile,
and run in theirmachine in a Linux environment and as aweb
tool available at the web address http://64.79.105.19/ligp/. At
this address, it is also possible to download the stand-alone
version.

Repeat extraction module has been used in this two
execution modes. This module consists of three algorithms:
one developed in Perl and two developed in C language. The
perfect and imperfect repetitions are identified by algorithms
in C language, called RepeatFinderDNA and RepeatFinder-
Proteome. The first algorithm works on a FASTA file with
DNA sequences and the second algorithmworks on a FASTA
file with amino acids sequences.

The Perl script, called ProGeRF, receives the input param-
eters, performs the call to the RepeatFinder algorithms, and
after treating overlaps calculates statistics and generates the
output file.

2.3. Algorithms. The ProGeRF algorithm receives as input
parameters (a) a (multi)FASTA file, (b) minimum size of
the repetitive pattern, (c) the minimum and maximum sizes
of the motif (word DNA or amino acids length or sliding
window length), (d) maximum amount of gaps accepted



BioMed Research International 3

RepeatFinderDNA

Process

RepeatFinderProteome

Database
Web interface

Stand-alone

Browser

Shell

Repetition extract
module

ProGeRF

Figure 1: ProGeRF architecture. Structure of the tool both for the web environment and for the stand-alone mode. The dark blue rectangles
with rounded corners represent interfaces with the system. The transparent rectangles with a blue background represent algorithms done in
C or Perl. The process script receives data from the web environment, treats the data, saves them in a MySql database, and calls the repetition
extract module.

k Itens

1 Null

2 Null

3 Null

120 1

121 1

122 1

123 Null

Null

448 1

Degeneration hash table (DHT)

Degeneration buffer

ACTGA ACTGT ACTGG

Motif ACTGT from DHT(123) buffer is deleted

ACTGCACTGCACTGC

Step 1

Step 2

j = 5

Q1: ACTGC

4j − 1

h(ACTGC) = 121

h(CTGCA) = 448

Q2: CTGCA

Q3: TGCAC

h(TGCAC) = 484

· · ·

· · ·

· · ·

· · ·

h(ACTGA) = 120 not null
h(ACTGG) = 122 not null
h(ACTGT) = 123 null

>gi|10048252|gb|AF246996.1| Plasmodium falciparum

Figure 2: Creating degeneration hash table: Step 1: sliding window maps each motif of the sequence for a position in the degeneration hash
table and sets value 1 to mapped position. Step 2: generate possible degeneration of the sliding window and store in the buffer at position 𝑘
of the sliding window; only the degeneration that mapped to a position of the hash table presents a value of 1.

between each motif of a repeat, (e) percentage of maximum
degeneration accepted for amotif, (f) overlapping percentage,
and (g) runmode, that is, whether using a FASTA file of DNA
or of amino acids.

RepeatFinder procedure executes, in parallel, for each
motif size within the range of minimum and maximum

values, to identify sequences with all motif lengths in this
range of values in the FASTA file.

An overview of the ProGeRF algorithm is as shown in
Figure 2.

(1) Dynamically allocate two hash tables (repetitive ele-
ment hash table and degeneration hash table) of



4 BioMed Research International

radix|𝑄| positions, where radix is four for DNA and
twenty for amino acids and |𝑄| motif length. Each
position in the tables is mapped to a unique combi-
nation of nucleotide/amino acids of length |𝑄|.

(2) Read the first sequence from FASTA file.
(3) Creating degeneration hash table (DHT): for each

sliding window 𝑄𝑝, along the first sequence, where
𝑝 = 1, 2, 3, . . . , 𝑛 − 𝑗 + 1, 𝑛 is the sequence length and
𝑗 is the sliding window size (𝑗 = |𝑄|). RepeatFinder
procedure converts each 𝑄𝑝 to an integer key 𝑘, as
previously discussed.With this, the position 𝑘ofDHT
is set to 1; this process is illustrated by Figure 2, Step 1.

