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Abstract

In genetic diseases with variable age of onset, survival function estimation for the mutation

carriers as well as estimation of the modifying factors effects are essential to provide individ-

ual risk assessment, both for mutation carriers management and prevention strategies.

In practice, this survival function is classically estimated from pedigrees data where most

genotypes are unobserved. In this article, we present a unifying Expectation-Maximization

(EM) framework combining probabilistic computations in Bayesian networks with standard

statistical survival procedures in order to provide mutation carrier survival estimates. The

proposed approach allows to obtain previously published parametric estimates (e.g. Weibull

survival) as particular cases as well as more general Kaplan-Meier non-parametric esti-

mates, which is the main contribution. Note that covariates can also be taken into account

using a proportional hazard model. The whole methodology is both validated on simulated

data and applied to family samples with transthyretin-related hereditary amyloidosis (a rare

autosomal dominant disease with highly variable age of onset), showing very promising

results.

Introduction

In monogenic diseases with variable age of onset, an accurate estimation of the survival func-

tion for the mutation carriers is essential. Since potential factors (e.g. genetic or environmental

factors) can modify this age of onset, it is important to identify these factors and estimate their

effects. These estimations are then usually combined into a proportional hazard model that is

typically used to provide individual risk assessment as well as to establish prevention strategies.

In the context of genetic diseases with variable age of onset, geneticists usually focus on the

penetrance function, that is the cumulative risk of being affected by a given age for mutation
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carriers defined by

FðtÞ ¼ Pðthe disease is diagnosed before age tÞ

as the age-specific cumulative distribution function of the waiting time to disease diagnosis

[1–3]. Since in this paper one aims at exploiting standard statistical survival analysis, we will

rather consider the survival function defined by:

SðtÞ ¼ Pðthe disease is not diagnosed before age tÞ

However it is straigthforward to obtain the penetrance function from the survival one (and

conversely) since F(t) = 1 − S(t). In order to avoid any confusion, please note that the survival

function considered here corresponds to the cause-specific survival (disease diagnosis) and not

to the overall survival. We do not consider any competing risk in the present work, and censor-

ing (e.g. death) is always assumed to be independent from the waiting time of interest. Note

that for severe disease (e.g. cancer), death is often affected by the disease status, but since this

event usually occurs after diagnosis, which does not affect our model.

When estimating mutation carrier survival, the main challenge comes from the fact that

most genotypes are not observed. Taking into account this uncertainty is then slightly different

depending on whether the disease has sporadic cases or not. In complex diseases with mono-

genic sub-entities, in which only a minority of cases is due to rare mutations (e.g. breast cancer

with BRCA mutations [4–6]) both non-carriers and mutation carriers might be affected. It is

therefore necessary to provide a survival function for non-carrier which is typically obtained

from the general population. In monogenic diseases such as the hereditary Tranthyretin Amy-

loidosis (hATTR) [2], all affected individuals are necessary carriers and thus, the disease inci-

dence among non-carrier is equal to zero. Nevertheless the problem remains challenging since

a non-affected individual at age t might either be a non-carrier or a carrier who “survived”

until age t. For the sake of simplicity, we only consider in this article the monogenic diseases

case; however the suggested method is straightforward to extend to complex diseases with

monogenic sub-entities as long as the incidence or survival among non-carriers is available.

In the last decades, several methods have been proposed for estimating the penetrance or

survival functions from pedigrees (see e.g., [1–3, 6]). All these methods rely on a parametric

model, namely the Weibull function, to describe the penetrance function. In these papers,

unknown genotypes are handled through the Elston-Stewart algorithm [7] and likelihood

function is maximized with ad hoc implementations [8]. Probably due to their complexity, the

resulting methods were never made publicly available and were therefore scarcely used. The

main objective of this paper is to provide a unified and flexible publicly available methodology

that can both provide a stable implementation of the previously published parametric estima-

tors and more general non-parametric estimates. Such estimates were previously considered

in [9] but only in the non-realistic case where all genotypes were observed.

In order to achieve this objective, we reformulate the problem in the Expectation-Maximi-

zation (EM) framework [10] which provides a general iterative algorithm for optimizing the

likelihood of any statistical model with partially missing data (here the unobserved genotypes).

In the EM algorithm we alternate two main steps: the E-step where we compute individual

weights as posterior mutation carrier distributions using the current estimates; and the M-step

where we update the estimates using the observations and the weights computed at the E-step.

