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Abstract: Bacteriophages are the most abundant biological entities on earth and may play an impor-
tant role in the transmission of antibiotic resistance genes (ARG) from host bacteria. Although the
specialized transduction mediated by the temperate phage targeting a specific insertion site is widely
explored, the carrying characteristics of “transducing particles” for different ARG subtypes in the
process of generalized transduction remains largely unclear. Here, we isolated a new T4-like lytic
phage targeting transconjugant Escherichia coli C600 that contained plasmid pHNAH67 (KX246266)
and encoded 11 different ARG subtypes. We found that phage AH67C600_Q9 can misload plasmid-
borne ARGs and package host DNA randomly. Moreover, for any specific ARG subtype, the carrying
frequency was negatively correlated with the multiplicity of infection (MOI). Further, whole genome
sequencing (WGS) identified that only 0.338% (4/1183) of the contigs of an entire purified phage
population contained ARG sequences; these were floR, sul2, aph(4)-Ia, and fosA. The low coverage indi-
cated that long-read sequencing methods are needed to explore the mechanism of ARG transmission
during generalized transduction.

Keywords: lytic phage; antibiotic resistance genes; transducing particle; generalized transduction

1. Introduction

Bacterial viruses or bacteriophages (phages) are the most abundant biological entities
on earth and can be divided into lytic or temperate phages, according to their lifestyles [1,2].
Temperate phages integrate their DNA into the host genome and their lysogenic cycles
enable vertical transmissions with the host DNA [3]. In contrast, infection by the lytic
phage results in the direct cell lysis of the host and release progeny phage.

Packaging of phage genomes into intact virions also results in the incorporation of host
DNA and generalized transduction is the process where host DNA is randomly assembled
into progeny lysis and replaces either all or part of the parental phage genome [4]. This
DNA can thereby be injected into recipient bacteria in the next round of infection and
homologous recombination results in horizontal gene transfer (HGT) [5,6]. This process
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primarily occurs in the lytic phage [7,8]. Specialized transduction occurs in the temperate
phage where phage integration occurs at specific genomic sites, such as prophage, which
allows vertical transmission [9]. Activation of lysogenized prophage occurs under specific
physical or chemical stressors, such as ultraviolet light or via intrastrand crosslinking with
drugs, such as mitomycin C, and will induce the prophage to enter a lytic cycle. This
process can result in incorporation of host DNA due to inaccurate cutting so that HGT
events with antibiotic resistance genes (ARG) can occur in the next infection cycle by
homologous recombination.

Conjugative transposons (CT) account for the majority of antibiotic resistance transfer
within Bacteroides and contain genes reminiscent of transposons, plasmids, and bacterio-
phages and, thus, share characteristics with these other mobile DNA elements [10,11].
These processes of incorporation of host DNA are also mechanisms for ARG transfer and
specialized transduction was shown to be a highly efficient mechanism for ARG transmis-
sion. For instance, the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) is
located within a complex mobile genetic element, the SCCmec, which is a phage target
since it can incorporate into chromosomal att sites [12,13]. Additionally, Clostridium difficile
bacteriophage ΦC2 transduces erm(B) via a novel transposon Tn6215 at frequencies as
high as 10−6 [14]. The transduction frequency of genetic markers contained in S. aureus
pathogenicity islands by phage 80α is 107 times higher than when integrated at other
sites [15]. Similarly, ARG distribution by porcine-derived enterotoxigenic Escherichia coli
(ETEC) prophage indicated that host genomic sequences both upstream and downstream
of ARGs contain highly conserved transposon and integron sequences, and most likely
provide a powerful driving force for HGT events [16]. These cases illustrate the significant
role for specialized transduction in ARG spread.

Interestingly, both lytic and temperate phages incorporate ARGs at frequencies greater
than expected if the events are absolutely random [6,17]. The types of sequences that can
be transferred by specialized transduction seem to be restricted; for this reason, it appears
that specialized transduction is a minor contributor to gene transfer in the environment
compared with generalized transduction [5]. Phage particles carrying ARGs have been
reported in different biomes, including sludge [18], soil [19], wastewater [20,21], marine
viromes [22], and human and animal biomes [23,24]. The high persistence of phages in
the environment enhance the efficiency of ARG dissemination in phage particles, which
could, in turn, increase the chances of ARG transduction [22]. The offspring phages are
capable of injecting the bacterial genes into next recipient cell, which can subsequently be
incorporated into the host genome by recombination [21,25]. The use of ARGs by phage
may not entirely be the result of errors in DNA packaging; if selected by phages, these
genes can improve their inclusive fitness and ensure their survival [26].

