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Abstract: While the most common manifestations associated with rheumatoid arthritis (RA)
are synovial damage and inflammation, the systemic effects of this autoimmune disorder are
life-threatening, and are prevalent in 0.5–1% of the population, mainly associated with cardiovascular
disorders (CVDs). Such effects have been instigated by an altered lipid profile in RA patients, which
has been reported to correlate with CV risks. Altered lipid paradox is related to inflammatory
burden in RA patients. The review highlights general lipid pathways (exogenous and endogenous),
along with the changes in different forms of lipids and lipoproteins in RA conditions, which further
contribute to elevated risks of CVDs like ischemic heart disease, atherosclerosis, myocardial infarction
etc. The authors provide a deep insight on altered levels of low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs) in RA patients and their
consequence on the cardiovascular health of the patient. This is followed by a detailed description
of the impact of anti-rheumatoid therapy on the lipid profile in RA patients, comprising DMARDs,
corticosteroids, anti-TNF agents, anti-IL-6 agents, JAK inhibitors and statins. Furthermore, this review
elaborates on the prospects to be considered to optimize future investigation on management of RA
and treatment therapies targeting altered lipid paradigms in patients.

Keywords: rheumatoid arthritis; cardiovascular disorders; lipid paradox; inflammatory burden;
LDL-C; HDL-C; lipoproteins; atherosclerosis; DMARDs

1. Introduction

Rheumatoid arthritis (RA) is considered to be an autoimmune disorder which is prevalent in
about 0.5–1% of the general population [1,2], with significant risks of comorbidities, disabilities and
fatigue [3], along with cardiovascular disorders (CVDs), and long-term impact on socioeconomic and
personal paradigms [4]. Even though no exact cause is known, the disease is considered to occur as
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a result of a combination of epigenetic, genetic and environmental factors, and the progression of
the disorder is considered to be initiated years before appearance of clinical signs and symptoms [5].
Therefore, several studies have established the importance of early diagnosis to provide treatment at
early stages, which has proved to be beneficial, along with prognostic markers for remission [6,7].

A bioclinical and chemical aspect, comprising anti-citrullinated peptide antibodies (ACPA), has
been incorporated by the 2010 American College of Rheumatology/European League of Rheumatism
criteria for RA [8]. The identification of ACPA and rheumatoid factor (RF) autoantibodies, of different
isotypes, in the circulation, are considered to be significant markers in early diagnosis of RA, prior to
the clinical manifestation of the disorder [9]. RA patients exhibit metabolic alterations, which may
elevate morbidity and mortality risks in the patients [10]. Such metabolic alterations are identified by
evaluation of the basal metabolic rate (BMR) of RA patients, which is reported to elevate by 8%, unlike
in the healthy individual [11].

Furthermore, significant alterations in the blood lipid are also reported in RA patients [12], which
may depict increased cardiovascular (CV) risks in such patients. Furthermore, RA elevates the risk
of CVDs by 50% (approximately) as compared to the general population [13,14], and CVDs are the
leading cause of death in patients with RA [13,15–20]. The risk for myocardial infarction (MI) has been
reported to be enhanced by 2-fold, compared to control groups, as observed in large retrospective RA
investigations [15,21]. RA patients are more susceptible to ischemic heart disease, heart failure and CV
mortalities, and also the pattern of CVDs in patients with RA is revealed to be different from that of
general population [20].

Type 2 diabetes, hypertension and smoking are considered to be traditional risk factors of
CVDs [22,23], which play a significant role in elevating the mortality rate in RA patients [24,25].
The elevation in CV risks is primarily driven by inflammatory responses related to RA [13,26]. Thus,
enhanced inflammatory processes in RA patients are associated with atherosclerotic events, along
with systemic inflammatory responses, which are responsible for adverse alterations in CV risk
factors [26–30].

The RA-associated lipid paradox is related to an excessive inflammatory burden in RA patients,
in which an inverse association is observed between cholesterol (a significant CV risk factor in
general population) and CV risks in RA patients (untreated) [31,32]. On the other hand, inhibition
of inflammatory events related to RA coincides with certain elevations in lipid concentration, along
with amelioration in CV events [33]. The significance of minimizing CV risks in RA is considered to be
fundamental as per the recommendations laid by the European League against Rheumatism (EULAR)
for coronary heart diseases (CHDs) management associated with RA [33]. Evaluation of CV risks in
RA patients is recommended on an annual basis [13].

Based on the metabolic alterations observed in RA patients and the role of these changes in
inducing CV, the aim of this review is to provide a detailed overview of the lipid paradox, along with
its role in developing CV risks in such subjects; we also focused on the impact of anti-rheumatoid
therapies in the lipid scenario associated with RA. The authors highlight the relationship between
elevated risks of CV, the inflammatory burden and altered lipid profiles in patients with RA. Significant
information is also provided on the importance of lipid alterations associated with RA in serving as
appropriate therapeutic targets. Over 350 references were searched and 221 of them were cited as
supporting claims of the current study.

2. Metabolic Frontiers in Rheumatoid Arthritis and Their Therapeutic Significance

RA is an inflammatory disorder of the immune system, characterized by the production of
self-antibodies such as ACPA, RF and anti-carbamylated protein antibodies (anti-CarP). [34]. This is
accompanied by chronic inflammation of the synovial tissue and hyperplasia, damage to the bone and
cartilage as well as systemic complexities, significantly related to the lungs, brain or CV system, which
pose a fundamental threat to the socioeconomic balance and unmet needs [34,35]. RA is associated with
progressive therapeutic advancement with conventional treatment therapies and disease modifying
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anti-rheumatic drugs (DMARDS); however, these agents have been able to provide optimum response
in only 60% of the RA patients [36].

Presently, the predictive biomarkers evaluating the prognostic approach, treatment efficacy and
resistance to therapy, consisting of RF, C-reactive protein (CRP), ACPA and erythrocyte sedimentation
rate (ESR), remain insufficient from a clinical perspective [5,37]. The immune system intolerance is
marked as a primary event in RA pathogenesis, which is followed by inflammation of the joint [5,38],
which is most likely to take place at the extracellular site [39]. The events (such as infiltration of
leukocytes, production of new vasculature and elevated expression levels of chemokines and adhesion
molecules) result in enhanced migration of leukocytes to the site of inflammation [34]. Furthermore,
improper formation of lymphatic vessels restricts cell retreat, along with activation of fibroblasts,
resulting in inflammation of the synovial tissue [40]. The joint resident and immune system cells
compete for nutrients due to limited nutrient availability, at a rate exceeding that of their formation,
thus elevating the metabolic requirement [41–45]. All these events significantly induce changes in the
immune responses, resulting in immune intolerance, leading to inflammation and autoimmunity [34].