(4) Repeat the previous process for 𝑝 = 1, 2, 3, . . . , 𝑛 − 𝑗 +
1, where 𝑛 is the sequence length and 𝑗 is the sliding
window size.

(5) For each position marked with 1 in the degeneration
hash table, run the generating degeneration proce-
dure. This procedure generates all possible degen-
erations of a motif up to a maximum percentage
of defined imperfection. Each motif degenerate gen-
erated is converted to an integer key 𝑘󸀠, and if at
position 𝑘 of the degeneration hash table is marked
as 1 the motif degenerate generated is inserted into
a degeneration buffer. Otherwise, if position 𝑘󸀠 is
marked as null, the motif is not inserted in the
degeneration buffer, Figure 2, Step 2.

(6) Creating repetitive elements hash table (REHT), illus-
trated by Figure 3: for each sliding window𝑄𝑝, where
𝑝 = 1, 2, 3, . . . , 𝑛 − 𝑗 + 1, do the following:

(a) calculate 𝑘 = ℎ(𝑄𝑝);
(b) Step 1: if a single bucket does not exist at

position 𝑘 of REHT then create a single bucket
and set 𝑠𝑝 and 𝑓𝑝 with the initial and final
positions of the motif 𝑄𝑝. However, if there is a
bucket and 0 < 𝑝 − 𝑓𝑝 ≤ 𝑔𝑎 (where 𝑝 is sliding
window position, 𝑓𝑝 the value registered in the
bucket final position, and 𝑔𝑎 the maximum gap
allowed between motif), then
(i) set𝑓𝑝 = 𝑝+|𝑄|−1, that is, the final position

of the current sliding window;
(ii) increase the field 𝑙𝑡 of bucket;
(iii) set 𝑔𝑝 = 𝑔𝑝+𝑝−𝑓𝑝; that is, record the total

number of gaps.
However, if there is a single bucket and the
condition 0 < 𝑝 − 𝑓𝑝 ≤ 𝑔𝑎 is not satisfied and
if the bucket field 𝑙𝑡 is not greater than or equal
to the minimum amount of repetitions defined,
then the last single bucket is deleted.

(c) Step 2: check whether the current sliding win-
dow is a degeneration of some motif ever
recorded in buckets of REHT. For this, degener-
ation buffer at position 𝑘 of degeneration hash
table is traversed.

(d) Step 3: for each existing degeneration in the
buffer, the function ℎ() is applied and then

converted into an integer 𝑘, after which Step 1
is performed. However, the single bucket is not
deleted if the condition 0 < 𝑝 − 𝑓𝑝 ≤ 𝑔𝑎 is not
satisfied.

(7) Save the REHT results in a file and later erase its data.
(8) Repeat steps 1–7 for the other sequences in the FASTA

file.
(9) In dealing with overlaps, join all the files from step 7

into a single file, sort the rows by the initial position
of the repetition and for each row that represents a
repetitive element, and check the following:

(a) if the current repetitive element has an initial
position less than the final position of the
previous repetitive element then compute the
degree of overlap;

(b) if the degree of overlap is within the permitted
value, skip to the next repetition. Otherwise,
delete the smallest repetitive element and pass
on to the next line.

(10) Print the remaining reps in the file.

2.4. Implementation. Hash tables were developed to perform
a dynamic allocation of memory which allows the program
to read FASTA files of any size. Furthermore, degeneration
buffer and the buckets were implemented through circular
doubly linked lists, which allow you to insert or remove
degenerations or single buckets in the hash table quickly,
without the need to scroll through the whole list.

Time complexity to create the degeneration hash table is
approximately linear in function of the number of nucleotides
or amino acids sequence, because the algorithm runs once the
input sequence to identify the existing motif, scoring with 1
the position in the degeneration hash table of motif found.
Then, it traverses the degeneration hash table, and at positions
marked with 1, the possible degenerations are generated for
the corresponding motif.