In this study, we isolated the T4-like lytic phage from pig farm sewage that targeted an
E. coli C600 transconjugant containing the plasmid pHNAH67. We characterized 11 ARG
subtypes to assess the carrying frequencies of transducing particles at different multiplicity
of infection (MOI) groups to explore whether generalized transduction plays a role in
ARG transmission. We also utilized whole genome sequencing (WGS) to examine the
genomic environments (or accessory genome) of the packaged ARGs in an attempt to
reveal mechanisms of the dynamic nature in the packaging of these ARGs.

2. Materials and Methods
2.1. Strains and Plasmids

The lncHI2 plasmid pHNAH67 (NCBI sequence number: KX246266) possessed the
following ARGs: f loR, sul2, aph(4)-Ia, aac-(3)-IV, fosA3, blaCTX-M-65, aac(6’)-lb-cr, blaOXA-47,
catB3, arr3, and sul1 (Figure 1). The lncHI2 plasmid pHNAH67 was transferred into E. coli
C600 to obtain the transconjugant AH67C600, a single colony isolated from a streak culture
of an Luria–Bertani (LB) plate. Bacteria were cultivated in LB liquid medium at 37 ◦C with
shaking at 160 rpm until early log phase growth.
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Figure 1. Gene map of lncHI2 plasmid pHNAH67. (A) Full annotated plasmid map. (B) Partial map
bp 82,900 to 105,000 indicating the positions of ARG subtypes floR, sul2, aph(4)-Ia, acc(3)-IV, fosA3,
blaCTX-M-65, aac(6′)-lb-cr, blaOXA-1, catB3, arr3, and sul1.

2.2. Acquisition of Phage

The lytic phage AH67C600_Q9 was isolated from a wastewater sample obtained from
a pig farm sewage treatment system through additional pretreatment steps [27,28]. In brief,
the sewage samples were concentrated by an ultrafiltration device (Millipore Labscale
tangential flow filtration System, Merck KGaA, Darmstadt, Germany) and then filtered
through a 0.22 µm membrane (Millex-GP, Millipore, Burlington, MA, USA) [29]. The filtrate
was incubated with logarithmic phase cells of E. coli AH67C600 overnight at 37 ◦C with
shaking at 160 rpm. The mixture was centrifuged and filtered as per above and used to
inoculate new bacterial cultures to enrich the primary phage preparation. The final filtrates
were plaque-purified using the double-layer soft agar plate method [30,31]. Single plaques
were selected and diluted in SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-HCl pH
7.5) and stored at 4 ◦C. The single phage was plaque-purified three times by E. coli C600
before use and standardized titers in the range of 107–109 plaque forming units (PFU) per
mL were used for follow-up experiments.

2.3. Identification of Phage
2.3.1. Transmission Electron Microscopy

Electron micrographs of purified phage particles were obtained as previously de-
scribed [32,33]. High titer phage stocks were concentrated 50-fold using 100 kDa Amicon
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Ultra centrifugal filter units (Millipore, Burlington, MA, USA) and 15 µL of phage concen-
trate was dropped on carbon-coated formvar covered grids and left to stand for 15 min.
The preparations were then stained with 2% w/v phosphotungstic acid pH 7.0 and air-dried.
The phages were examined using an FEI transmission electron microscope (Thermo Fisher,
Hillsboro, OR, USA) at an acceleration voltage of 80 kV.

2.3.2. Optimal Multiplicity of Infection

Bacterial colony forming units (CFU) per mL and phage titers (PFU per mL) were
determined as previously described [34]. Optimal multiplicity of infection (OMOI) was
examined by using appropriate susceptible host cultured to early log phase growth and
incubated with the phage for 2 h in the following ratios: phage AH67C600_Q9: host
bacteria AH67C600 = 10:1, 1:1, 0.1:1, 0.01:1, 0.001:1 and 0.0001:1. Then phage titers were
calculated again in each group using standard protocols in triplicate [27].