The investigation of metabolic intermediates and end products, relative to the functions of
the immune cells, is a progressing area of research currently, which has been referred to as
immunometabolism [46]. Certain molecules like acetyl-CoA, succinate, fumarate and lactate,
function as signaling molecules, establishing significant associations between metabolic processes and
inflammatory and immune responses (Figure 1) [34].
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Figure 1. The inflammatory portfolio in RA (rheumatoid arthritis) synovium and impaired metabolic
processes. Legend: IL-2,6,17,15, Interleukin-2,6,17,15; CD4, cluster of differentiation 4; Th1,7, T-helper
cells; FLS, fibroblast-like synoviocytes; TNF-α, tumor necrosis factor alpha; ROS, reactive oxygen
species; IL-1ß, interleukin-1 beta; ATP, adenosine triphosphate; TCA, tricarboxylic acid cycle; α-KG,
alpha-ketoglutaric acid; G6PD, glucose-6 phosphate dehydrogenase; PPP, pentose phosphate pathway;
FAS, fatty acid synthase; CoA, coenzyme A.

Urine and serum sample metabolomics, based upon nuclear magnetic resonance (NMR)
spectroscopy, has identified greater levels of lactate and 3-hydroxybutyrate among the metabolites in
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a group of RA patients, unlike the control group, where the serum metabolic profile was evaluated
using 1-dimensional (1) H-NMR spectroscopy [47]. Furthermore, mitochondrial DNA (mtDNA)
mutations and production of reactive oxygen species (ROS) were reported to be present in greater
amounts in patients with RA, as compared to osteoarthritis fibroblast-like synoviocytes (FLS), when
50 subjects with inflammatory arthritis went through arthroscopy and synovial tissue biopsies, where
their synovial fluid was clinically evaluated [48]. Random mutation capture assay (RMCA) and
specific cell fluorescent probes were employed for quantification of ROS, mitochondrial membrane
potential (MMP), mass and mutagenesis. The elevated mitochondrial mutations are related to the
inflammation of the synovial membrane, depicting a direct association between mutations and prime
proinflammatory pathways [48]. Unlike T cells, RA FLS depict elevation in glycolytic metabolism
under conditions of metabolic stress [49]. Similarly, lipid metabolism is also found to play an important
role in regulation of the functions of the immune cells, according to the recent studies [50], which
has brought the lipid mediators into light, as significant therapeutic targets in various allergic and
autoimmune disorders [51]. Table 1 enlists various metabolic targets associated with RA.

Table 1. Metabolic targets in treatment of RA.

Cell Associated with RA
Abnormal Metabolic Process

Effective Therapeutic Targets
Increased Decreased

Fibroblasts Glycolysis; Lipid - HK2; GLUT1; PFKFB3; Choline

T cell Lipid; PPP Glycolysis FASN; PFKFB3; AMPK/mTOR;
G6PD; Lactate

Dendritic cells Glycolysis - iNOS; HK2; mTOR
Macrophages/monocytes TCA; Glycolysis (AMPK) HIF; Lactate; PKM2; Succinate

Legend: (TCA, tricarboxylic acid cycle; AMPK—5′ AMP-activated protein kinase; HK2, hexokinase-2; GLUT1,
glucose transporter 1; PFKFB3, 6-phospho-fructo-2-kinase/fructose-2,6-biphosphatase 3 enzyme; FASN, fatty acid
synthase; mTOR, mammalian target of rapamycin; G6PD, glucose-6-phosphate dehydrogenase; iNOS, inducible
nitric oxide synthase; HIF, hypoxia inducible factors; PKM2, pyruvate kinase M2.

Certain specific transcription factors function as metabolic sensors and regulate numerous anabolic
and catabolic pathways, like 5′ AMP-activated protein kinase (5′ AMPK), i.e., a redox sensor [52],
which regulates various metabolic activities, such as mitochondrial biogenesis, glucose uptake, cellular
functions and lipid metabolism [34].

The experimental arthritis was found to be suppressed as a result of therapeutic activation
of AMPK, like methotrexate-mediated AMPK-dependent pathway stimulation, which is depicted
to exert protective effects against inflammation [53,54]. The activation of AMPK is dependent
upon myristoylation, and the RA T cells exhibit a flaw in the function of N-myristoyl transferase
(NMT), which disables the AMPK activation event and enables the activation of mammalian target of
rapamycin1 (mTOR1) signaling, promoting differentiation of pro-inflammatory Th1 and Th17 [34].
The investigations regarding loss of function of NMT1 were found to induce in vivo and in vitro
inflammatory responses, whereas, on the contrary, excessive expression levels of NMT1 were found to
restore the activation of AMPK and inhibit inflammation of the synovial tissue [55].

Furthermore, an indirect activator of AMPK, metformin (anti-diabetic drug), has been reported to
curb the disease progression in mouse arthritic models [56] by inhibiting the mTOR pathway, elevating
autophagic flux and suppressing nuclear factor-kappa B (NF-Kb)- induced production of inflammatory
cytokines [53]. The environmental signals, cellular functions and nutrient availability is regulated
by both mTOR and AMPK [57,58]. However, activation of mTOR is marked with aging of the cells
(senescence), therefore, rapamycin (inhibitor of mTOR complex 1) has been recognized as an agent in
treating autoimmune, degenerative and hyperproliferative disorders [59]. The potential of mTOR to
synergize bioenergetics, nutrient supply and functions of T cells makes it a reliable therapeutic target
in the suppression of abnormal differentiation of T cells during initial RA phases [59].
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Similarly, several drugs affecting the metabolic signaling pathways are used to treat RA patients,
such as glucocorticoids, which block the fructose 2, 6-biphosphate (glycolytic enzyme) in tymocytes
in rats and modulate the rate of respiration in the peripheral blood mononuclear cells of rheumatic
patients [60]. Regulation of purine and pyrimidine nucleotide metabolism is the prime mechanism of
anti-inflammatory actions rendered by methotrexate [61].