Unlike previous works [1–3, 6] we do not want to provide an ad hoc implementation of these

two steps but rather taking advantage of well established and robust procedures. We use prob-

abilistic computations in Bayesian networks for the E-step [11], and classical survival analysis

methods for the M-step [12].
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Our method can be either used with parametric estimation like previously done in the liter-

ature (e.g. Weibull or exponential waiting time distribution, etc.) or with non-parametric

approaches (e.g. Kaplan-Meier or Nelson-Aalen). To the best of our knowledge, this is the first

time that a non-parametric method estimate penetrance function with unknown genotype is

proposed.

The paper is organized as follows: Section “Methods” contains the main contribution of

this paper which includes the model formulation, the EM-framework and the detailed E- and

M-steps. Then, Section “Validation on Simulated Datasets” presents several simulation analy-

ses that validate the method while Section “Application to the hATTR” applies the proposed

method to hATTR families from different origins (French, Portuguese, and Swedish). Finally,

some conclusions are drawn in Section “Discussion”. A minimal R [13] source code demo is

provided as supplementary material.

Methods

This section is devoted to the description of the proposed methodology. The objective is to

estimate the cause-specific survival function for individuals carrying the disease mutation. We

first introduce the model decomposed into a genetic-specific part and a survival-specific part.

Then we present the EM framework and detail both the E-step using belief propagation in

Bayesian networks and the M-step using existing tools from the survival analysis community.

The Model

Let us consider n individuals in set I ¼ f1; . . . ; ng. We denote by F � I the subset of founders

(i.e. individuals without ancestors in the pedigree) and we denote by I n F the set of non-foun-

ders (i.e. individuals with ancestors in the pedigree). Let us denote by X = (X1, . . ., Xn) 2 {00, 01,

10, 11}n the genotypic random vector defined such as Xi is the genotype of the individual i. The

first entry (respectively the second entry) represents the number of paternal (resp. maternal) dis-

ease alleles. For instance Xi = 01 means that the individual i carries the mutation, is heterozygous

and that his mutation has been transmitted by his mother. Also, we denote by Xpati
(resp. Xmati

)

the paternal (resp. maternal) genotype of any non-founder individual i 2 I n F . Let us remind

that the vector X is partially observed; first because individuals are rarely genotyped, secondly

because the parental transmission pattern is only indirectly observed through the family rela-

tionship. Therefore, unobserved genotypes will be estimated according to genotypic information

on the whole pedigree (see Section “E-step”). We denote by T ¼ ðT1; . . . ;TnÞ 2 R
n the random

vector defined such as Ti is the time at diagnosis if the individual i is affected by the disease

(i.e. δi = 1) while Ti is the time at last follow-up (censoring) if the individual i is not affected

(i.e. δi = 0); where δ 2 {0, 1}n is the censoring indicator. Finally, the model can be written as fol-

lows:

PðX;TÞ ¼ PðXÞ
|ffl{zffl}

genetic part

� PðTjXÞ
|fflfflfflffl{zfflfflfflffl}
survival part

where PðX;TÞ denotes the joint probability distribution of T and X and PðTjXÞ denotes the

conditional distribution of T given X.

As an example, let us consider a simple nuclear family defined by two ancestors and three

children. In Table 1, the first column corresponds to the index i of the individual, the second

one to the paternal index (with the convention that we use 0 for founders), the third one to the

maternal index (0 for founders), the fourth one to the censoring indicator (δi = 1 if the individ-

ual i is affected and δi = 0 if not), the fifth one to the time Ti and the last one to the genotype Xi.

Non-parametric estimation of survival in age-dependent genetic disease
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Genetic part. We assume the Mendelian transmission of the alleles and the Hardy-

Weinberg distribution of the founder’s alleles with allele frequency f. This means that for any

founder i 2 F we have PðXi ¼ 00Þ ¼ ð1 � f Þ2, PðXi ¼ 01Þ ¼ PðXi ¼ 10Þ ¼ f ð1 � f Þ, and

PðXi ¼ 11Þ ¼ f 2. In the case where the survival function for carriers is fully non-parametric

(see Section “Survival Part”), the frequency f is non identifiable since the survival for carrier

can easily account for any arbritrary mixture of carrier and non-carriers. This is a classical

problem arising with mixture with non parametric components. A classical solution to this

problem is to consider instead parametric components whose more constrained nature pre-

vent identification issues (see [14] in the FDR context, and [15] in the survival context with

cure models).