2.3.3. One Step Growth Curve

One-step growth experiments were carried out as described previously with a few
modifications [35–37]. In brief, the phage AH67C600_Q9 was added at the MOI of 10 and
allowed to absorb to E. coli AH67C600 cells for 10 min at room temperature. The mixture
was centrifuged at 2700× g for 10 min to remove unabsorbed phages and infected cells
were resuspended with LB to 5 mL. The culture samples were harvested every 10 min and
phage numbers were quantified as per above. This experiment was performed in triplicate.

2.3.4. Physical Stability of the Phage

Phage thermostability was examined by incubating high titer phage stocks (≥108 PFU
per mL) at 4, 37, 50, 55, 60, and 70 ◦C for 60 min and pH tolerance was examined by
incubating over a pH range of 1.0 to 12.0 for 60 min at 37 ◦C, as previously described, with
a few modifications [38,39]. Phage titers were determined by the double-layer agar plate as
per above. Both experiments were performed three times.

2.4. Bacterial and Bacteriophage DNA Extraction

Bacterial and plasmid DNA were extracted using Bacterial DNA Kit and Plasmid
Mini Kit (Omega Bio-Tek, Norcross, GA, USA), according to the recommendations by
the manufacturer. The purified phage lysates were concentrated by polyethylene glycol
(PEG8000) and treated with DNase I (Sangon Biotech, Shanghai, China) at 100 U per mL
prior to DNA extraction. Phage DNA extraction was performed according to published
methods [27,28,40]. An aliquot of a phage lysate was amplified for bacterial 16S rDNA
determinations using conventional polymerase chain reaction (PCR) and only negative
samples were used for the subsequent sequencing [17].

DNA was suspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) and DNA
concentrations were determined by UV spectroscopy with an ND-1000 instrument (Nan-
oDrop, Wilmington, NC, USA).

2.5. Lytic Phage Genome Sequencing and Assembly

Because the classification of the isolated phage was unknown, we performed de novo
genome sequencing. In brief, phage DNA samples were sent for de novo sequencing to
GENEWIZ Biological Technology (Suzhou, China) and a library of these DNA samples
that had passed the inspection was constructed for cluster preparation and sequencing.
Bcl2fastq (v.2.17.1.14) was used to perform image-based recognition (Base Calling) on
the original image data. After quality analysis, the raw sequencing data were obtained.
Trimmomatic-0.36 was used to trim and remove adaptors and low-quality nucleotides from
the original readings to obtain clean data for subsequent information analysis [41]. Spades
Genome Assembler 3.8.1-Linux version was used to assemble the post-processed readings
into contig sequences [42]. SSPACE (v.3.0) was used to further assemble contig sequences
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into scaffold sequences and GapFiller (v.1.10) was used to complement and extend the
scaffold sequence to obtain the final scaffold sequence of the whole phage genome.

Three online websites, Open Reading Frame Finder (www.ncbi.nlm.nih.gov/orffinder/,
accessed on 29 February 2020, RASTtk (https://rast.nmpdr.org/, accessed on 29 February
2020) and GeneMarks (http://topaz.gatech.edu/GeneMark/, accessed on 29 February
2020), were jointly used to predict all genes in the genome [43–45]. After comparisons with
protein sequences of known function for similarity and identity, the best hit was selected
for the annotation of the gene products. The manual search method was also used to locate
ARGs and virulence genes in the genome using the online websites VFDB and ARDB.
Finally, CGview (v.1.0) was used to draw the whole genome map of the phage.

All uploaded phage genome sequences in NCBI were downloaded to compare with
the isolated phage genome sequences and amino acid sequences by local BLAST+ (v.2.7.1).
The genome alignment map of the isolated phage was drawn in Easy-fig; the gene encoding
products with different functions are indicated with different colors.

