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For many years, adipose tissue was considered as an inert energy storage organ that accu-
mulates and stores triacylglycerols during energy excess and releases fatty acids in times
of systemic energy need. However, over the last two decades adipose tissue depots have
been established as highly active endocrine and metabolically important organs that mod-
ulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays
an essential role in non-shivering thermogenesis and in energy dissipation that can serve
to protect against diet-induced obesity. White adipose tissue collectively referred too as
either subcutaneous or visceral adipose tissue is responsible for the secretion of an array
of signaling molecules, termed adipokines.These adipokines function as classic circulating
hormones to communicate with other organs including brain, liver, muscle, the immune
system, and adipose tissue itself. The dysregulation of adipokines has been implicated in
obesity, type 2 diabetes, and cardiovascular disease. Recently, inflammatory responses in
adipose tissue have been shown as a major mechanism to induce peripheral tissue insulin
resistance. Although leptin and adiponectin regulate feeding behavior and energy expen-
diture, these adipokines are also involved in the regulation of inflammatory responses.
Adipose tissue secretes various pro- and anti-inflammatory adipokines to modulate inflam-
mation and insulin resistance. In obese humans and rodent models, the expression of
pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these
findings have suggested that obesity-induced insulin resistance may result, at least in part,
from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we
will review the recent progress regarding the physiological and molecular functions of
adipokines in the obesity-induced inflammation and insulin resistance with perspectives
on future directions.
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INTRODUCTION
Excess nutrition and sedentary lifestyle induce excessive lipid accu-
mulation in adipose and peripheral tissues resulting in obesity.
Obesity has become a pandemic health problem in which more
than 60% of American adults are overweight or obese and is
closely associated with metabolic diseases such as insulin resis-
tance, type 2 diabetes (T2D), hypertension, non-alcoholic fatty
liver disease, and polycystic ovarian diseases (Finkelstein et al.,
2012). Thus the financial cost to manage obesity and related
diseases is a burden on public healthcare system in modern
society. T2D is a quickly growing global metabolic disease char-
acterized by impaired insulin secretion from pancreatic β cells
and insulin resistance in liver, muscle, and adipose tissue. In
T2D, pancreatic β cells are continuously activated to synthe-
size and secret insulin due to unresolved hyperglycemia, and
this cellular stress gradually induces deterioration and apopto-
sis of pancreatic β cells (Butler et al., 2003; Ashcroft and Rors-
man, 2012). Thus both impaired pancreatic β cell function and
insulin resistance further deteriorate physiological consequences
of T2D. Muscle and adipocytes show impaired insulin-stimulated
glucose uptake with reduced inhibition of liver glucose pro-
duction. This constellation of tissue specific pathophysiology
results in increased fasting glucose levels and the inability to

adequately clear glucose from the circulation in the post-prandial
state.

The molecular mechanisms of obesity-associated T2D are
still unclear, however recent studies have shown that low-grade
chronic inflammation is an important factor in the pathogene-
sis of T2D in humans and rodent animal models (Hotamisligil,
2006; Shoelson et al., 2006; Schenk et al., 2008; Ouchi et al., 2011).
Although liver and muscle show obesity-induced mild inflamma-
tory responses without significant numeric changes of immune
cells, adipose tissue depots are the most vulnerable target to
mediate significant immune cells infiltration and inflammation
contributing to systemic inflammation and insulin resistance in
obese rodents and humans (Odegaard and Chawla, 2013). Adi-
pose tissue is a major tissue to provide excess nutrient storage
for triacylglycerols and also produces various secreted proteins
called adipokines as any other bonafide endocrine organ (Waki and
Tontonoz, 2007). Adipose tissues produce leptin and adiponectin
to regulate feeding behavior and also generate pro- and anti-
inflammatory adipokines to modulate inflammatory responses.
Adipocytes, the most abundant cell population of adipose tissue,
provides reversible excess energy storage depot in adipose tissue.
Thus excess nutrition overload initiates adipocytes hypertrophy
and hyperplasia resulting in cellular stress that in turn initiates
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oxidative stress and inflammatory responses in adipose tissue.
Inflammatory responses in adipose tissues become self-generating
that eventually leads to increased local and systemic levels of vari-
ous pro-inflammatory cytokines including tumor necrosis factor-
α (TNF-α), interleukin-6 (IL-6), IL-1β, and CC-chemokine ligand
2 (CCL2) that are causative for insulin resistance. Along with
inflammatory adipokine production in adipose tissues, obesity-
related hyperlipidemia, hyperglycemia, hypoxia, oxidative stress,
and endoplasmic reticulum (ER) stress can also induce insulin
resistance in peripheral tissues and can induce activation of
inflammatory signaling cascades in adipose tissues.