We will hence either assume that f is known (which is quite such genetic disease—e.g.
BRCA mutations in breast cancer), or, in the extreme situation where this information is

unknown, we will use a parametric model (e.g. Weibull, Gaussian, logistic, etc. [16]) to fit

this parameter as a prior step before refining survival estimates using our non-parametric

approach. Thus, the genetic part can be written as follows:

PðXÞ ¼
Y

i2F

PðXiÞ
Y

i2InF

PðXijXpati
;Xmati

Þ

Since the n individuals might belong to completely independent families, it is clear that the

genetic likelihood function can be computed separately on these independent families. How-

ever, the notations are still valid but simpler by combining all families into a single pedigree

file.

As an example, let us compute this probability for the family of Table 1 where the observed

genotypic vector is x = (01, 00, 00, 10, 00):

PðX ¼ xÞ ¼ PðX1 ¼ 01;X2 ¼ 00;X3 ¼ 00;X4 ¼ 10;X5 ¼ 00Þ

¼ PðX1 ¼ 01Þ � PðX2 ¼ 00Þ � PðX3 ¼ 00jX1 ¼ 01;X2 ¼ 00Þ

�PðX4 ¼ 10jX1 ¼ 01;X2 ¼ 00Þ � PðX5 ¼ 00jX1 ¼ 01;X2 ¼ 00Þ

¼ f ð1 � f Þ � ð1 � f Þ2 �
1

2
�

1

2
�

1

2
¼
f ð1 � f Þ3

8

However, in practice, the true genotype Xi is almost always either partially observed or not

observed at all. Indeed, when a genotyped individual carries the disease mutation, we know

that Xi = 11 in the (rare) homozygous case, but we only know that Xi 2 {10, 01} in the heterozy-

gous case. Similarly, a non genotyped but affected individual only implies that Xi 6¼ 00 (since

Table 1. Example: A simple nuclear family.

i pati mati δi Ti Xi

1 0 0 1 45 01

2 0 0 0 64 00

3 1 2 0 25 00

4 1 2 0 31 10

5 1 2 0 36 00

i is the individual index, pati the paternal index (0 for a founder), mati the maternal index (0 for a founder), δi the event
indicator (0 if unaffected at age Ti, 1 if affected at age Ti), Ti is the observed age either at last follow-up (δi = 0) or at
disease diagnosis (δi = 1), Xi 2 {00, 01, 10, 11} is the genotype.

https://doi.org/10.1371/journal.pone.0203860.t001
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all affected individual are mutation carriers). Moreover, a non genotyped and non affected

individual i implies that Xi 2 {00, 01, 10, 11}. Finally, a non carrier genotyped individual

implies that Xi = 00 (assuming a 100% sensitivity of the mutation search procedure). More-

over, note that Genotyping errors can easily be added to the model. This uncertainty will be

later rigorously taken into account through probabilistic computations using belief propaga-

tion in Bayesian networks (see Section “E-step”).

Survival part. We recall that δ 2 {0, 1}n is the censoring indicator. The survival part is

defined for any carrier i with Xi 6¼ 00 as PðTi ¼ tjXiÞ ¼ SðtÞlðtÞdi where λ(t) is the hazard

function, S(t) the survival function defined by S(t) = exp(−Λ(t)) and LðtÞ ¼
R t

0
lðuÞdu the

cumulative hazard. Note that for the sake of simplicity, we abusively use the probability symbol

P to actually denote a (conditional) density in the case where δi = 1. Since non-carrier cannot

be affected, they do not appear in the log-likelihood. For simplification purpose it is neverthe-

less useful to make them appear in the expression with a null contribution by abusively writ-

ing:

logPðTi ¼ tjXiÞ ¼

(
� LðtÞ þ di log lðtÞ if Xi 6¼ 00

0 if Xi ¼ 00
:

Accounting for covariates. Note that covariates can easily be added to the model through

a proportional hazard model defining hereafter. Let Z 2 Rn�p be the covariate matrix, the

model accounting for Z can be written as follows:

logPðTi ¼ tjXiÞ ¼

(
� L0ðtÞeZib þ diðlog l0ðtÞ þ ZibÞ if Xi 6¼ 00

0 if Xi ¼ 00

where λ0(t) is the baseline hazard, Λ0(t) is the baseline cumulative hazard, Zi 2 R
1�p the ith row

of Z and b 2 Rp�1 is the proportional effect coefficient.