The evolutionary relationships between phages were analyzed using phylogenetic
trees based on the amino acid sequences of the terminase large subunits of different Es-
cherichia phages. The phage terminase is a unique protein of the dsDNA phage and
possesses highly conserved functions to drive packaging by energizing the DNA [46]. Ter-
minase of the double-stranded DNA phage can be divided into a large subunit and a small
subunit according to their molecular weight [47]. The large subunit has endonucleolytic
and ATPase activities and is generally composed of 400 to 750 amino acids [48]. After align-
ing the sequences of the terminase large subunit, similar sequences were downloaded from
the National Center for Biotechnology (NCBI). Phylogenetic analysis was performed with
MEGA7 by the neighbor-joining method (Bootstrap: 1000 with the Poisson Model) [49].
Alignment analysis was based on the ClustalW alignment of amino acid sequences by
MEGA7 (parameter setting: Gap Opening Penalty: 10, Gap Extension Penalty: 0.2) [50].

2.6. Effect of Lytic Phage Generalized Transduction on Plasmid-Borne ARGs

We chose 11 ARGs (carried on plasmid pHNAH67 as the research object) to evalu-
ate phage misloading values, which represented the carrying frequency of transducing
particle in generalized transduction. The primers for these ARGs in real-time quantitative
polymerase chain reaction (qPCR) analysis are shown in Table S1. Published articles have
described in detail how to establish a standard curve to quantify the copy numbers of the
investigated genes [40,51,52]. In brief, positive amplification products were purified with
a Gel Extraction Kit (Omega Bio-Tek, Norcross, GA, USA) and ligated into the pMD19-T
Vector (Takara, Dalian, China). Recombinant plasmid vectors were amplified in bacte-
rial host Escherichia coli DH5α (Takara). The extracted plasmid samples were sequenced
(Tsingke Biotechnology, Beijing, China) and analyzed using the BLAST website at NCBI
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 23 August 2020) (Table S2). Ten-fold
serial dilutions of plasmid-cloned genes were used to construct qPCR standard curves for
the 11 ARGs (Table S3).

Three experimental groups were set (MOI = 10:1, 0.1:1, 0.001:1) to determine whether
the ratio of phage and the host affects the misloading value for the different ARGs. The
carrying frequency was calculated using Equation (1), which determines the frequency for
the packaging of an ARG, expressed as the ratio of the absolute abundance of the ARG in
the progeny phage and the numbers of the parent phage.

Misloading value =
Absolute Abundance of ARGs in Progeny Phage Genome (Copies)

Number of Parent Phage (PFU)
(1)

In the process of generalized transduction, the “misloaded phage” mixed in the off-
spring retain infectivity only for the recipient host bacteria without the ability to regenerate
and re-lyse; this makes their isolation difficult using traditional methods. Therefore, we
incubated the phage AH67C600_Q9 and host bacteria AH67C600 at the MOI of 1, and
extracted the phage genome as described above. Then, Illumina hiseq4000 (Genewiz,
Suzhou, China) was applied for deep sequencing (PE150 Mate-Pair Sequencing) and

www.ncbi.nlm.nih.gov/orffinder/
https://rast.nmpdr.org/
http://topaz.gatech.edu/GeneMark/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Spades Genome Assembler 3.8.1—Linux version was used for offline data to assemble
post-processed readings into contigs [42]. Local BLAST+ was used to compare contigs with
the 11 ARGs carried on the plasmid pHNAH67; the upstream and downstream sequences
were extracted to analyze the potential impact on the propagation of ARGs in lytic phage
transduction. Bowtie2 (v.2.4.4), SAMtools (v.1.7), and deepTools (v.3.5.1) were used to
convert sequencing data into bigwig format. Integrative Genomics Viewer (IGV, v.2.11.1)
was used to construct mapping analysis using log scale [53].

3. Results
3.1. Isolation and Characterization of Lytic Phage

A lytic phage was isolated from a pig farm sewage treatment pond in Huizhou, China,
named AH67C600_Q9, which was able to lyse E. coli AH67C600. Phage AH67C600_Q9
formed transparent, small, and round plaques of approximately 1.0 mm in diameter on
a lawn of E. coli AH67C600 (Figure 2A). TEM observations of the phage revealed an
icosahedral capsid with a cross diameter of 76.94 ± 2.40 nm (n > 10), and the longitudinal
diameter of capsid was 100.39 ± 4.26 nm (n > 10). The tail length was 103.05 ± 3.30 nm
(n > 10) (Figure 2B). This phage could therefore be classified morphologically in the order
Myoviridae and the family Caudovirales.