The algorithm accepts a maximum of 35% degeneration,
that is, at most two degenerate characters in a motif of size
7. The amount of possible combinations for a motif of size 𝑗
with degeneration by up to 2 characters is given by

𝑐 =

1

2

((𝑟 − 1)
2
𝑗
2
+ (𝑟 − 1) 𝑗) , (2)

where 𝑟 is the radix (four for DNA and twenty for amino
acids) and 𝑗 = |𝑄|, that is, the length of the word (in our case
it is the sliding window length). Because 𝑐 does not vary with
the size of the input sequence, it can be considered constant,
so the time complexity to generate the degeneration hash
table is of the order 𝑂(𝑛).

The step of generating REHT also presents linear time
complexity depending on the size of the sequence input.
Because the sliding window traverses the FASTA sequence
once for every sliding window, the corresponding motif
is inserted or deleted in the bucket in constant time and
then tested at most 𝑐 possible degenerations, and as 𝑐 can



BioMed Research International 5

GATGTAGATGTGATGGTTAGGATGTCAGAGGATTTG

Single bucket

Step 1

k Itens

1 Null

2 Null

3 Null

236 1

1
570 1

571 1

Null

448 1 Buckets

a b

a

b

k Itens

1 Null

2 Null

3 Null

Null

570 1
571 1

Null

DHT

Degeneration buffer

GATGA GATGT

Step 2

Step 3

REHT

4|Q| − 1

h(GATGT) = 571

· · ·

· · ·

· · ·

· · ·

4|Q| − 1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Sliding windows j = |Q| = 5

, 16, GATGT, 1,

, 25, GATGT, 0,

Q1: h(GATGT) = 571

Q2: h(ATGTA) = 236

Q12 : h(GATGG) = 570

Q21 : h(GATGT) = 571

>gi|10048252|gb|AF246996.1| Plasmodium falciparum

3⟩

1⟩

⟨1

⟨21

Figure 3: Creating repetitive element hash table: Step 1: sliding window maps each motif of the sequence for a position in the repetitive
element hash table and sets value 1 to mapped position, and add or remove the sliding window to single bucket; Step 2: check whether the
current sliding window is a degeneration of somemotif ever recorded in buckets of REHT; Step 3: for each existing degeneration in the buffer
the function ℎ() is applied and then converted into an integer 𝑘 and, soon after, Step 1 is performed.

be considered constant, we have time complexity in order
𝑂(𝑛). Therefore, the RepeatFinder procedure presents time
complexity of the order 𝑂(𝑛).

2.5. Interface and Output. ProGeRF is designed to have web
and command line interface. The command line interaction
may be performed by indicating the (multi)FASTA file
address containing DNA or amino acids sequence(s), the
motif length range, the minimum repeated times for all
motif lengths or the minimum repeated time for each one,
the maximum gaps allowed between motifs, the maximum
degeneration percentage, the motif shifting percentage, and
the run mode that defines DNA or amino acids input
sequence and the output file name.

For example, the command sequence perl progerf.pl −q
Linfantum JPCM 5.FASTA −o output −i 2 −y 6 −r 5 −g
3 −v 0 −d 20 −m n will search repetitive elements in the
file Linfantum JPCM5.FASTA of motif with length range
between 2 and 6, with maximum gaps of 3, motif overlap of
0%, degeneration of 20%, and run mode of nucleotide, and
the result will be saved in the output file.

The results file presents a table, wherein each column
represents the following information in order: sequence
ID, size of the DNA/protein sequence, minimal repetitions
allowed, repetition amount, repetitive element start and final
position, number of gaps, statistics (only nucleotide run
mode), and complete repetitive element.