The Expectation Maximization algorithm

As stated above, most of the genotypes Xi are not observed at all, and even for the genotyped

individuals, we often only have partial information (e.g., we cannot distinguish between 01 and

10). We therefore consider the variable X as a latent variable and denote by X the set of accept-

able genotypes (e.g.X i ¼ f00; 01; 10; 11g if we have no information on Xi, X i ¼ f01; 10g if

we know that Xi is heterozygous, X i ¼ f00g for a non-carrier, etc.). We denote by “ev” the evi-
dence corresponding to all the available information, i.e. the available genotype informations

(X 2 X ) as well as the partially censored T. Note that this notion of ‘evidence’ in Bayesian

network context is similar but not exactly the same as the notion of ‘evidence’ in Bayesian sta-

tistics. In order to maximize the log-likelihood function of the model in the presence of incom-

plete data, we use the EM algorithm [10]. To that end, let us introduce the following auxiliary

Q function:

QðθjθoldÞ ¼
X

X

PðXjev; θoldÞ logPðX; ev; θÞ

where θ (resp. θold) contains the current (resp. previous) version of the parametric (propor-

tional effect coefficients) and non-parametric (survival functions) components of the model.

Formally, the classical Q function of the EM algorithm is equal to the present function plus a

Non-parametric estimation of survival in age-dependent genetic disease
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constant term in θ. Therefore, maximizing our function instead of the original one does not

affect our algorithm.

Since the genetic component of the model has no parameter (the allele frequency f is sup-

posed to be known and a Mendelian transmission of the alleles is assumed—see Section

“Genetic part”), by using the model properties it is straightforward to rewrite the Q function as

follows

QðθjθoldÞ ¼ cst:þ
Xn

i¼1

PðXi 6¼ 00jev; θoldÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wi

logPðTijXi 6¼ 00; θÞ ð1Þ

Starting from an arbitrary value of θ = θ0, the following two steps are iterated until the esti-

mates converge:

• E-step: for computing the weights wi ¼ PðXi 6¼ 00jev; θoldÞ using θold = θ (that are condi-

tional probabilities);

• M-step: for maximizing the Q function with respect to θ and obtaining a new estimate.

E-step. In order to compute the conditional probabilities wi ¼ PðXi 6¼ 00jev; θoldÞ it is

first necessary to compute their common denominator:

Pðev; θoldÞ ¼
X

X

PðX; ev; θoldÞ

¼
X

X

Yn

i¼1

1Xi2X i
PðTijXi; θoldÞ

Y

i2F

PðXiÞ
Y

i2InF

PðXijXpati
;Xmati

Þ

( )

Since X has 4n possible configurations in the worst case, it is clearly impossible to simply enu-

merate these configurations even for moderate size pedigrees. Therefore, one needs a compu-

tationally more efficient approach. When the pedigree has no loop (i.e. the pedigree is a tree),

the Elston-Stewart algorithm [17] suggests to eliminate the variables Xi from the above sum-

product by peeling individuals from the last generations up to the oldest common ancestor.

The resulting algorithm has a Oðn� 43Þ complexity which allows to efficiently handle even

large pedigrees as long as they have no loop. However, in practice, it is not rare to encounter

loops in pedigree (e.g., consanguinity loops). Fortunately, Elston-Stewart can be adapted to the

presence of loops by introducing the notion of cut-sets [18] which results in a Oðn� 4kÞ com-

plexity, where k� 3 correspond to the size of the largest cut-set in the peeling sequence. Typi-

cally k = 4 to 6 for most pedigrees, but k can also grow very large resulting in intractable exact

computations for highly complex pedigrees (e.g. inuit pedigree [19]). This cut-set version of

Elston-Stewart (as well as variants of Lander-Green [20] for multi-point analysis) is imple-

mented in the well-known Mendel software [21] which can efficiently perform likelihood

computations in complex pedigrees.