Currently a major objective in field is to understand the initi-
ating factors responsible for induction of adipose tissue inflam-
mation and the complex cascade of feed-forward and feed-back
mechanism that continue to amplify and maintain the pro-
inflammatory state. Only with an understanding of the cellular and
molecular crosstalk between adipocytes and the immune system
will be able to develop specific therapies to prevent inflamma-
tion and restore insulin sensitivity in an effective manner without
inducing secondary complications such as ectopic lipid accumu-
lation or further exacerbating obesity. In this review we will focus
on the recent progress regarding the physiological and molecular
functions of adipokines in the obesity-induced inflammation and
insulin resistance.

INSULIN RESISTANCE
The pancreas is primarily a dual function organ composed of
exocrine cells that secrete digestive enzymes into the gastrointesti-
nal lumen and endocrine cells localized to the Islets of Langerhans
that secrete hormones into the circulation to regulate metabolic
processes. Pancreatic islets produce several key endocrine hor-
mones such as insulin, glucagon, and somatostatin necessary
for the maintenance of normoglycemia. In particular, insulin
secretion is enhanced in response to increased circulating glu-
cose and amino acids. In peripheral tissues, insulin stimulates
glucose uptake (skeletal muscle and adipose tissue), glycogen
storage (skeletal muscle, liver), and inhibits gluconeogenesis and
glycogenolysis (liver). Insulin also increases lipogenesis in hepa-
tocytes and adipocytes and diminishes adipocyte free fatty acid
generation from triacylglycerols (lipolysis) (Pessin and Saltiel,
2000). Thus the definition of insulin resistance is the perturba-
tion of insulin-mediated signaling pathway resulting in systemic
hyperglycemia. As insulin has pleiotropic functions, insulin resis-
tance is closely linked with other metabolic symptoms such as
hypertension and hyperlipidemia (Cornier et al., 2008).

To understand insulin resistance, we need to clarify molecular
mechanisms of insulin signaling. At the molecular level, insulin
binds to the cell surface insulin receptor that exists as an α2β2 het-
erodimer (Taniguchi et al., 2006). Following insulin binding the
tyrosine kinase domain of β subunits autophosphorylates them-
selves in a trans-phosphorylation reaction that activates its intrin-
sic kinase activity to proximal substrates such as insulin receptor
substrate (IRS) family (IRS1-IRS4), Src-homology-2-containing
(Shc) adaptor proteins, signal-regulatory protein (SIRP) family,
and Grb2-associated binder-1 (Gab1). IRS1/2 phosphorylated on
specific tyrosine residues activates two major signaling pathways;
(i) the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase

B (PKB) pathway to modulate most metabolic functions of insulin
such as glucose transport, glycogen synthesis, gluconeogenesis,
protein synthesis, and cell growth and (ii) Ras-mitogen-activated
protein kinase (MAPK) pathway (Figure 1). In addition, there
are inhibitory molecules for insulin signaling such as the pro-
tein tyrosine phosphatase 1B (PTP1B), the suppressor of cytokine
signaling (SOCS) and the growth factor receptor bound protein
10 (Grb10) that suppress insulin signaling by inducing insulin
receptor dephosphorylation, physical blocking of substrate phos-
phorylation, and degradation of the insulin receptor and/or IRS.
AKT phosphorylates the AKT substrate of 160 kDa (AS160) to
activate Rab small GTPase that initiates the translocation of the
glucose transporter 4 (GLUT4) resulting in the glucose uptake in
muscle and adipocytes. AKT also suppresses glycogen synthase
kinase-3 (GSK3) to activate glycogen synthase resulting in the
glycogen synthesis in muscle and liver (Cross et al., 1995). The AKT
phosphorylation of forkhead box O1 (FOXO1) induces FOXO1
association with 14-3-3 protein, that in turn excludes FOXO1
from the nucleus. In the liver, this suppresses gluconeogenic gene
expression and thereby inhibits hepatic glucose output. AKT phos-
phorylates tuberous sclerosis complex 1 and 2 (TSC1/2), which
release the inhibition of Ras homolog enriched in brain (Rheb)
for the activation of mTORC1 complex, that in turn enhances
protein synthesis through the activation of eukaryotic translation
initiation factor 4E binding protein-1 (4E-BP) and p70 ribosomal
protein S6 kinase 1 (p70S6K1).