Thewebmode, available at http://64.79.105.19/ligp/, offers
a user-friendly interface developed using bootstrap packages
for layout formatting, a JBrowse plugin [22] and jqGrid [23].
Web interface provides the same flexibility as command line
mode. However, it is platform independent and can be run
in any browser; the parameter setting is performed through
forms, buttons, text boxes, and a combo box.

Web interface provides three ways of sending the FASTA
file containing DNA or amino acid sequences.

(1) File upload: the users can send a FASTAfile from their
own computer.

(2) Copy and paste sequence: the user copies a sequence
of interest and pastes in the text box.

(3) Automatic download from the NCBI data base: the
user enters one or more GI numbers separated by
commas, and the tools will download the sequences
from the NCBI data base and run the repetition
extraction algorithm. GI number (GenInfo identi-
fier) is a unique number that identifies a particular
sequence in the NCBI databases.

The results on the web page can be viewed in two ways:
tabular format using the jqGrid script and graphical format,
through the JBrowse plugin [22].

jqGrid is anAjax-enabled JavaScript control that provides
solutions for representing and manipulating tabular data on
the web dynamically [23]. With jqGrid, the user can make



6 BioMed Research International

Table 1: Comparison of amount detection and execution times (in seconds) of Mreps, Misa, Sputnik, GMATo, SciRoKo, TRF, and ProGeRF.
The features were run on a Dell Inspiron, Intel core 2 duo 2.2GHz processor with 2MB cache, 3GB RAM, 320GB hard drive, Ubuntu
operating system 14.04 LTS 32 bits.

Sequence Mreps Misa Sputnik GMATo SciRoKo TRF ProGeRF
Rep (time) Rep (time) Rep (time) Rep (time) Rep (time) Rep (time) Rep (time)

NC 004318.1 (1204 kb) 9608 (2.8) 22867 (3.2) 7420 (0.7) 23539 (10.3) 3763 (1.1) 30244 (72.4) 26164 (3.9)
NC 001136.8 (1531 kb) 935 (1.4) 10640 (3.3) 1427 (0.9) 10721 (7.7) 185 (0.7) 8101 (4.5) 11552 (2.4)
NC 000962.2 (4411 kb) 1412 (3.9) 6832 (8.9) 3140 (1.46) 6846 (12.1) 72 (1.5) 19496 (24.5) 11422 (4.0)
Setaria∗ (5̃15Mb) — (—) 2054241 (868.3) 480644 (105.7) 2073643 (9859.1) 47770 (129.0) 2438036 (1481.5) 2319812 (1352.0)
∗Whole genome. The value in brackets is the runtimes in seconds.

queries for a particular motif pattern, setting several query
filters and sorting the results by any of the columns.

JBrowse is a browser for genome viewing, developed
in JavaScript, in which the user can navigate through the
genome annotations on the web. In JBrowse, it is possible
to zoom, navigate, and select range of subsequence within a
genome [22].

3. Results and Discussion

We present two experiments in this paper. The first exper-
iment demonstrates the efficiency of ProGeRF compared
with other microsatellite identification tools, and the second
experiment demonstrates the use of the repetitive element
identification algorithm in protein FASTAs files.

Our current implementation features a Dell Inspiron,
Intel core 2 duo 2.2GHz processor with 2MB cache, 3GB
RAM, 320GB hard drive, and the Ubuntu operating system
14.04 LTS 32 bits.

For the first experiment, the tools Misa [13], Mreps
[14], GMATo [19], SciRoKo [15], Sputnik [16], TRF [11],
and ProGeRF were executed on each of the following
genomic sequences: Plasmodium falciparum chromosome
IV (NC 004318.1), Saccharomyces cerevisiae chromosome IV
(NC 001136.8), Mycobacterium tuberculosis H37Rv genome
(NC 000962.2) used in the work of Mudunuri and Nagara-
jaram [18] downloaded from ftp://ftp.ncbi.nih.gov/geno-
mes, and the whole Setaria italica genome used in the work
of Wang et al. [19], download from phytozome http://www
.phytozome.net/.