Treatment with anti-tumor necrosis factor-α (anti-TNF-α) agents and janus kinase (JAK) inhibitors,
like tofacitinib, mitigate glycolysis in the synovium of RA patients [62]. Tocilizumab (anti-IL-6 blocker)
curbs the oxidative stress (OS) conditions in leukocytes of RA patients [63]. Therefore, numerous
drugs have been identified in RA treatment by affecting the metabolic signaling pathways to mitigate
inflammatory responses in both in vitro and in vivo models of RA [42,53,64,65]. Similarly, evaluating
the role of lipid metabolism in RA can prove to be effective for the development of suitable therapeutic
possibilities and associate lipid metabolism abnormalities to RA [34]. Figure 1 depicts the inflammatory
processes in synovial tissue of RA patients, along with multiple metabolic alterations.

3. Cardiovascular Risk and Inflammatory Burden in RA

One of the major CV risk factors is inflammation, which is evident by data revealing lower
CV risks in RA as a result of mitigated inflammatory responses [66–70]. Employment of traditional
equations to assess CV risk factors, such as systemic coronary risk evaluation (SCORE) models and
Framingham, are considered to underestimate this risk in RA patients, as they are not able to evaluate
the role of systemic inflammation and its effect on lipid profiles in patients [24,71–73]. The occurrence
and pathogenesis of CVDs and atherosclerosis in the general population are significantly affected by
inflammation, according to evidence-based data [74–76].

Numerous pro-inflammatory molecular entities, like fibrinogen, CRP and cytokines, aid in
the regulation of this process, as per the data obtained from epidemiological studies [77–79].
RA patients are marked with elevated levels of inflammatory molecules and cytokines which
promote dysfunction of endothelial cells and structural vessel deformities, alongside induction
of other CV risk factors, like insulin resistance, alterations in lipid levels and oxidative stress [80–82].
Furthermore, many investigational studies have established an important link between CVD risk and
inflammatory processes in RA [32,83–90]. Inflammation plays a significant role in all the stages of
atherosclerosis [16,82,91]. RA and atherosclerosis are associated with common inflammatory processes
and the events resulting in the inflammation of synovial tissue are similar to those in the case of
unstable atherosclerosis [78,82,91].

Inflammation is related to an inverse association between CV risks and lipid pattern in RA [32,66,92].
This kind of link has also been reported in the post-surgical time span, where an inverse relationship
has been noted between cholesterol levels and IL-6 enhancement [93]. Numerous investigational
studies have revealed elevation in the level of lipids, with a significant amelioration in RA progression
after therapy with anti-inflammatory agents [94]. These outcomes reveal that the traditional elucidation
of the lipid portfolio to carry out prediction of general CV risks may be expressed by prevalence of
disease in RA patients [32,66].

The mechanisms concerned with the effect of inflammatory responses on lipid alterations are
yet to be fully understood but might account for reticuloendothelial system (RES) suppression and
abbreviated formation of low-density lipoprotein (LDL) [66]. There is a possibility of impairment of
cholesterol trafficking in the liver due to overproduction of acute phase reactants (APR) under an
elevated inflammatory burden [33]. Moreover, LDL and oxidized LDL (oxLDL) uptake is promoted by
C-reactive protein (CRP), followed by LDL deposition and elevation in its uptake by liver cells [95,96].
Both quantitative and qualitative alterations in lipoproteins account for the inflammatory burden in
RA [97]. High density lipoprotein (HDL) exhibits athero-protective and anti-inflammatory functions,
facilitating reverse cholesterol transport (RChT) from the blood circulation to the liver and hampering
oxidation of LDL [98].
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CV risk-propagating pathological events might impair such protective actions [99–104]. Certain
changes were found to exist in the composition of HDL, which was isolated from the patients with
RA, according to the proteomic studies, along with the loss of reverse cholesterol transport and
anti-inflammatory action [97,105,106]. Some studies depict anti-inflammatory HDL to be a more
sensitive marker for CVDs, as compared to absolute HDL [33]. For instance, studies related to
torcetrapib and dalcetrapib (cholesterol ester transfer protein inhibitors) report 30% to 70% elevation
in the levels of circulating HDL, yet no cardioprotective action was revealed [107,108]. Dalcetrapib
(600 mg/day) or placebo were administered to 15,871 patients with acute coronary syndrome, resulting
in 4–11% elevation in HDL-C levels in the placebo group, as well as a 31–40% rise in the dalcetrapib
group. There was a negligible effect observed on LDL-C levels by dalcetrapib administration. Unlike
the placebo, there was no change in the risk of primary end point or total mortality. Moreover, the
mean systolic blood pressure (BP) was reported to be 0.6 mm Hg greater and the level of median
C-reactive protein was found to be 0.2 mg/L higher in the case of dalcetrapib administration, unlike
the placebo [107]. Therefore, such studies depict the significance of both quantitative and qualitative
alterations in the assessment of lipid profiles in RA patients [109–111].

4. An Overview of Lipids and Lipoproteins

Dyslipidemia refers to alterations in plasma lipid levels. Atherogenicity occurs as a result of
elevated levels of cholesterol and triglycerides (TGs) in plasma. The elevated expression of lipids is
significantly associated with the enhanced production of lipids and alleviated removal or absorption.
On the other hand, abbreviated expression of lipids may occur as a result of reduced production of
lipids and/or enhanced clearance [112]. The lipids, primarily TGs and cholesterol, are water insoluble
forms, which are transported by blood, and depending upon their association with proteins are known
as lipoproteins, which are complex entities comprised of cholesterol ester and TGs containing a central
core [113]. These particles are surrounded by a shell comprised of phospholipids, apolipoproteins and
free cholesterol, facilitating the functions and formation of lipids [112].