Although insulin signaling is well studied, the molecular mech-
anisms how insulin resistance develops are still unclear. Alter-
ations in insulin receptor expression, ligand binding, phospho-
rylation, and kinase activity affect the downstream of insulin
signaling resulting in diverse clinical syndromes such as the type
A syndrome, leprechaunism, and Rabson–Mendenhall syndrome.
Insulin receptor gene (INSR) mutations are very rare but at least
more than 30 INSR mutations have been shown to mediate insulin
receptor dysfunction, and these mutations may induce insulin
resistance with polygenic defects in its downstream signaling
(Hegele, 2003). In addition, mutations of DM1 kinase gene causes
defective alternative splicing of INSR (Savkur et al., 2001), and
mutations of high-mobility group A1 (HMGA1) gene suppress
the expression of INSR resulting in insulin resistance (Chiefari
et al., 2011).

Impaired proximal signaling of insulin receptor also mediates
insulin resistance. Decreased IRS protein levels contribute insulin
resistance in rodents and humans (Shimomura et al., 2000). A
complete molecular understand and mechanisms of reduced IRS
levels are still under investigation. However, excess insulin sup-
presses the expression of IRS2, and SOCS1/3 induced by inflam-
matory adipokines such as TNF-α, IL-6, and IL-1β enhance the
degradation of IRS1/2 through E3 ubiquitin ligase activation (Rui
et al., 2002) (Figure 1). IRS phosphorylation on serine residues
is another mechanism to induce insulin resistance. IRS contains
several serine residues that are phosphorylated by kinases such
as extracellular signal regulated kinase (ERK), cJun N-terminal
kinase (JNK), protein kinase Cζ (PKCζ), and p70S6K (Boura-
Halfon and Zick, 2009). The phosphorylation of IRS on Ser-307
is a typical inhibitory signal to suppress insulin signaling as Ser-
307 locates in PTB domain of IRS (Hirosumi et al., 2002). Thus
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FIGURE 1 | Inflammatory adipokines suppress insulin signaling resulting
in insulin resistance. IRS1/2 phosphorylated on specific tyrosine residues
activates the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B (PKB)
pathway and Ras-mitogen-activated protein kinase (MAPK) pathway.
PI3K-AKT signaling pathway regulates metabolic processes such as glucose
uptake (muscle and adipocytes), glycogen synthesis (muscle and liver),

protein synthesis (muscle and liver), and gluconeogenesis (liver).
Inflammatory signals, TNF-α, IL-6, LPS, and saturated free fatty acid, activate
inhibitory molecules such as SOCS and JNK to suppress insulin signaling
resulting in insulin resistance. PI3K dependent PDK1 activation is negatively
regulated by phospholipid phosphatases such as phosphatase and tensin
homolog (PTEN) that degrade PIP3.

increased TNF-α and saturated free fatty acids in obese individuals
activate JNK and inhibitor of nuclear factor κB kinase β (IKKβ) to
phosphorylate Ser-307 of IRS. In addition ERK activated by insulin
also phosphorylates IRS1 on Ser-612 to attenuate AKT activation
(Bard-Chapeau et al., 2005).