Figure 2. Morphological characteristics of phage AH67C600_Q9. (A) Culture map of phage
AH67C600_Q9 plaques in double-layer agar. (B) TEM images of phage AH67C600_Q9. The longitu-
dinal diameter of the capsid approximately equaled the tail length.



Viruses 2021, 13, 2070 7 of 16

3.2. Optimal Multiplicity of Infection of Lytic Phage

We tested the MOI ranging from 10 to 0.0001 to determine the optimal values for
producing maximal phage titers. When the ratio of the phage AH67C600_Q9 and host
AH67C600 was 0.1, the titer was maximal at 4.63 × 108 PFU per mL and this optimal MOI
was used to guide follow-up experiments (Figure 3A).

Figure 3. Physiological characteristics of phage AH67C600_Q9. (A) Optimal MOI test. The phage
AH67C600_Q9 achieved the highest titer after cultured while the MOI is 0.1:1 (4.63 × 108 PFU per
mL). (B) One step curve of phage AH67C600_Q9. After 20 min of early treatment time, 20 to 80 min
is the latent time and 80 to 120 min is the burst time. At the plateau phase, the maximum number
of progeny was 90 PFU per cell. (C) Thermal stability test. The phage AH67C600_Q9 had stable
biological activity at temperatures of 4 to 50 ◦C. (D) pH stability test. The phage AH67C600_Q9 is
stable at the pH of 6 to 8. Due to the large difference between results, titers for pH = 3, 4, and 11 are
listed on the right y-axis and the rest are on the left y-axis.

3.3. One-Step Growth Curve

The one-step growth curve for the phage AH67C600_Q9 was analyzed by infecting
the bacterial host during the exponential growth phase at an MOI of 10 to ensure complete
culture lysis without bacterial regrowth. The phage AH67C600_Q9 had a latent period of 50
to 60 min and a burst period of 40 min. These conditions produced the maximum number
of progeny at 1.80 × 109 PFU per mL with an average of 90 PFU per cell (Figure 3B).

3.4. Phage Stability Tests

The thermostability and pH tolerance of the phages were analyzed; incubations at 4
and 37 ◦C for 60 min did not alter the titers. In contrast, the titer gradually decreased with
incubations at 45, 55, and 60 ◦C; at 70 ◦C the titers decreased about 3 logs (Figure 3C). The
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titer was also stable from pH 6 to 8 after 60 min incubation. At pH 5 or 9 for 60 min, the
titers decreased by 2–3 logs, and at pH 10, by 4 logs. The phage had little activity in the pH
ranges of 1 to 4 and 11 to 12 (Figure 3D).

3.5. Sequencing and Bioinformatics Analysis of Phage AH67C600_Q9 Genome

We completely sequenced the genome of phage AH67C600_Q9 and found it was
164,663 bp with a GC content of 35.62% with 264 predicted genes (Figure 4). The phage
was most similar to the Enterobacteria phage RB3 (acc. no. KM606994) with 89% query
coverage in local BLAST+. In addition, since the morphology of the phage AH67C600_Q9
and Enterobacteria phage T4 (acc. no. NC_000866) were structurally similar, we compared
the three phage genomes (Figure 5A). The sequence for AH67C600_Q9 was submitted to
GenBank under accession number MZ681930.

Figure 4. Annotation of the predicted genes of phage AH67C600_Q9. The genes located at upper right are replication-related
and the structural genes are concentrated in the lower left corner. Blue, replication related genes; red, structure genes;
purple, lytic related; green, transcription related; black, hypothetical genes.