For tools that allow for configuring the parameters mini-
mum size, maximum size, and a minimum number of repeti-
tions of five motifs, the values set for these parameters were
1, 6 and 5, respectively. For the remaining parameters, the
following values were used according each tool: (a) Misa:
maximum difference between 2 SSRs of 0; (b) Mreps: a
resolution of 5; (c) SciRoKo: modemismatched fixed penalty,
with other parameters’ score using default values; (d) Sputnik:
a maximum size of 5 (maximum allowed by the tool), a
minimal score: 5, maximal recursion: 0, minimum length
of SSR to report: 10, and points for a mismatch and points
for a match: 1; (e) TRF: matching weight: 2, mismatching
penalty: 7, indel penalty: 7, match probability: 80, indel
probability: 10, Minscore: 2, and MaxPeriod: 15; and (f)
ProGeRF: a maximum number of gaps allowed 1, overlap of
0%, a degeneration of 20, and nucleotide mode.

IMEX tool presented error during the execution of the
versions 1.0 and 2.0 in Ubuntu operating system 14.04 of
32 bits; thus it has not been possible to compare the results
of this tool. In the first three sequences, Table 1, ProGeRF
was a little slower than SciRoKo, Sputnik, Misa, and Mreps.
However, the time can still be considered good, if we note
the much larger number of repetitions tracked than the other
tools. The number of repetitive elements of tools SciRoKo,
Sputnik, and Mreps are smaller than of tools Misa, GMATo,
TRF, and ProGeRF, but GMATo is slower than Misa, TRF,
and ProGeRF. It is important to mention that GMATo tool
is nonspecific in its treatment of overlaps andWang et al. [19]
relate that the extra loci fromMisa are mined redundantly in
the overlapped microsatellites.

The smaller numbers of repetitive elements found by tools
SciRoKo, Sputnik, andMreps are due to the fact that (a) Sput-
nik does not report hexanucleotide since maximum allowed
is pentanucleotide; (b) according Mudunuri et al. [8] score
based tools as SciRoKo and Sputnik that use highermismatch
penalties (such as 5, 6, and 7) and less match weights (such as
1, 2) fail to identify many smaller microsatellites (mono-tri);
and (c) Mreps is highly constrained by its internal minimum
size threshold, since detection starts at 11 bp for dinucleotides,
12 bp for trinucleotides, and up to 15 bp for hexanucleotides
[14, 15, 18].

For three files, Table 1, a smaller number of repetitive
elements has been identified by ProGeRF compared with the
TRF tool, approximately 118 thousand differences in number.
However, the TRF tool allows the occurrence of overlap
where the redundancy is, at most, three pattern sizes and
therefore presents a much larger number of repetitions than
ProGeRF.

By default, ProGeRF does not allow overlaps and chooses
the biggest repetitive elements sequence. However, the user
can define the overlap percentage allowed, through the
parameter −v. Nevertheless, the runtime of ProGeRF was
lower than TRF and 7 times smaller than that of GMATo.

We evaluated whether the detections returned by tools
on sequences NC 004318.1, NC 001136.8, and NC 000962.2,
Table 1, occur at the samephysical locations in genomes.More
than 75% of SciRoKo, Sputnik, andMreps detections are also
detected by ProGeRFon the three sequences andGMATo and
Misa detections are full coverage by ProGeRF on the three
sequences, Table 2.

Sputnik and TRF present low amount of loci covered by
ProGeRF on sequences NC 001136.8 and NC 000962.2. This



BioMed Research International 7

Table 2: Loci and nucleotide coverage between tools.