INFLAMMATION IN ADIPOSE TISSUES
In rodents and humans, inflammation in adipose tissues is one
mechanism to induce insulin resistance and is mediated by the acti-
vation of cellular stress-induced inflammatory signaling pathways.
Hyperlipidemia and hyperglycemia caused by excess nutrients,
lipolysis, and gluconeogenesis induce mitochondrial dysfunction,
ER stress and oxidative stress to stimulate stress responsive signal-
ing molecules such as JNK and IKKβ. In addition to IRS serine-
307 phosphorylation, JNK and IKKβ signaling pathways augment
inflammatory gene expression in target tissues amplifying sys-
temic inflammation (Samuel and Shulman, 2012). Saturated free
fatty acid and gut-derived bacterial lipopolysaccharide (LPS) also
bind to Toll-like receptor 4 (TLR4) to activate NF-κB and JNK
and mediate inflammation and insulin resistance (Shi et al., 2006;

Ghoshal et al., 2009). Furthermore inflammation in adipose tissue
is mediated by inflammatory adipokines produced by adipocytes
and infiltrated pro-inflammatory immune cells. To summarize
the differential adipokine expression and its function in obesity-
induced inflammation and insulin resistance, we will focus on the
cellular and molecular immune responses in adipose tissues of
obese rodents and humans.

Classically in mammals, there are two functional and devel-
opmental defined types of adipose tissue, white and brown.
Brown adipose tissue is found in newborn humans and hiber-
nating mammals and functionally distinct from white adipose
tissue. Brown adipose tissue distributes in cervical-supraclavicular
regions in humans and shows polygonal shape with multi-ocular
lipid droplets. As the primary function of brown adipose tissue
is generating heat, it has a much higher number of mitochondria
and capillaries than white adipose tissue (Ravussin and Galgani,
2011). More recently, brown adipose tissue has been identified in
humans but there is evidence that this may in fact be a third form
of adipose tissue also present in rodent models termed beige or
brite adipocytes (Wu et al., 2012a). Similar to brown adipocytes,
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this recently identified adipocyte subtype is derived from a dis-
tinct progenitor (stem) cell population that resides within classical
white adipose tissue. In contrast to brown adipocytes, white adi-
pose tissue is well established as an excess energy storage depot
as well as an endocrine organ. White adipose tissue is located
throughout the body. Subcutaneous and visceral adipose tissues
are major adipocyte depots, with additional adipose depots dis-
tributed at various organs such as heart, lung, and kidney. Sub-
cutaneous and visceral adipose tissues have differences in gene
expression, hypertrophy, and hyperplasia in obesity and differ-
entially contribute to obesity-induced insulin resistance (Hardy
et al., 2012). Subcutaneous adipose tissue has high capacity for
adipocytes differentiation and cell size expansion to store large
amounts of triacylglycerol. This storage capacity serves to reduce
visceral adipose tissue mass and lipid deposition in liver and mus-
cle. The inability to convert excess carbohydrate to lipid for storage
in subcutaneous adipose tissue (i.e., decreased gene expression
such as SREBP-1 and ChREBP) is associated with diabetes in obese
humans (Kursawe et al., 2013). In contrast, visceral adipose tissue
is positively associated with risk of insulin resistance and shows
higher monocytes infiltration and IL-6 production than subcu-
taneous adipose tissue to induce inflammation in obese subjects
(Cancello et al., 2006; Fontana et al., 2007). Ectopic lipid accumu-
lation in liver and muscle is also associated with obesity-induced
insulin resistance. High levels of diacylgycerol (DAG) generated
by incomplete synthesis to triacylglycerol or breakdown of tria-
cylglycerol to DAG has been proposed to inhibit insulin signaling
through protein kinase C activation in muscle (Chin et al., 1994;
Griffin et al., 1999; Badin et al., 2013). Similarly, DAG accumula-
tion in the liver is also associated with hepatic insulin resistance
(Jornayvaz and Shulman, 2012). In this regard, ATGL deficient

mice that have reduced ability to convert triacylglycerol to DAG
show enhanced glucose tolerance and insulin sensitivity (Haem-
merle et al., 2006). More recently, an alternative model of increased
ceramide levels has also been show to associate with insulin resis-
tance (Chavez and Summers, 2012). However, whether DAGs or
ceramides mediate a cell autonomous insulin resistance or are
part of the complex pathways responsible for obesity-induced
inflammation has not been resolved.