On the basis of composition of lipids, size and apolipoproteins, the lipoproteins are divided into
the following categories: chylomicrons and chylomicron remnants. The very low-density lipoprotein
(VLDL), high density lipoprotein (HDL), intermediate density lipoprotein (IDL), lipoprotein-a (Lp-a)
and low-density lipoprotein (LDL) are all considered as chylomicron remnants by the authors; however,
this is a basic biochemical misconception because of the different and type-specific apolipoproteins
characterizing the different groups of lipoproteins, respectively ApoB-48 vs. ApoA-I and ApoA-II
vs. ApoB-100. The VLDL, LDL, IDL and Lp-a are considered to be pro-atherogenic, whereas HDL is
considered to be anti-atherogenic [112].

Two types of pathway, mainly the exogenous and endogenous pathway, act independently and
promote the transportation of dietary lipids in the blood, promoting hepatic and peripheral movement
of lipids from the small intestine (Figure 2).

The triglycerides and cholesterol esters in diet are emulsified by bile acids secreted by the liver,
for hydrolysis by lipases in the intestine, followed by re-esterification of these fats to triglycerides and
cholesterol esters, which are then packed into chylomicrons. Chylomicrons are large lipoproteins with
density < water, which enter the blood and are rapidly cleared by lipoprotein lipase. This enzyme
hydrolyzes triglycerides to free fatty acids which are utilized for production of energy, while the excess
is stored as triglycerides in the adipose tissue. The remaining “chylomicron remnant” undergoes
hepatic clearance. This part of metabolism of lipoproteins is named as the exogenous pathway [114].
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The endogenous pathway comprises synthesis and secretion of very low-density lipoproteins
(VLDL), which are degraded by lipoprotein lipase, resulting in production of intermediate density
protein (IDL), followed by formation of low-density lipoprotein (LDL). In the presence of the LDL
receptor, LDL gets stored in the liver and peripheral tissues, otherwise it undergoes oxidation and
gets attached to the scavenger receptor on the macrophages [114]. LDL comprises the maximum
amount of cholesterol that is in circulation. Furthermore, the high-density lipoproteins (HDL) play a
significant role in reverse cholesterol transport from the peripheral tissues to the liver. HDL possesses
anti-atherogenic, anti-thrombotic, antioxidant, anti-apoptotic and anti-inflammatory properties, and is
abundant in cholesterol and phospholipids [115].

The excess of cholesterol is removed from the peripheral tissues to the liver by a reverse transport
mechanism, referred to as reverse cholesterol transport (RChT) [112]. The exogenous lipoprotein
pathway is initiated by administration of dietary lipids into intestinal chylomicron, which undergo
further metabolism in the muscles and adipose tissue with the help of lipoprotein lipase enzyme,
resulting in production of free fatty acids (FFSs) and chylomicron remnants, which then exhibit
hepatic uptake. The endogenous pathway of lipoprotein is initiated in the liver, with the formation
of VLDL, followed by metabolism of TGs (contained in VLDL) in the muscles and adipose tissue,
with the help of lipoprotein lipase enzyme, resulting in the production of FFAs and IDL [112,116,117].
The IDL formed is transformed into LDL, which is taken up by the LDL receptor, mainly contained
primarily in liver. The RChT is initiated by the formation of nascent HDL by the intestinal and
hepatic tissue and ATP-binding cassette transporter A1 (ABCA1) facilitates the transportation of
cholesterol and phospholipids in the cells from the peripheral tissue to nascent HDL, resulting in
the production of mature HDL (by lecithin cholesterol acyltransferase, LCAT), which can further
acquire more cellular cholesterol with the help of ABCG1 and class-B-scavenger receptor B1 (SR-B1).
Cholesterol is transported to the liver, which is enabled by interaction between HDL and hepatic
SR-B1, or by cholesterol transportation to LDL, with the help of cholesterol ester transfer protein
(CETP) [115,118–120]. It can only exit the body by biliary excretion, once it enters the liver.
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Depending upon the size, LDL can be grouped as large LDL, which is named pattern A, while
small LDL is named as pattern B. The latter are related to CVDs, due to easy penetration ability of
small particles into the target cell endothelium. Oxidized LDL (oxLDL) is a term used for LDL particles
comprising oxidative modified structural components. Therefore, as a result of the attack by the free
radicals, both protein components of LDL and lipids can undergo oxidation in the vascular wall [112].
The oxLDL particles are not recognized by the LDL receptor, which hinders the normal metabolism of
LDL particles, resulting in atherosclerosis, which explains the atherogenicity of oxLDL [115,118–120].

Normally, HDL plays a significant role in oxLDL inhibition and efflux of cholesterol from the
foam cells in the vessel wall [110]. There is no valid clarification of anti-inflammatory and atherogenic
actions of HDL, but it has been reported that the functions exhibited by HDL are dependent upon its
protein composition. Some amount of LDL is oxidized, in the case of elevated formation or reduced
clearance of lipids, resulting in the formation of oxLDL, which is phagocytosed by macrophages,
resulting in the formation of foam cells, followed by their deposition on the walls of the artery,
facilitating atherosclerotic plaque formation. This establishes the significance of cholesterol efflux via
RChT pathway, in order to maintain cholesterol homeostasis in the cells and promote prevention of
atherosclerosis and reduction of toxic cholesterol expression in each cell [112].

Apolipoproteins are produced in the intestine and liver and contribute to metabolism of lipids, by
functioning as lipoprotein receptor ligands and co-factors for lipid metabolism-associated enzymes.
One of the primary components of the structure of HDL is apolipoprotein A-1 (Apo A-1), which
is synthesized in the liver and accounts for 70% of the HDL structure, whereas, on the contrary,
apolipoprotein A-2 (Apo A-2) accounts for 20% of the HDL structure. Other apolipoproteins, produced
in the intestine, are referred to as apolipoprotein B-48 (Apo B-48), which is a significant structural
component of chylomicrons and chylomicron remnants, and apolipoprotein B-100 (Apo B-100) which
is primarily synthesized in the liver and forms an important structural component of VLDL, LDL and
IDL [115,118–120]. Figure 2 illustrates endogenous and exogenous lipoprotein pathways, along with
reverse cholesterol transport.