Sequence B
Tools Mreps Misa Sputnik GMATo SciRoKo TRF ProGeRF

Plasmodium Chr4
NC 004318.1 A

Mreps — 78 (45) 53 (33) 78 (45) 41 (36) 98 (74) 89 (60)
Misa 47 (63) — 21 (4) 100 (99) 18 (40) 88 (79) 100 (98)

Sputnik 91 (86) 70 (74) — 70 (74) 58 (69) 0 (0) 83 (84)
GMATo 49 (62) 100 (99) 21 (40) — 19 (40) 89 (79) 100 (98)
SciRoKo 96 (95) 93 (76) 95 (71) 92 (76) — 95 (96) 98 (91)
TRF 51 (41) 54 (32) 0 (0) 54 (32) 16 (21) — 68 (46)

ProGeRF 46 (56) 86 (67) 21 (31) 86 (67) 16 (32) 87 (78) —

SAC Chr4
NC 001136.8 A

Mreps — 60 (40) 42 (26) 68 (40) 18 (20) 95 (74) 86 (62)
Misa 7 (12) — 3 (7) 100 (99) 1 (4) 33 (37) 100 (99)

Sputnik 30 (35) 29 (30) — 29 (30) 12 (1) 74 (73) 38 (39)
GMATo 7 (12) 100 (99) 3 (7) — 1 (4) 33 (37) 100 (99)
SciRoKo 91 (89) 77 (61) 86 (59) 77 (61) — 99 (99) 94 (72)
TRF 15 (16) 41 (26) 13 (12) 41 (26) 2 (5) — 48 (35)

ProGeRF 8 (16) 92 (80) 4 (7) 92 (80) 1 (5) 34 (39) —

MTB H37Rv
NC 000962.2 A

Mreps — 9 (3) 15 (7) 9 (3) 3 (3) 91 (71) 75 (58)
Misa 2 (3) — 1 (1) 100 (99) 0.5 (1) 13 (13) 100 (99)

Sputnik 6 (7) 2 (2) — 2 (2) 1 (1) 66 (64) 14 (14)
GMATo 2 (3) 100 (99) 1 (1) — 0.5 (1) 13 (13) 100 (99)
SciRoKo 73 (74) 47 (36) 63 (41) 47 (36) — 100 (100) 79 (72)
TRF 8 (7) 4 (1) 10 (7) 4 (1) 0.4 (0.5) — 18 (13)

ProGeRF 9 (16) 60 (35) 4 (4) 60 (35) 0.5 (1) 29 (33) —
Percentage of the total number of detections (perfect and imperfect) of tools A also detected (i.e., covered) by tools B. The value in brackets is the proportion
of nucleotides detected by A and covered by B.

low coverage is consequence of the lack of a parameter to set
maximum size and minimum number of repetitions, which
allows them to find a larger number of repetitive elements.

Therefore, we filter the results of Sputnik and TRF tools,
limiting the results to minimal repeat of 5, minimal size of 1,
andmaximum size of 6.Thus, ProGeRF coverage increases to
100% over results of Sputnik and more than 80% over results
of TRF (97% for sequences NC 004318.1 and NC 001136.8).

On the other hand, the coverage of ProGeRF by SciRoKo,
Mreps, and Sputnik is lower than 46% for all sequences and
much lower than 9% when observing the last two sequences.
This is consistent with the fact that ProGeRF detects more
repetitive elements than others tools.

In the second experiment, we run the ProGeRF web
version in the protein mode in circumsporozoite protein
(ACO49545.1), merozoite surface protein 1 (XP 001352170.1),
and merozoite surface protein 9 (AAN36363.1).

Table 3 presents the result of executing the circumspo-
rozoite protein (ACO49545.1), merozoite surface protein
1 (XP 001352170.1), and merozoite surface protein 9
(AAN36363.1), in which the repetitive element PNAN (PRO-
ASN-ALA-ASN) was identified in the circumsporozoite
protein as in previous work [24]. In other proteins, repetitive
elements have been identified with low repetition frequency.
Figure 4 shows the result that is available to the user in the
web environment: (A) visualization of results through the
jqGrid plugin: clicking over the repetitive element opens

Table 3: Repetitive protein elements found by the web tool
ProGeRF.