As eluted to, the inflammatory immune responses in adi-
pose tissues are one of major mechanisms to mediate insulin
resistance in rodents and humans, and dynamic changes of
immune cell composition in adipose tissues regulate inflamma-
tory responses (Figure 2). White adipose tissue consists of a
variety of cell types including adipocytes, macrophages, lympho-
cytes, fibroblasts, and endothelial cells. Innate immune responses
mainly mediated by macrophages generate a key inflamma-
tory process within adipose tissue resulting in insulin resistance.
Macrophages differentiate into two functionally distinct popula-
tions. Th1 cytokines, IFN-γ, activate nitric-oxide synthase (NOS2)
expression in classically activated macrophages (M1), whereas the
Th2 cytokines such as IL-4 and IL-13 induce arginase-1 (ARG1)
in alternatively activated macrophages (M2) (Mantovani et al.,
2004; Lumeng et al., 2007a,b; Mosser and Edwards, 2008; Mar-
tinez et al., 2009). F4/80+CD206−CD11c+ inflammatory M1
macrophages are increased in adipose tissue and secrete inflam-
matory cytokines such as TNF-α, IL-6, and IL-1β. TNF-α levels
are increased obese diabetic humans and rodents, and neutral-
ization of TNF-α improves insulin sensitivity in obese rodents
(Hotamisligil et al., 1993). TNF-α further enhances the expression
of inflammatory cytokines (TNF-α and IL-6) and chemokines
(CCL2 and RANTES) in adipocytes. TNF-α also induces serine

FIGURE 2 | Altered composition of immune cells with obesity
regulates the inflammatory responses in adipose tissue. Alternatively
activated M2 macrophages, Th2 CD4+ T cells, regulatory CD4+ T cells
(Treg), eosinophils, and iNKT cells are dominant immune cells in adipose
tissue of lean mice. These cells secrete anti-inflammatory cytokines such
as IL-4 and IL-10 to suppress inflammation and maintain insulin sensitivity

in adipose tissue. In obese mice, the composition of immune cells is
dynamically shifted to enhance inflammatory responses in adipose tissue.
Classically activated M1 macrophages, Th1 CD4+ T cells, effector CD8+ T
cells, mast cells, B cells, and neutrophils are increased and produce
inflammatory mediators such as TNF-α, IFN-γ, autoantibodies, and elastase
resulting in insulin resistance.
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phosphorylation of IRS1 to modulate the downstream effectors
of the insulin receptor resulting in insulin resistance (Hotamis-
ligil et al., 1996). IL-1β is elevated in circulation (Spranger et al.,
2003) and in pancreatic islets of obese type 2 diabetic humans
and rodents and induces the loss of pancreatic β cell mass result-
ing in hyperglycemia (Donath et al., 1999; Sauter et al., 2008;
Ehses et al., 2009). IL-1β is mainly produced by monocytes and
macrophages being synthesized as a IL-1β precursor in the cytosol,
and activation-induced NALP3 (cryopyrin) inflammasome acti-
vates caspase-1 to mediate active IL-1β secretion (Dinarello, 2009).
Thus inflammasome is critical for obesity-induced insulin resis-
tance (Stienstra et al., 2012). In addition, mast cells (Liu et al.,
2009), eosinophils (Wu et al., 2011), and dendritic cells (Bertola
et al., 2012) are also critically involved in obesity-induced inflam-
mation and insulin resistance through the production of pro- and
anti-inflammatory cytokines in adipose tissues.