As pointed out in [22], the distribution of genotypes in pedigree can also be described as a

Bayesian network, a model that belongs to a wide class of probabilistic graphical models with

strong mathematical background and well-known theory for efficiently performing sum-prod-

uct computations [11]. The approach consists in sequentially eliminating variables from the

graphical model taking into account the clique structures of the corresponding graph. This

approach results in the construction of a junction tree whose tree-width (size of the largest

clique) is precisely equivalent to k for cut-sets approaches. These algorithms are called sum-

product, message passing, or belief propagation algorithm and they have been used by many

Non-parametric estimation of survival in age-dependent genetic disease
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authors in the context of genetics [22–26]. One interesting feature of belief propagation in

pedigree is that, for the computational cost of two likelihood computation, this approach pro-

vides the full posterior distribution of the system, including the marginal posterior distribution

of all genotypes (see [11, 22]). But as pointed out by [27], the Elston-Stewart peeling algorithm

can be extended to obtain a similar feature. The resulting algorithm is in fact exactly the for-

ward/backward equivalent of belief propagation for a peeling sequence (sequence of variable

elimination).

In this paper, we use a ad hoc low performance R implementation of belief propagation in

pedigree called bped (available as supplementary material). At each E-step of the EM algo-

rithm, we provide to this command-line program two files:

1. a pedigree structure file as a classical .ped file;

2. an evidence file containing the evidence 1Xi2evPðTijXi; θoldÞ for all i 2 {1, . . ., n} and for all

Xi 2 {00, 01, 10, 11}.

For a non-affected individual (δi = 0), one has:

PðTijXi; θoldÞ ¼

(
SðTiÞ if Xi 6¼ 00

1 if Xi ¼ 00

and for an affected individual (δi = 1) one has:

PðTijXi; θoldÞ ¼

(
SðTiÞlðTiÞ if Xi 6¼ 00

0 if Xi ¼ 00
¼ SðTiÞlðTiÞ �

(
1 if Xi 6¼ 00

0 if Xi ¼ 00

Since the proportion factor S(Ti)λ(Ti) does not depend on Xi, its values will not affect in any

way the posterior distribution P(Xi|ev; θold). Indeed, since we compute the posterior distribu-

tion of all Xi, any multiplicative factor that appears in the prior distributions will cancel out

in the posterior. This is exactly the case for the S(Ti)λ(Ti) factor which can then be removed.

Hence we can replace this proportion factor by 1 and simply use:

PðTijXi; θoldÞ /

SðTiÞ if di ¼ 0 andXi 6¼ 00

1 if di ¼ 0 andXi ¼ 00

1 if di ¼ 1 andXi 6¼ 00

0 if di ¼ 1 andXi ¼ 00

8
>>>><

>>>>:

in the evidence file. It is therefore clear that the knowledge of λ(t) is not required for this pro-

cedure which is of particular interest since non-parametric survival estimate like Kaplan-

Meier usually provides only the expression of S(t) and not the one of λ(t).
Then, bped performs the BP and computes the posterior marginal distribution PðXijev; θoldÞ

for all individual i, from which the weights wi ¼ PðXi 6¼ 00jev; θoldÞ are derived.

M-step. Once the weights wi have been computed (at the E-step), the model components

can be updated by maximizing Eq (1) which is simply a weighted survival log-likelihood func-

tion where each individual observation receives the weight wi. Since most statistical softwares

allow for weighted observations, we can therefore rely on well-established existing survival

tools for performing our M-step. Using the programming software R [13], we can for example

take advantage of the robust survival package [12, 28] which provides non-parametric

Kaplan-Meier estimation of the survival through the survfit() function. Note that the

coxph() can also be combined with survfit() to provide non-parametric Nelson-Aalen

survival estimates taking into account proportional hazard effects. In addition, using full

Non-parametric estimation of survival in age-dependent genetic disease
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parametric survival estimation procedures, such as the survreg() function, allows the

method to provide alternative classical survival estimation (namely Weibull, exponential,

Gaussian, logistic, log-normal, log-logistic) with no additional development costs. Even if the

primary purpose and novelty of our method is to provide non-parametric survival estimate,

the possibility to fit classical parametric survival estimates is also an interesting feature espe-

cially considering that few or none of the previously published methods provide any practical

implementation.