5. PUFAS and Phospholipids in RA Patients

The prime six types of lipids, as per the Lipid Maps, have been assessed in the plasma samples
of healthy subjects where >500 species of lipids were recognized and samples were collected from
100 healthy subjects, representing common ethnicities in the USA, and stored post overnight fasting.
Sterols like cholesterol was found to be present in heavy amounts in the samples, while prenols
and diacylglycerols presented in limited amounts. The free fatty acids, triglycerides, sphingolipids
and glycerophospholipids, were found in intermediate quantities in the sample. Polyunsaturated
fatty acids (PUFAS) were also identified in the sample, with arachidonic acid and linoleic acid in
abundance, along with anti-inflammatory fish oil derivatives, primarily, docosahexaenoic acid (DHA)
and eicosapentaenoic acid (EPA) [121,122]. The lipoxygenase (LOX) metabolites, like 5-HETE, and
cyclooxygenase (COX) metabolites, like 15-deoxy-prostaglandin D2 (PGD2), were also detected, along
with lipid mediator oxylipins [123]. PUFAS are dietary fatty acids, where n-3 PUFA EPA and DHA
are anti-inflammatory while n-6 PUFA AA is considered to proinflammatory. The phospholipids
comprise long chain fatty acids, like AA, EPA and DHA, which constitute the cell membrane [121].
Various investigations have been performed using n-3 supplements or fish oil derivatives, such as
one where the authors observed significant variations in orally administered DHA and EPA (fish oil
supplement) doses, after evaluating 23 studies. The time period of the investigations varied between
1–13 months and oils such as olive, paraffin and corn were used as placebo controls. The average
sample size was found to be 20–30 patients per group. Various studies had methodological defects
and no meta-analysis was carried out. The n-3 PUFAS administration was associated with swelling
in joints, pain and morning stiffness, however, the overall effect was prudent [124]. Another study
reported similar levels of free fatty acids in RA patients and healthy individuals [125], depicting
no significant quantitative variation in the level of free fatty acids in the diseased state. In one
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study, the serum samples of RA patients were found to exhibit lower ratios of phosphatidylcholine
(PC)/lysophosphatidylcholine (LPC), unlike in healthy subjects [126], and portrayed greater activity of
poly-lactic acid in patients with RA, which could enhance the level of free fatty acids that can further be
metabolized into bioactive lipids. However, not only fatty acid precursors but also COX-generated lipid
mediators (PGD2 and PGE2) were found to be present in serum samples of RA patients in significant
amounts. [121,127]. The most abundant phospholipid found in the synovial fluid of RA patients was
PC, followed by sphingomyelins and LPC, which were found in greater concentration in RA patients
as compared to controls [128]. The ratio of PC/LPC was greater in the synovial fluid of RA patients,
unlike controls, which is the opposite to what was found in the serum [128]. The synovial fluid of
RA patients was investigated for eicosanoids, where PGE2, PLA2 and COX were found to be greater
in the synovium of RA patients [129,130]. Furthermore, more anti-inflammatory prostaglandins, like
PGD2, and its metabolite 15-deoxy-PGJ2, along with leukotrienes, were also reported to be present in
the RA patients [129]. Moreover, anti-inflammatory LOX products were also found to be present in
the synovial fluid of RA patients, comprising anti-inflammatory and pro-resolving mediators lipoxin
A4 (LXA4) as well as m-3 PUFA DHA derivatives, such as resolving D5 and maresin 1 [131]. This
investigation was carried out on only five subjects and the role of pro-resolving lipids in RA was not
investigated, however, they were recognized as suitable therapeutic agents for chronic inflammatory
disorders due to their potential immune modulatory functions [132].

6. Lipid Metabolism in RA

RA patients show curbed LDL-C, HDL-C and TC levels, which are enhanced by therapies targeting
inflammatory processes associated with RA [32]. A U-shaped association is proposed between CV risk
and lipid pattern, in a so-called “RA lipid paradox”, where the patients with reduced LDL-C levels have
greater risk of developing CVDs compared to those with moderate levels of LDL-C [92]. The abbreviated
levels of HDL-C in patients with RA facilitates enhanced atherogenic index of TC/HDL-C ratio [92,133].
The early stages of RA are associated with an atherogenic lipid profile [133,134].

The concentration of lipids is inversely related to the inflammatory markers in RA patients [135].
Even though the data available regarding the influence of treatment on HDL-C are inconsistent,
the levels of HDL-C are considered to be consistent relative to inflammatory alterations [106,136,137].
Furthermore, alteration in the level of lipids is more closely related to CRP changes than those of
disease activity score 28 (DAS28) for RA, comprising clinical and laboratory data for evaluation of
disease activity [138]. The definite cause for changes in the RA-associated lipid profile is yet to be fully
understood, however, studies show that such a lipid paradox is due to inflammatory processes and
elevated cholesterol catabolism [111,112]. The expression of LDL and SR-B1 receptors is enhanced by
proinflammatory cytokines such as IL-6 and TNF-α, which lead to elevated liver uptake of LDL and
biliary secretion of cholesterol [139,140], resulting in reduced levels of circulating LDL. This process
was depicted by studies investigating metabolism of cholesterol by exhibiting lipid labeling with stable
isotopes [141]. The fractional catabolic rate (FCR) was employed in two investigations to evaluate the
catabolic clearance, where the first one reported greater levels of cholesterol ester FCR in patients with
RA, as compared to those belonging to the control group, which demonstrated greater cholesterol ester
catabolism, resulting in alleviated cholesterol levels in patients [112]. The FCR for cholesterol ester
was abbreviated and the level of cholesterol was enhanced following treatment with tofacitinib [142].
Further, in one study the FCR of LDL was found to be in the hyper-catabolic range compared to the
general population, which was decreased to the level similar to that of the general population after
treatment with tocilizumab [143]. Moreover, oxidation is another mechanism which results in reduced
levels of circulating LDL, where studies show that patients with RA exhibit a greater number of
autoantibodies against mildly oxidized LDL, elaborating the alleviated action of lipoprotein-associated
phospholipase A2 [144,145].