The phage AH67C600_Q9 genome showed a typical modular arrangement in its
structure. The distribution of genes possessing similar functions from other similar phages
were located at almost identical sites in the genome with slight differences between gene
products. The structural protein sequence of phage AH67C600_Q9 isolated in this study
was highly similar to the phage T4 and RB3, indicating extremely conservative structural
characteristics, and was consistent with the TEM results (see above). The replication
and transcription proteins were also highly similar to the other phages and only minor
differences in the gene products were observed. According to Figure 5A, we compared
the amino acid sequences of tail fiber and ribonucleotide reductase with lower homology
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(Table S4). In amino acid sequence alignment, four of the eight predicted tail fiber genes
possessed identities <95% to the Enterobacteria phage RB3 (Figure S1). The differences in
the amino acid sequence of the tail fibers between the three phage most likely reflected the
differences in the respective host ranges [54]. Additionally, three of four ribonucleotide
reductase gene products were <95% identical to Enterobacteria phage T4, indicating a
novel T4-like phage [55]. As a lytic protein, the amino acid sequences of holin were only
about 75% identical between three bacteriophage. Similarly, the phage AH67C600_Q9 was
located in an independent branch in the phylogenetic tree that was constructed based on
the amino acid sequences of the terminase large subunits. Although AH67C600_Q9 was
closely related to the T4-like phage, it differed greatly from the prototype phage T4 in
evolution and had a different evolutionary relationship with phage RB3 (Figure 5B).

Figure 5. (A) Genome sequence alignment of phage AH67C600_Q9, T4 and RB3. The functional
modules are indicated by color and similarities are shown in gray, according to the scale on the bottom
right corner. (B) Phylogenetic analysis based on the large subunit of terminase for Enterobacteriaceae
phage, demonstrating an independent branch for phage AH67C600_Q9.

3.6. Lytic Phage Misloaded Plasmid-Borne ARGs by Generalized Transduction

In the natural environment, phage–host interactions are not carried out under the
optimal MOI. We determined whether the MOI affects the frequency of ARG incorporation
into the phage and termed this the misloading value. The absolute abundance of the
11 ARGs carried on the plasmid pHNAH67 differed in qPCR assay (Table S3), so we
divided the misloading value of each ARG by the absolute abundance of this gene in the
plasmid pHNAH67. This was defined as the relative misloading value. In order to facilitate
the graphic representations, the relative misloading value was negative log transformed
(Figure 6A). We found that the misloading value and MOI were negatively correlated.
Contrary to the initial phage titers in the three experimental groups, the relative misloading
values of each specific ARG subtype showed a 100-fold increase.
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to plasmid in blue. The red regions on the sequence are the 11 ARGs.

In generalized transduction, phage particles containing host DNA most likely would
be incapable of producing another round of a productive infection. We analyzed phage
content following infection of the host bacterium containing the 11 ARGs using WGS and
obtained 6,927,578 raw data reads and 1183 contigs (Table S5). The reads for the genes floR,
sul2, aph(4)-Ia, and fosA were all >20, even though the highest proportion of total reads
was only 4.6 per 100,000 (floR). An analysis of the assembled contigs found that a total
of 12 contigs matched the ARG sequences, but only 4 contigs contained ARG sequences.
These were contig_941_655bp (floR), contig_914_575bp (sul2), contig_406_625bp (aph(4)-
Ia), and contig_41_903bp (fosA) (Figure 6B). However, these contigs only contained ARG
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fragments and complete ARG sequences could not be successfully located from the progeny
phage using next-generation sequencing [56]. Additionally, the reads were distributed on
the plasmid sequence randomly, indicating the randomness of misloading events in lytic
cycle (Figure 6C). The ARG with higher absolute abundance on the plasmid pHNAH67
has more opportunities to be misloaded.

4. Discussion

Phages are the most abundant and diverse organisms on earth and exert major influ-
ences on the diversity of bacterial communities [57]. In particular, phages can transmit
function-related genes through transduction to help the hosts adapt to their surround-
ings; these include ARGs and virulence genes [58]. However, although phages are widely
distributed, there may be phages that cannot be recovered using standard laboratory ap-
proaches or are missed by this approach [59]. In this study, wastewater samples were
collected from a sewage treatment pond of a large-scale pig farm in Huizhou, China. We
isolated the lytic phage AH67C600_Q9 by plaque purification and it formed transparent
plaques, indicating it was a lytic phage. The head of phage AH67C600_Q9 was a typical
viral particle structure similar to the T4 phage in the family Myoviridae and order Caudovi-
rales [60]. The optimal MOI of AH67C600_Q9 was determined to be 0.1:1. The latent time
was 50 to 60 min with a burst time of 40 min and lysis was completed at 120 min at about
90 PFU per cell. The phage was stable at pH 6 to 8 at 4 to 37 ◦C showing nearly perfect
survival ability in the natural environment.