Neutrophils are the first immune cells to respond to inflam-
mation and involved in the trafficking of other immune cells
into inflammatory sites. Neutrophils quickly infiltrate into adipose
tissue and produce neutrophil elastase, which accelerates inflam-
matory responses. Thus deletion of neutrophil elastase shows less
inflammation and improved insulin sensitivity in obese rodents
with reduced neutrophils and macrophages in adipose tissues
(Talukdar et al., 2012). Recently the role of innate invariant nat-
ural killer T (iNKT) cells in obesity-induced insulin resistance has
been shown. As iNKT cells rapidly response to its ligands, iNKT
cells generate Th1 and Th2 cytokines including IFN-γ and IL-4 to
quickly regulate immune responses (Bendelac et al., 2007). iNKT
cells also produce IL-17 after TGF-β and IL-1β stimulation result-
ing in neutrophilic airway inflammation (Monteiro et al., 2013).
iNKT cells are highly enriched in adipose tissue of lean rodents and
humans. However iNKT cells are decreased in adipose tissues of
obese rodents and humans, and the number of iNKT cells is recov-
ered after weight loss. iNKT cell deficient mice show that iNKT
cells protect inflammation and insulin resistance in both lean and
obese rodents and humans as adipose tissue-derived iNKT cells
produce anti-inflammatory cytokines (Lynch et al., 2012; Schip-
per et al., 2012). However, the role of iNKT cells in HFD-induced
inflammation and insulin resistance is still controversial as sev-
eral previous reports show that iNKT cells are not necessary to
suppress the HFD-induced inflammation and insulin resistance
(Mantell et al., 2011; Wu et al., 2012b).

Adaptive immune responses have been also shown to be a crit-
ical factor for HFD-induced inflammation and insulin resistance
in humans and rodents. CD4+ T cells in adipose tissues of obese
rodents and humans mediate HFD-induced insulin resistance.
IFN-γ producing Th1 CD4+ T cells are increased in adipose tissues
of obese mice overwhelming the anti-inflammatory Th2 CD4+ T
cells and Foxp3+ regulatory CD4+ T cells. Interestingly, adoptive
transfer of CD4+ cells especially Th2 CD4+ T cells, which pro-
duce IL-4 and IL-13, rescues HFD-induced obesity and insulin
resistance in Rag1 deficient mice suggesting that Th2 cytokines
such as IL-4 and IL-13 suppress HFD-induced inflammation to
improve insulin sensitivity (Winer et al., 2009a). Foxp3+CD4+

regulatory T cells (Treg), anti-inflammatory IL-10 producer, are
unique cell population that suppresses inflammation, and Treg

cells are decreased in HFD-induced and genetically modified obese

mice resulting in insulin resistance (Feuerer et al., 2009). Cytotoxic
CD8+ T cells are also significantly increased in adipose tissues of
obese mice, and depletion of CD8+ T cells reverses inflammation
and insulin resistance suggesting that obesity-induced infiltration
of CD8+ T cells deteriorate systemic insulin sensitivity (Nishimura
et al., 2009). Although inflammatory Th17 CD4+ T cells mediate
diverse autoimmune diseases, and HFD predisposes autoimmune
diseases such as trinitrobenzene sulfonic acid (TNBS) colitis and
experimental autoimmune encephalomyelitis (EAE) (Winer et al.,
2009b), Th17 CD4+ T cells are not involved in the inflamma-
tion of obese mice (Winer et al., 2009a). B cells are also critical
for the development of inflammation in adipose tissues. B cells
are accumulated in adipose tissues of obese rodents and induce
inflammation and insulin resistance along with macrophages and
T cells. B cells produce IgG2c autoantibodies to induce sys-
temic inflammation, and B cell deficient mice and depletion of B
cells using anti-CD20 antibody administration suppress systemic
inflammation and enhance insulin sensitivity (Winer et al., 2011).

ADIPOKINES
It is now well established that white adipose tissue functions
as an active endocrine organ to modulate physiological meta-
bolic processes. As adipose tissue contains various cell types
such as adipocytes, immune cells, endothelial cells, and fibrob-
lasts, it produces and releases diverse secretory proteins called
adipokines into the systemic circulation. Visceral and subcuta-
neous adipose tissues produce unique profiles of adipokines to
mediate inflammation and insulin resistance in obese rodents
and humans. Two decades ago, adipsin (complement factor C)
(Cook et al., 1987), TNF-α, and leptin were identified as bona
fide adipokines, and those studies facilitate finding other secreted
adipocyte factors. Although adipokines have multiple metabolic
functions, we will mainly discuss the inflammatory functions
of adipokines that play important roles in mediating obesity-
induced insulin resistance. In this regard, adipokines are clas-
sified as pro- and anti-inflammatory adipokines according to
their effects on inflammatory responses in adipose tissues. Most
adipokines show pro-inflammatory activity with the noted excep-
tions of adiponectin, secreted frizzled-related protein 5 (SFRP5),
visceral adipose tissue-derived serine protease inhibitor (Vaspin),
and omentin-1. The pro-inflammatory adipokines are increased
whereas the anti-inflammatory adipokines are decreased in obese
rodents and humans that are associated with insulin resistance.