The extent of inflammation is related to the effect of LDL on CVD risk when the erythrocyte
sedimentation rate exceeds 30 mm/h [89]. Greater inflammation in RA is represented by high CRP, which
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is related to elevated CV risk [133,146]. Furthermore, investigations have depicted that inflammatory
markers, like CRP and ESR, are related to the intima-media thickness [147,148]. In one study, the effects
of canakinumab (IL-1 monoclonal antibody) were investigated and a 15% reduction in CV events was
reported as a result of reduced inflammation [149]. Moreover, the antioxidant capacity of HDL is
reported to be affected by inflammatory responses. The anti-inflammatory ability of HDL is disturbed in
animals [103,104] and humans [111] as their ability to facilitate cholesterol clearance from atherosclerotic
plaques is lost and it becomes pro-atherogenic [12,150]. The damaged pro-inflammatory HDL is
marked by reduced antioxidant factors [101], along with elevation of pro-inflammatory proteins [104].
In addition, it comprises enhanced lipid hyperoxide levels [111], resulting in ameliorated cholesterol
efflux [151] and reduced oxLDL preventive ability [152]. The levels of HDL-associated antioxidant
enzyme, paraoxonase (PON), are abbreviated in RA patients as compared to controls [99], whereas an
investigation revealed that alterations in the antioxidant function of HDL were observed, expressed by
elevated PON, following therapy with TNF-α inhibitor [153]. Additionally, Watanabe et al. revealed
the presence of an altered proteome in pro-inflammatory HDL in RA patients, comprising elevated
levels of acute-phase proteins, like serum α amyloid, fibrinogen and haptoglobin, as well as proteins
of the complement system [97]. The levels of secretory phospholipase A2 were found to be reduced
along with serum α amyloid (SAA) during tocilizumab therapy with modifications of the composition
of lipoproteins [154]. Therefore, all these investigations and events support the lipid paradox in RA,
along with great C risks in patients with RA, mostly associated with lipid qualitative aspects (primarily
the HDL) which become pro-atherogenic after losing the anti-atherogenic action. The inflammatory
processes are reduced by therapeutic treatment of RA patients; however, the levels of LDL-C, HDL-C
and TC are elevated, which is not related to increased CV events [92].

Short chain fatty acids (SCFAs) have been reported to carry out various functions of
CD4+ cells by regulating the actions of histone deacetylases (HDAC) [155] and peroxisome
proliferator-activated receptor (PPAR) signaling pathway [156]. Lipid metabolism is also crucial
for T cell activation and proliferation, and elevation of sterol regulatory element binding protein
(SREBP) levels [34]. The genetic inactivation promotes SREBP loss, which is harmful for
the T cells, which exhibit post-activation clonal expansion [157]. Elevated fatty acid synthesis
(FAS) has been revealed from T cells isolated from RA patients, resulting in enhanced tissue
invasiveness [34]. Furthermore, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 enzyme
(PFKFB3) deficiency-mediated glycolytic flux propagates a shunt towards anabolic use of glucose
(elevated PPP and FAS) and enhanced levels of podosome scaffold adapter protein TKS5 (SH3PXD2A),
which contributes to the formation of protrusions in the cell membrane [64,158]. The cytoplasmic lipid
droplets are accumulated as a result of increased FAS, which is fundamental for the functions of T
cells, like growth and proliferation of cells, as well as transformation of naïve to memory T cell [34].
The locomotion of T cells can be regained as well as inflammation and tissue invasiveness can be
minimized in diabetic severe combined immunodeficiency (SCID) mice, without obesity imbedded
with synovial tissue of humans, by restoring pyruvate levels [34]. Additionally, tissue inflammation
was curbed and the number of infiltrating T cells, receptor activation of nuclear factor kappa-B ligand
(RANKL+) and interferon-gamma+ (INF-γ+) T cells was reduced [64]. The differentiation of Th17 cells
was regulated by de novo production of fatty acids [159]. Sorafen A showed that in vitro inhibition of
acetyl-CoA carboxylase (ACC) results in disrupted Th17 differentiation, which promotes Foxp3+ Treg
cell differentiation instead of T-helper 17 (Th17) cells [159]. It has been also revealed the fact that when
lactate is present in amounts as compared to those analyzed in the synovial tissue, the CD4+ T cells
are found to elevate the de novo production of fatty acids, resulting in enhanced levels of IL-17 and
curbed cell motility [160]. However, all such events were restored after treatment with FAS inhibitors
which alleviated the NADPH levels induced by lactate [160]. Cholesterol metabolism regulates the
CD4+ T cell-regulated anti-inflammatory response in humans, whereas de novo production of fatty
acids plays a fundamental role in functions of effector CD4+ T cells [161]. A specific hindrance in the
immune system resolution and a remarkable reduction in the levels of c-Maf/IL-10 has been shown by
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25-hydroxycholesterol and atorvastatin-mediated inhibition of cholesterol biosynthesis during INF-γ+

to IL-10+ switching [161].
Lipid metabolism in RA and osteoarthritis FLS has been altered as per the metabolomics data.

The synovial tissues in RA FLS were found to be greatly expressed with choline and choline-like
transporter, CTL1 and CTL2, where the former exhibits high affinity and the latter exhibits low
affinity [162,163]. Inhibition of their functions lead to the death of FLS cells [164]. These outcomes
were aided by the results of positron emission tomography (PET) scanning with 11C-choline, depicting
enhanced uptake in affected joints [164].

7. Effect of Anti-Rheumatic Therapies on Lipid Profile in RA

The administration of biological agents facilitates a treat-to-target approach contributing to greater
understanding of CVD-associated risks in RA. Investigations provide a suitable amount of evidence
related to the role of csDMARDs and bDMARDs, however, more clinical research is required in this
regard [112]. Chen et al. depicted potential effects of biological therapy on insulin resistance and lipid
profiles in RA patients, where they demonstrated an inverse relationship between LDL-C and disease
progression, as well as a positive association between insulin resistance and DAS28 [165]. Similarly,
insulin resistance exhibits a positive relationship with IL-6 and TNF levels [166].

The patients receiving biological therapeutic treatment were considered to exhibit lower insulin
resistance as compared to those who were not [166]. The DMARDs and other biological therapies
aid in the significant improvement of lipid profiles, along with curbed CV risk factors [67,167–169];
four out of ten RA patients fail to attain the desired targets for lipids, hypertension and diabetes
diagnoses [170,171].

7.1. DMARDs and Corticosteroids

Corticosteroids provide symptomatic relief from pain in RA and also aid in amelioration of
inflammatory events. However, they are associated with certain adverse effects, mainly elevation in CV
risk factors such as hypertension and carotid plaque formation [172,173]. The risk of heart problems
is twice more in the case of administration of high dose steroids, as compared to the cases without
steroid administration, whereas the low dose, short-term corticosteroids alter the plasma lipid levels
primarily by enhancing the levels of HDL-C [174].