ID sequence Locus Motif Rep.
XP 001352170.1 62–97 GASAQS 6
ACO49545.1 146–297 PNAN 38
AAN36363.1 693–712 KEKEE 4
The parameters used were motif size between 2 and 6, repetitions of the least
4 motifs, and zero for the gaps, overlap, and degeneration.

the graphical view; (B) repetitive elements are mapped
and displayed graphically through JBrowse. In the web
environment an identification code is generated for each
execution. The code can be used to review the result when
necessary and it is still possible to receive a link with the code
by email to notify the user.

Regarding the tool in web mode, no other web tool
offers the user the possibility to consult executions previously
carried out and the integration/visualization of results using
a dynamic and friendly environment for navigation genome
with jBrowse.

4. Conclusion

ProGeRF, the proposed identification algorithm for repetitive
elements, presents itself as an efficient, fast, accurate, and



8 BioMed Research International

(a)

(b)

Figure 4: Screen shot from circumsporozoite protein (ACO49545.1), merozoite surface protein 1 (XP 001352170.1), and merozoite surface
protein 9 (AAN36363.1) element repetitive search: (a) visualization of results through the jqGrid plugin: by clicking over the repetitive element
the graphical view is opened; (b) repetitive elements are mapped and displayed graphically through JBrowse.

easy to use tool and is available in either stand-alone or web
mode. It offers a dynamic and user-friendly web interface, the
identification of perfect and imperfect repetitive elements,
repeat size detection from 1 to 12, repeating the search
for specific sizes, preview of the alignment, the flanking
sequence, repetition statistics, and a graphical output.

Among the tools that locate both perfect and imper-
fect repeats ProGeRF is the one that provides graphical
visualization and allows for the filtering of the results.
Another advantage is the possibility of executing it on
genomic and proteomic data and the ability to treat large
genomic/proteomic data files.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior (CAPES) [23038008852],
FAPEMIG, and CNPq. The authors are very grateful for the
Postgraduate Program DINTER UFMT/UFMG.

References

[1] S. Leclercq, E. Rivals, and P. Jarne, “Detecting microsatellites
within genomes: significant variation among algorithms,” BMC
Bioinformatics, vol. 8, article 125, 2007.

[2] K. G. Lim, C. K. Kwoh, L. Y. Hsu, and A. Wirawan, “Review of
tandem repeat search tools: a systematic approach to evaluating
algorithmic performance,” Briefings in Bioinformatics, vol. 14,
no. 1, Article ID bbs023, pp. 67–81, 2013.

[3] C. Clayton, “Repetitive elements in parasitic protozoa,” BMC
Biology, vol. 8, article 64, 2010.

[4] B. Wickstead, K. Ersfeld, and K. Gull, “Repetitive elements in
genomes of parasitic protozoa,” Microbiology and Molecular
Biology Reviews, vol. 67, no. 3, pp. 360–375, 2003.

[5] J. R. Lupski and P. T. Stankiewicz, Genomic Disorders: The
Genomic Basis of Disease, Springer, Berlin, Germany, 2007,
http://www.springer.com/gp/book/9781588295590.

[6] G.-F. Richard, A. Kerrest, and B. Dujon, “Comparative genom-
ics and molecular dynamics of DNA repeats in eukaryotes,”
Microbiology and Molecular Biology Reviews, vol. 72, no. 4, pp.
686–727, 2008.

[7] C. Schlotterer, “Evolutionary dynamics of microsatellite DNA,”
Chromosoma, vol. 109, no. 6, pp. 365–371, 2000.

[8] S. B. Mudunuri, A. A. Rao, S. Pallamsetty, and H. A. Nagara-
jaram, “Comparative analysis of microsatellite detecting soft-
ware: a significant variation in results and influence of parame-
ters,” in Proceedings of the International Symposium on Biocom-
puting (ISB ’10), ACM, New York, NY, USA, February 2010.