Practical implementation. EM initialization is performed by affecting random weights wi
to all individuals in each pedigree (e.g., drawn from a uniform distribution on [0, 1] and nor-

malized to ensure the sum-to-one constraint). Then, a first M-step is performed using these

weights in order to provide an initial value of θ. The EM iterations are run until numerical

convergence is achieved. The usual convergence criterion is such that the absolute error

between survival estimates (e.g., baseline survival at age 20, 40, 60, 80) decreases below a

threshold (e.g., 10−10) between two consecutive iterations of the algorithm. The 95% pointwise

confidence intervals are simply provided by the standard (weighted) Kaplan-Meier (or Nel-

son-Aalen if we consider covariates) estimation of the survival.

1 Validation on simulated datasets

For validation purposes we first consider the application of our method on simulated datasets.

In order to simulate realistic pedigree structure (parental relationships and individual gen-

ders), we use 64 French and Portugese hATTR families from [2] totalizing 1,095 individuals.

These 64 families were replicated three times resulting in a dataset of n = 3,285 individuals in

192 families. Genotypes were assigned using the Hardy-Weinberg distribution for the foun-

ders and respecting the Mendelian transmission for the non-founders. We have used an allele

frequency of f = 0.20 in order to obtain enough informative families (without simulating any

ascertainment process). The gender of the transmitting parent was not taken into account in

this work (no distinction between X = 01 and X = 10). Thus, the genotype of individual i was

binary and individual i was a mutation carrier if Xi 2 {01, 10, 11} and non carrier if Xi = 00.

The age at diagnosis was simulated according to a piecewise constant hazard rate function,

λ(t), given as follows:

lðtÞ ¼

0 if t 2 ½0; 20�

0:02 if t 2�20; 40�

0:10 if t 2�40; 60�

0:05 if t > 60

:

8
>>>><

>>>>:

A uniform censoring data between 15 and 80 years resulting in a censoring rate of roughly

30% (similar to real data censoring rates) was simulated. A total of 10% of the individuals (uni-

formly selected) was supposed to be genotyped (without error) while the 90% remaining indi-

viduals were not.

One can see on Fig 1 (left) the non-parametric Kaplan-Meier estimation obtained at the

end of the EM algorithm. Despite the fact that only 10% of the individuals where genotyped,

the method clearly manages to provide accurate estimates. Unsurprisingly, the size of the con-

fidence intervals decrease when the sample or the number of affected individuals increases

(data not shown).

In order to demonstrate the ability of our method to deal with semi-parametric estimation

(non-parametric baseline survival and proportional hazard) we now consider the previous

incidence λ(t) as a baseline incidence which is also the male incidence. Moreover, we assume
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that the females benefit from a protective effect and we use the relative hazard (RH) 0.55 = exp

(−0.6) (which means that males have an instantaneous risk 1.8 higher than females). We

denote by β = −0.6 the regression parameter. In our simulation, we hence generate the time to

diagnosis with the survival S1(t) = exp(−Λ(t)) for males and with the survival S2(t) = exp(−Λ(t)
eβ) for females. Censoring and genotyping remain unchanged.

Covariates can be taken into account by stratifying on these covariates. However, since pro-

portional hazard models are commonly considered in this context, we also perform a simula-

tion where we assume a PH effect of the gender.

At each M-step of the EM algorithm we fit both a Cox PH model using gender as factor

(gender = 1 as default) and then perform a non-parametric (Nelson-Aalen) estimation of the

baseline survival. At the end of the algorithm, estimation of the proportional effect can be com-

bined with the baseline survival estimation to provide survival estimations for the two classes.

Alternatively, a purely stratified approach is also possible and give very similar results (data

not shown) but since our purpose was here to illustrate the semi-parametric approach, we only

give its results. The final Cox fitting gives that the β parameter was estimated by b̂ ¼ � 0:59

(p-value < 0.01) which is very close to the true value β = −0.6, and one can see on Fig 1 (right)

the survival estimates for the two classes. Like for the simpler case with no covariates, the esti-

mations are quite consistent with the ground truth. Again, increasing the sample size or the

number of affected individuals leads to sharper confidence intervals (data not shown).

Now that the method appears to be validated on simulated datasets, we can consider real

datasets.

2 Application to the hATTR

In this section the proposed method is applied to the transthyretin hereditary amyloidosis

(hATTR), a severe autosomal dominant disorder caused by a mutation of the transthyretin

(TTR) gene. The disorder initially described in Portugal is now recognized across the world

with areas of highest prevalence like in Sweden or in Japan [29]. The ATTR-Val30Met

(denoted MET30 from now on) is the most frequent pathogenic variant in Europe and virtu-

ally the only one detected in Portugal and Sweden. For this particular variant, a wide range of

age at onset is observed with an average 30 (resp. 56) in Portuguese (resp. Swedish) families.