Traditional DMARDs (like methotrexate, hydroxychloroquine etc.) exhibit protective actions
against CV risks in RA, out of which methotrexate is considered to be the most significant drug [33].
Furthermore, csDMARDS have been considered to affect the lipid profile according to various studies
conducted [136,150,168,175–178]. A drug used for malaria, hydroxychloroquine (HCQ), can be
employed for the treatment of mild RA and has been considered to enhance the levels of HDL,
either by ameliorating activity of the disease or by directly influencing the metabolism of lipids [168].
Methotrexate is presently employed as a first line drug in RA treatment and has been considered to
reduce CV events by 21%, as per a meta-analysis report [175]. Additionally, methotrexate exhibits
an athero-protective role by facilitating RChT and minimizing the formation of foam cells in THP-1
macrophages [176]. However, no alterations were reported in the lipid profile in some clinical studies
after methotrexate administration, when the drug was administered alone or combined with other
bDMARDs [177–180].

Certain studies report a significant decline in the levels of LDL-C, TC and HDL-C as well as
the capacity of cholesterol efflux [136,181,182]. Georgiadis et al. depicted enhanced TC and HDL-C
expression, along with a reduced TC/HDL-C ratio, after a year-long treatment of RA patients with a
methotrexate–prednisolone combination [133,134]. A strong inverse association between HDL-C and
CRP levels was reported, without any alteration in serum LDL-C levels [112].



Int. J. Mol. Sci. 2020, 21, 9505 12 of 27

7.2. Anti TNF-α Agents

TNF is an important cytokine in chronic inflammation, which influences lipid metabolism, the
function of the endothelial cells and insulin resistance [183,184]. Anti-TNF therapy has been reported
to reduce inflammation and expression of levels of ESR and CRP [185,186]. Moreover, in combination
with methotrexate or DMARDs, it also regulates the lipoprotein spectrum, and has been considered
to ameliorate the CV risks in RA patients [68–70]. Certain studies have found that anti-TNF therapy
has been associated with 54% reduction in CV risks [187]. This therapeutic approach has been
found to regulate factors related to atherosclerotic CV risks in RA patients, such as mitigation of
endothelial dysfunction [188–191], improved insulin sensitivity [184] and enhanced HDL anti-oxidative
capacity [153]. Numerous investigations depict a significant elevation in the serum apoB and LDL-C
levels following treatment with anti-TNF-αagents [185,192]. On the other hand, various other studies
reveal a neutral impact of infliximab drug on lipid pattern, due to no alterations in LDL-C, TC/HDL-C
or TGs/HDL-C levels during treatment [193–195]. TNF-α inhibitors are considered to affect the levels
of TC and HDL-C, without exerting any effect on the atherogenic index in RA patients [94,196,197].
Furthermore, no significant relationship is reported between combined therapy of anti-TNF-α agents,
steroids and csDMARDs with lipid profiles of RA patients [198]. Therefore, the resultant efficacy of
infliximab on management of CV diseases may be associated with other factors, like improvement
in insulin resistance and arterial stiffness; however, further studies are essential to support this
hypothesis [199,200].

Published data have depicted elevated TG levels and an alleviated apolipoprotein B/A ratio as a
result of long-term treatment with TNF inhibitors [94]. Moreover, the risk of acute coronary syndrome
was lowered in RA patients receiving TNF inhibitors, unlike those who were biologically naïve,
according to a national Swedish cohort study, which elaborated upon the future benefits of inhibiting
this cytokine [201]. Mostly, older RA patients are associated with changes in lipid profiles and elevated
CV risks, however, juvenile patients with idiopathic arthritic problems reported improvement in lipid
profiles after treatment with etanercept (a TNF blocker) [202].

7.3. Anti-IL-6 Agents

An anti-IL-6 monoclonal antibody, tocilizumab, hinders the signaling process of IL-6 and shows
potential therapeutic significance in RA. IL-6 is considered to influence metabolism of lipids by
promoting uptake of lipids by VLDLR induction and elevating hepatic and adipose tissue lipolysis
as well as abbreviating lipid production in the liver [203]. The serum TG, TC and HDL-C levels are
reported to be enhanced by anti-IL-6 agents, as per numerous study outcomes [204,205]. It is noteworthy
that the effect on atherogenic index is inconsistent, however, as various investigations demonstrate
15–20% elevation in LDL-C levels [205]. A MEASURE study (a randomized, parallel group, open-label,
multicenter investigation to assess tocilizumab effects on vaccination in RA patients administered
with methotrexate) also demonstrated the elevated LDL-C levels as a result of tocilizumab treatment,
which also modified the HDL particles to anti-inflammatory composition [154]. Anti-atherogenic small
and medium particles were reported to be enhanced with administration of tocilizumab. Moreover,
the investigation also showed fundamental alterations in HDL-associated serum amyloid A (SAA)
levels, paraoxonase 1 and secreted group 2A phospholipase A2 with tocilizumab treatment. The mono
therapeutic response of tocilizumab and adalimumab (anti-TNF) was comparatively evaluated in
methotrexate-intolerant RA patients in a double-blind adalimumab actemra (ADACTA) study (phase
4), where the results depicted elevated LDL, CRP, DAS28 (28-joint DAS) and ESR in 6 months in greater
number of patients in the tocilizumab treatment group, as compared to the adalimumab treatment
group [206]. Tocilizumab also exhibited greater abbreviation in Clinical Disease Activity Index (CDAI),
which does not constitute an APR component [206]. Tocilizumab was also found to improve the insulin
resistance in RA patients in a TOWARD (tocilizumab in combination with traditional DMARD therapy)
meta-analysis investigation [207,208].
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Moreover, the rates of myocardial infarction were numerically decreased with administration of
tocilizumab as compared to the controls, in a double-blind phase of five core phase 3 tocilizumab trials,
whereas evaluation of long-term safety of tocilizumab depicted a stable prevalence of CV events over
time with tocilizumab treatment [209,210].