[9] E. J. Oliveira, J. G. Pádua, M. I. Zucchi, R. Vencovsky, and M. L.
C. Vieira, “Origin, evolution and genome distribution of mic-
rosatellites,” Genetics and Molecular Biology, vol. 29, no. 2, pp.
294–307, 2006.

[10] Y. D. Kelkar, N. Strubczewski, S. E. Hile, F. Chiaromonte, K.
A. Eckert, and K. D. Makova, “What is a microsatellite: a
computational and experimental definition based upon repeat
mutational behavior at A/T and GT/AC repeats,” Genome
Biology and Evolution, vol. 2, no. 1, pp. 620–635, 2010.

[11] G. Benson, “Tandem repeats finder: a program to analyze DNA
sequences,” Nucleic Acids Research, vol. 27, no. 2, pp. 573–580,
1999.

[12] A. T. Castelo, W. Martins, and G. R. Gao, “TROLL—tandem
repeat occurence locator,” Bioinformatics, vol. 18, no. 4, pp. 634–
636, 2002.

[13] T. Thiel, W. Michalek, R. K. Varshney, and A. Graner, “Exploit-
ing EST databases for the development and characterization
of gene-derived SSR-markers in barley (Hordeum vulgare L.),”
Theoretical and Applied Genetics, vol. 106, no. 3, pp. 411–422,
2003.

[14] R. Kolpakov, G. Bana, and G. Kucherov, “mreps: efficient and
flexible detection of tandem repeats in DNA,” Nucleic Acids
Research, vol. 31, no. 13, pp. 3672–3678, 2003.

[15] R. Kofler, C. Schlötterer, and T. Lelley, “SciRoKo: a new tool
for whole genome microsatellite search and investigation,”
Bioinformatics, vol. 23, no. 13, pp. 1683–1685, 2007.

[16] M. La Rota, R. V. Kantety, J.-K. Yu, and M. E. Sorrells,
“Nonrandomdistribution and frequencies of genomic and EST-
derived microsatellite markers in rice, wheat, and barley,” BMC
genomics, vol. 6, no. 1, article 23, 2005.

[17] L. C. D. Maia, D. A. Palmieri, V. Q. D. Souza, M. M. Kopp, F. I.
F. D. Carvalho, and A. Costa de Oliveira, “SSR locator: tool for



BioMed Research International 9

simple sequence repeat discovery integrated with primer design
and PCR simulation,” International Journal of Plant Genomics,
vol. 2008, Article ID 412696, 9 pages, 2008.

[18] S. B. Mudunuri and H. A. Nagarajaram, “IMEx: imperfect mic-
rosatellite extractor,”Bioinformatics, vol. 23, no. 10, pp. 1181–1187,
2007.

[19] X. Wang, P. Lu, and Z. Luo, “GMATo: a novel tool for the
identification and analysis of microsatellites in large genomes,”
Bioinformation, vol. 9, no. 10, pp. 541–544, 2013.

[20] Z. Ning, A. J. Cox, and J. C. Mullikin, “SSAHA: a fast search
method for large DNA databases,” Genome Research, vol. 11, no.
10, pp. 1725–1729, 2001.

[21] J. Reneker and C.-R. Shyu, “Refined repetitive sequence
searches utilizing a fast hash function and cross species infor-
mation retrievals,” BMC Bioinformatics, vol. 6, article 111, 2005.

[22] M. E. Skinner, A. V. Uzilov, L. D. Stein, C. J. Mungall, and I. H.
Holmes, “JBrowse: a next-generation genome browser,”Genome
Research, vol. 19, no. 9, pp. 1630–1638, 2009.

[23] T. Tomov, jqfGridg—Introduction, 2008.
[24] A. A. Holder, “Developments with anti-malarial vaccines,”

Annals of the New York Academy of Sciences, vol. 700, no. 1, pp.
7–21, 1993.