In France, the population of hATTR is heterogeneous including families from Portuguese

descent presenting alike those from Portugal and families from French descent. The latter are

characterized by a heterogeneity of pathogenic TTR variants, including the MET30 in 40%

Fig 1. Simulated dataset. Reference and estimation of the survival function S(t) for carriers with 95% point-wise confidence

intervals (dashed lines). A total of n = 3,285 (1,641 males and 1,644 females) individuals including 441 affected and 319

genotyped. Left: simulation and estimation without gender effect. Right: simulation and estimation with a proportional

protective effect for females (gender = 2).

https://doi.org/10.1371/journal.pone.0203860.g001
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and a later onset of symptoms averaging 58 years of age. Fortunately, significant therapeutic

advances occurred in the recent years with the aim to stabilize the disease progression. In this

setting, a better knowledge of the risk of being symptomatic for carrier is highly needed to

guide their follow up and to manage patients at the very onset of symptoms. It may also give

clues on our understanding of the pheno-genotypic variability observed.

Because of the low allelic frequency, random sampling is not a tractable approach to obtain

informative samples. As a consequence, data are usually obtained from families ascertained

through affected individuals. Indeed, as all affected individuals necessarily carry the mutation,

families ascertained in this way are very informative for estimating survival function. The

drawback of this procedure is that the survival function can be significantly overestimated if

the ascertainment process is not taken into account [30]. Therefore, an adjustment for the

ascertainment bias is required. Different adjustments for ascertainment bias have already been

proposed in order to provide valid risk estimates of a genetic disease (see for instance [1, 3, 6]).

In these applications, the ascertainment bias was corrected by a classical method that consists

in simply removing the phenotypic information of the individual (called proband) who

allowed his family to be selected. This ascertainment correction is a well-known (and vali-

dated) preprocessing technique whose relevance is not discussed here.

Here we considered three datasets (see Table 2): the French dataset totalized 46 families

from French descent with as many as 12 different pathogenic TTR variants including the

MET30 in 22; the Portuguese dataset included 33 MET30 families from Portugal; the 3rd data-

set enrolled 77 MET30 kindreds from Northern Sweden. These data have been described in

two previously published studies [2, 31]. Both studies were approved by local ethic commitees

(EC) in France and in Sweden, respectively. In this setting, as required by the EC and stated in

the two publications, geno-phenotypic information on families have to remain anonymous for

ethical and medical reasons and cannot be disclosed.

The frequency of mutated allele was set to f = 0.001 [6, 32]. This parameter is generally

unknown in practice. In addition, it has been shown in [6] that the survival estimations are not

highly sensitive to this parameter.

For each dataset, we provide a semi-parametric survival estimation with a gender propor-

tional hazard effect. We provide p-values for the gender effect through Cox’s (partial-) likeli-

hood ratio tests. For each dataset, the results are compared to previously published analyses.

Fig 2 shows the survival estimates by gender for the three datasets. For the French dataset

(top-left Fig 2), one observes a later disease onset (median around 70) than in the Portuguese

sample (Fig 2, top-right) showing a median around age 45 years. A significantly higher instan-

taneous risk is observed for men compared to women in both the French (RH 1.7, Cox’s

p-value 0.03) and the Portuguese (RH 1.57, Cox’s p-value 0.033) datasets. In contrast, we

found no gender effect in the Swedish dataset (Fig 2, bottom-left, Cox’s p-value 0.42) and

hence present the estimate without gender effect in Fig 2 (bottom-right). The disease onset

appears to be much later in the Swedish population in comparison with the French and Por-

tugese populations.

Table 2. The three hATTR datasets.

Dataset French Portuguese Swedish

number of families 46 33 77

number of individuals 624 384 1,353

number of affected 115 122 230

known genotypes 58.3% 60.8% 24.8%

https://doi.org/10.1371/journal.pone.0203860.t002
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These observations are highly consistent with the previously published analyses [2, 31]. In

the previous stratified analysis, the gender difference was found lower and not significant in

the whole French dataset. This difference can be explained by the additional power provided

by the proportional hazard model used here. For comparison purposes we fitted on the French

data a stratified non-parametric survival and tested for difference between genders using the

log-rank test resulting in a non significant p-value of 0.122, which is consistent with the previ-

ous study. The previously reported heterogeneity in age of onset across the three datasets is

confirmed in the present study.