7.4. JAK Inhibitors

These agents hinder the JAK–STAT signaling pathway, resulting in reduced immune response and
RA remission. A dual JAK1-JAK3 inhibitor, tofacitinib, upregulated the levels of HDL-C and LDL-C to
about 14% and 21% within a year of treatment, in a phase 3, double-blind, placebo controlled, parallel
group study of 6 months conducted on 611 subjects, who were assigned randomly in a ratio 4:4:1:1
to 5 mg of the drug two times a day, 10 mg drug two times a day, placebo for 3 months, followed by
10 mg of drug two times a day [211]. This elevation, in deadlocked comparison between JAK inhibitors
and adalimumab, was greater than that observed post treatment with anti-TNF-α agents [165,212].
Ameliorated cholesterol water FCR might facilitate elevated cholesterol levels during JAK inhibitor
therapy in patients with RA [142]. The US FDA has approved tofacitinib (JAK inhibitor) as a RA
medication [112]. The levels of LDL and HDL were found to be significantly elevated with tofacitinib
administration in a phase 3 study, as compared to adalimumab at 3 months [213]. The LDL and TCh
levels were reported to be reduced to baseline levels by administration of combination of tofacitinib
and atorvastatin in a phase 2 study [214].

7.5. Other Agents

A chimeral monoclonal antibody, rituximab, has been employed in RA treatment, where it has been
considered to improve atherogenic index and lipid profile, as per certain studies [215,216]. Rituximab
was administered to 55 women with RA and no CVDs, and the following parameters were assessed
before and after 6 months of therapy: HDL-C, LDL-C, plasma total cholesterol (TC), serum C-reactive
protein, RF IgM, triglycerides, AS (by digital volume pulse contour analysis), DAS 28-ESR and common
cIMT (by high-resolution B-mode carotid ultrasound [215]. The patients were grouped under two
categories based upon whether the results were good following 6 months of rituximab therapy or
whether no response was observed. TC was elevated by 9%, HDL-C by 23%, AI was decreased by 14%,
along with SI and RI by 57% and 24%, as a result of effective rituximab therapy [215]. In another study,
intravenous administration of two infusions of 1000 mg rituximab was carried out in five women with
RA, and branchial FMD and ccIMT was evaluated using high-resolution B-mode ultrasound, along
with determination of HDL-C, TC and LDL-C levels. The results depicted elevated FMD, reduced TC
(by 3–11%) and increased HDL-C levels (by 14–35%). Potential effects were exerted on endothelial
dysfunction as well as plasma TC and HDL-C levels by two infusions of rituximab [216]. However,
on the other hand, Mathieu et al. depicted no improvement in arterial stiffness, atherogenicity index or
LDL-C in a study conducted on 33 non-responding RA patients to anti-TNF treatment therapies [217].
Therefore, further investigations are necessary to assess the definite effects of rituximab on CV risks in
RA patients. Furthermore, the lipid profile can also be improved by statins, along with prevention of
CV risks in general and RA patients [218–220]. These agents promoted small relative and absolute
reduction in LDL-C levels in RA patients, as compared to those without RA [166]. However, these
agents are not used much in clinical practice [221].

8. Future Directions and Conclusions

This review emphasizes the significance of the lipid paradox in RA and details the requirement
for future research to deeply understand the lipid portfolio to facilitate a “treat-to-target” approach
to reduce RA-associated CV risks. The RA metabolomics studies employ NMR and MS to extricate
RA from other inflammatory conditions and controls [166]. Future prospects would more likely
facilitate collaboration between metabolomic data of RA and human metabolic networks, like Recon
2 [166]. The metabolic pathways, enzymes, transcription factors and metabolites, which are altered
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in patients with RA, are identified as significant therapeutic targets in RA management, as per the
immune-metabolic studies. Many currently used drugs target the metabolic pathways in RA. However,
there is a need to develop specific therapeutic approaches targeting RA-associated metabolic pathways.
For instance, inflammatory responses have been found to be ameliorated in both in vitro and in vivo
models of arthritis, as a result of specifically targeting metabolic processes in RA [64,65]. Furthermore,
metabolic intermediates like succinate and lactate are also becoming a potential possibility [34]. Animal
models have proved to be quite effective in therapeutic screening during preclinical investigations;
however, certain treatment therapies, which have exhibited safe and effective results in preclinical
assessment, have failed to depict optimum results in clinical investigations in humans. Therefore,
greater understanding of human immunology and identification of animal models similar to clinical
models is required. Gender has been also found to exert a significant effect on RA immunometabolism,
as RA prevalence is greater in women as compared to men [34]. This can be somewhat explained by
the impact of sex hormones on regulation of the immune system, and their relationship with genetic
and environmental aspects [34], but this still needs further investigation. Mass spectroscopy and NMR
are considered to be significant tools for predicting the altered pathogenic pathways in RA [34].

In the future, the results might prove to be effective in identifying the risk of developing
atherosclerosis in RA patients. Moreover, future studies should strive to differentiate RA conditions on
the basis of the stage of the disorder, outcome and therapeutic response, by using specific metabolic
signatures. Single cell RNA-seq and advanced RNS-seq techniques can be used as promising tools in
cellular profiling in the future [34]. In addition, new biomarkers can be identified and novel therapeutic
approaches, targeting impaired metabolic signaling pathways, can be developed, without hindering
immune system homeostasis, with the help of single cell metabolomic analysis.

This review details the impact of an impaired lipid portfolio in RA and its relationship with
occurrence of CV risks in patients. Numerous forms of metabolic checkpoints are highlighted in the
text, out of which the review has emphasized the RA-associated lipid paradox. This is followed by
an overview of CV risk and inflammatory burden associated with the lipid profile in RA patients.
The authors provide a detailed overview of the pathways and processes comprising lipids and
lipoproteins, along with the role of lipid metabolism in RA, which paves a way for understanding the
impact of anti-rheumatoid therapeutic approaches on the lipid profile of RA patients.

Therefore, in the current review, the authors aim to provide a significant opportunity to the
researchers to correlate RA-associated lipid profile with elevated CV risks, and to facilitate recognition of
the impaired lipid paradox in RA as an appropriate therapeutic possibility, to reduce the RA-associated
events along with related CVDs, thereby proposing an optimistic approach in the management of RA.
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