The overuse of antibiotics has brought about major increases in bacterial resistance
and has become a major global health threat. The role of phages in the transfer of antibiotic
resistance has not been studied in depth. No ARGs or virulence genes were found in the
genome of the lytic phage AH67C600_Q9 (Figure 4). The structural distribution of genes
included lysis, replication, and regulatory proteins in the forward sequence and structural
proteins on the opposite DNA strand. The distribution of genes in its annotation map
were similar to known T4 phage and published T4-like phages, such as Enterobacteria
phage RB3, indicating a close relationship with the T4 family. These phage genomes were
highly similar, except for the tail fiber, ribonucleotide reductase, and holin (Figure 5A).
The differences in the amino acid sequence of the tail fiber most likely reflect the diversity
of host specific [54]. Ribonucleotide reductase possessed the unique ability to catalyze
the reduction of all four ribonucleotides to the corresponding deoxyribonucleotides and
is a rate-limiting enzyme for DNA synthesis and repair. The usual case is that amino
acid sequence similarities for ribonucleotide reductase between organisms is remarkably
low, although the active centers in the tertiary structure are conserved [61]. The lytic
phage AH67C600_Q9 differed from the prototypical phage T4 in three ribonucleotide
reductase amino acid sequences, indicating that the lytic phage AH67C600_Q9 may be a
new type of T4-like phage with specific functions and environmental survival properties.
The holin-lysozyme system has a broad spectrum of lytic activity against bacteria and
independently can hydrolyze bacterial cell wall peptidoglycan, and as such plays a key
role in cell lysis [62]. The holin sequence for AH67C600_Q9 differed from the prototypical
T4 phage at 75.34 percent identity, suggesting that the holin-like protein may have different
bactericidal performances and is worth further study [63].

Overall, the location of other functional genes in the genome of this new phage
displayed only slight differences in a few predicted genes from the prototypical T4
phage; this was also reflected in its structure in TEM photomicrographs. However, phage
AH67C600_Q9 was located on an independent branch of the phylogenetic tree established
by the conserved sequence of the terminase large subunit in the Enterobacteriaceae phage.
Although phage AH67C600_Q9 belongs to the T4-like phage, it differs greatly from the
prototypical T4 in evolution as well as from RB3. This indicated that phage AH67C600_Q9
was a novel T4-like phage.

Bacteria and their viruses interact beneficially and antagonistically in polymicrobial
communities, leading to ARG transmission during transduction that may hinder phage-
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based therapy [64]. Generalized transduction can result in the erroneous assembly of
portions of the host genome into its progeny during the lysis cycle. These misloaded
phages can therefore transfer this specific content to the recipient bacteria at the next
infection by homologous recombination. In this process, the specific transposon structure
in the upstream and downstream ARG sequences may be an additional mechanism ARG
transmission. This also implies that the primary sequence of the ARGs or the genetic
environment of the phage itself significantly affects the ARG transmission [16].