3 Discussion

In the present article we introduced a flexible and robust framework to estimate survival func-

tion from familial data in cases of age-dependent genetic diseases. Our new method provides a

unifying way to simply implement both previously published methods (parametric Weibull-

based) as well as new interesting extension such as the non-parametric or semi-parametric

extensions.

In order to tackle the challenging problem of the unknown genotypes in the family data,

our method relies on the EM algorithm and decomposes the problem into two steps: the E-

step which uses belief propagation in Bayesian networks to compute marginal individual

posterior carrier distribution, and the M-step which estimates survival using weighted

observations.

Fig 2. Survival estimates. Top-Left: French dataset with a gender PH effect (RH 1.7, Cox’s p-value 0.030); Top-Right: Portugese

dataset with a gender PH effect (RH 1.57, Cox’s p-value 0.033); Bottom-Left: Swedish dataset with a non-significant gender PH

effect (Cox’s p-value 0.42). Bottom-Right: Swedish dataset without any gender PH effect. 95% point-wise confidence intervals

are given by the colored regions.

https://doi.org/10.1371/journal.pone.0203860.g002
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The key feature of our approach is that these two steps are handled by robust and validated

implementations: the bped command-line program for the belief propagation, and the

survival package (statistical software R [13]) for the survival estimates. We can therefore

consider any baseline survival estimators, either parametric (e.g., Weibull, exponential, log

normal, etc.) or non parametric (Kaplan-Meier). Moreover, these estimators can be easily

combined with Cox’s proportional hazard models and with stratification.

Note that in the present paper we focused on the particular case where non-carriers cannot

be affected (survival of 1.0) and where the genetic model is dominant. However, the method

can be easily extended to more general models (sporadic cases, recessive model, etc.) as long

as the incidence among non-carriers is known (i.e. estimated from the general population).

Moreover, more complex models allowing for genotyping errors or even pedigree errors (for

instance wrong filiation) can be incorporated, as done in [33], even if, in the present work, we

have focused on the most basic (but reasonable) model.

In the application part, as pedigrees are ascertained through an affected individual, the

proband’s phenotype exclusion method is used to avoid ascertainment bias. However, other

ascertainment corrections can be used if the ascertainment process is more complex (e.g.,
ascertainment on family criteria in a complex disease with monogenic sub-entities, such as

breast and ovarian cancers with the BRCA mutations). Again, this is in favor of the flexibility

of the proposed method.

Concerning the perspectives, an interesting extension of this work would be to account for

a possible correlation between members of the same family by including a frailty in the survival

function. The familial frailty would typically represent an unknown shared exposure to some

environmental factors or to some kinds of polygenic effect. However, the estimation of such

models is known to be challenging, especially in the context of non-parametric survival estima-

tion (see e.g., [34, 35]). Further investigations will be conducted on this important topic in a

forthcoming work. However, in this work and particularly for applications to monogenic dis-

eases (such as hATTR), this frailty aspect should not modify the estimation results. Moreover,

the proposed method allows to take into account the parent of origin effect. Thus, it would be

very interesting to study the robustness of the survival function estimation when the parent-

of-origin effect is analyzed.
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3. Carayol J, Bonaïti-Pellié C. Estimating penetrance from family data using a retrospective likelihood

when ascertainment depends on genotype and age of onset. Genetic Epidemiology. 2004; 27(2):109–

117. https://doi.org/10.1002/gepi.20007 PMID: 15305327

4. Easton D, Bishop D, Ford D, Crockford G. Genetic linkage analysis in familial breast and ovarian can-

cer: results from 214 families. The Breast Cancer Linkage Consortium. American journal of human

genetics. 1993; 52(4):678. PMID: 8460634

5. Stoppa-Lyonnet D, Laurent-Puig P, Essioux L, Pages S, Ithier G, Ligot L, et al. BRCA1 sequence varia-

tions in 160 individuals referred to a breast/ovarian family cancer clinic. Institut Curie Breast Cancer

Group. American journal of human genetics. 1997; 60(5):1021. PMID: 9150149

6. Alarcon F, Bourgain C, Gauthier-Villars M, Planté-Bordeneuve V, Stoppa-Lyonnet D, Bonaïti-Pellié C.
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