Transduction frequency is used to evaluate the probability of transmission of an ARG
through phage transduction [14,65,66]. After co-cultivation of phage and host bacteria
carrying specific ARGs, the resulting purified progeny phage are then used to assess the
final probability of an ARG being transmitted from a specific donor bacterium to a specific
recipient bacterium. However, some ARGs were transferred at a higher frequency than
others. This indicated that the ease of homologous recombination within the recipient
host bacterial was the primary determinant of the transduction frequency. Therefore, it
does not represent all of the possibilities in nature and does not represent the possibility
of the transduction of a certain gene. In the analysis of numerous samples, ARG transfer
frequencies differed between ARGs, indicating a regular instead of a random process [17].
In our study, the relative misloading values were opposite to the decrease of the initial
phage titer, maintaining an overall 100-fold increase, so the MOI could not be a fundamental
factor in ARGs transmission by generalized transduction. In the same incubation time, with
lower MOI, phage has more generations in the culture, which improves the opportunities of
misloaded events. During the packaging process, the chances of different host genes being
misloaded are overall the same. Misloaded phages can transfer genetic information in the
next infection, which promote rapid evolution of prokaryotic genomes [4]. As previously
documented, the genetic environment of a particular ARG could play an important role in
this form of ARG transmission; transposons located upstream and downstream of an ARG
most likely has a profound influence on the frequency of ARG transmission by generalized
transduction [5]. As shown in Figure 6C, plasmid pHNAH67 was randomly packaged
into the misloaded phage heads. T4-like phages use a pac sequence to initiate the DNA
packaging series, and generalized transduction relies on the existence of pac site homologs
scattered around the bacterial sequence [47,60,67]. The potential transfer of genes mediated
by lytic phages should be considered important, in particular, the genes mobilized can
affect human and animal health (including ARGs and virulence genes) [5]. As a widespread
mechanism common to most bacteria, generalized transduction can transfer any gene from
one bacterium to another [4].

The transfer of host DNA by generalized transduction lacks the genetic component
necessary for cell lysis so the phage containing ARGs cannot be isolated by phage am-
plification procedures. Instead, we used WGS to analyze whole phage population and
generated 6,927,578 raw reads. After assembly, 1183 contigs were included and 4 con-
tained ARG sequences: contig_941_655bp (floR, 1213 bp), contig_914_575bp (sul2, 815 bp),
contig_406_625bp (aph(4)-Ia, 1025 bp), and contig_41_903bp (fosA, 416 bp). Despite this,
the ARG genetic environments were not represented in full since the contigs sequence
was shorter than the full length of the gene, except for fosA, and the latter still failed to
meet the demands of subsequent analysis. Therefore, there data were not sufficient to
speculate on this form of ARG transmission by high-throughput sequencing or to use
sequence assembly into contigs to retrospectively analyze the upstream and downstream
genetic environment of ARGs [56]. For the inability to effectively search for ARGs and their
upstream and downstream gene loops by deep sequencing and assembling into contigs,
a possible explanation is that it is extremely difficult to locate the small numbers of an
ARG-positive phage in the phage progeny. We found only 32 reads that matched the entire
floR gene in a total of 6,927,578 reads, 16 of which were not 100% matched and were single
reads of 150 bp. Perhaps increasing the original concentration of the phage and increasing
the sequencing depth will be an effective solution, but existing experimental conditions
cannot guarantee the removal of bacterial genetic material after lysis, and may increase
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the contamination of bacterial genetic material. Consequently, it is of great significance to
study new methods to increase the separation capacity of these transducing phages that
carry ARGs.

5. Conclusions

In this study, we isolated and characterized the lytic phage AH67C600_Q9 from a
sewage treatment pond in a large big pig farm in Huizhou, China. The T4-like phage
was a novel member of the family Myoviridae and the order Caudovirales and phage
AH67C600_Q9 was located at an independent branch of the phylogenetic tree established
by the conserved sequence of the terminase large subunit in the Enterobacteriaceae phage.
Phage AH67C600_Q9 was able to misload host DNA, including plasmid-borne ARGs, and
the carrying frequency was negatively correlated with MOI for any specific ARG subtype.

Although generalized transduction carried out by the lytic phage is an important
part of horizontal gene exchange, our experimental conditions were not able to determine
whether intact ARGs could be transferred by generalized transduction. The isolation and
identification of lytic phage AH67C600_Q9 and the potential effects on ARG transmission
in this study will lay a foundation for the follow-up study on transduction mechanisms of
ARGs by phages.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13102070/s1, Table S1: PCR primers used in this study, Table S2: BLAST results for pMD20-T::
ARG, Table S3: Conditions and results of qPCR for 11 ARGs, Table S4: Results of amino acid sequence
alignments of tail fiber, ribonucleotide reductase and holin between Enterobacteria phage T4 or RB3
and phage AH67C600_Q9, Table S5: Matching positions of contigs to ARGs for E. coli AH67C600,
Figure S1: Amino acid sequence alignments of tail fiber, ribonucleotide reductase and holin between
Enterobacteria phage T4 or RB3 and phage AH67C600_Q9.
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