PRO-INFLAMMATORY ADIPOKINES
LEPTIN
Obese mutation ob, an autosomal recessive mutation, increases
food intake and obesity resulting in T2D. Para-biosis experiments
show that Lepob/Lepob mice have defects in circulating factor(s),
which regulate food intake. Leptin expressed from obese gene is
identified by positional cloning and has been shown to regulate
feeding behavior through the hypothalamic regulation in cen-
tral nervous system (Zhang et al., 1994). Thus leptin deficient
Lepob/Lepob and leptin receptor deficient Leprdb/Leprdb mice dis-
play marked hyperphagia, obesity, and insulin resistance. Impor-
tantly, exogenous administration of leptin to Lepob/Lepob mice
reduces obesity and restores insulin sensitivity. However, leptin
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levels in circulation are increased in obese rodents and humans
suggesting that obese subjects display leptin resistance (Fried-
man and Halaas, 1998). Leptin resistance has been reported as
mediated by impaired leptin transport in blood brain barrier,
hyperleptinemia-induced SOCS3 (Kievit et al., 2006), defective
autophagy (Quan et al., 2012), and ER stress (Ozcan et al., 2009).
Obesity-induced chronic inflammation also induces leptin resis-
tance through the activation of TLR4, JNK, and IKKβ (Zhang et al.,
2008; Kleinridders et al., 2009).

The structure of leptin is similar to pro-inflammatory helical
cytokines including IL-2, IL-6, and granulocyte-colony stimu-
lating factor (G-CSF), and leptin indeed induces inflammatory
responses through the long isoform of the leptin receptor b
(LepRb) and its proximal Janus kinase 2 (JAK2) and signal trans-
ducer and activator of transcription 3 (STAT3) signaling pathway.
Leptin activates monocytes and macrophages to produce pro-
inflammatory IL-6, TNF-α, and IL-12 (Gainsford et al., 1996)
and stimulates the production of CCL2 and vascular endothe-
lial growth factor in human hepatic stellate cells (Aleffi et al.,
2005). Other inflammatory signals such as TNF-α and LPS stim-
ulate the expression of leptin and leptin receptor (Grunfeld et al.,
1996; Gan et al., 2012). Leptin also enhances the production of
pro-inflammatory Th1 cytokines whereas suppresses the produc-
tion of anti-inflammatory Th2 cytokines such as IL-4 in CD4+ T
cells (Lord et al., 1998). Thus Lepob/Lepob and Leprdb/Leprdb mice
are resistant to Con-A induced hepatitis and EAE as Lepob/Lepob

and Leprdb/Leprdb mice are skewed to an anti-inflammatory
Th2 immune response due to the lack of leptin signaling (Fag-
gioni et al., 2000; Matarese et al., 2001). Furthermore, leptin
induces collagen-induced arthritis through the differentiation of
Th17 CD4+ T cells to enhance joint inflammation (Deng et al.,
2012).

INTERLEUKIN-6
The role of IL-6 in obesity and insulin resistance is controversial.
IL-6 is highly expressed in adipose tissue and positively correlated
with obesity in humans. Peripheral administration of IL-6 inter-
rupts insulin signaling due to enhance expression of SOCS3 in
hepatocytes suggesting that obesity-induced IL-6 expression medi-
ates insulin resistance (Senn et al., 2003). In contrast, IL-6 deficient
mice show mature-onset obesity and hepatic inflammation, and
IL-6 administration reverses insulin resistance (Wallenius et al.,
2002; Matthews et al., 2010). As central administration of IL-6
enhances energy expenditure and decreases obesity, IL-6 can also
influence obesity and insulin sensitivity through a central ner-
vous system mechanism. Thus the role IL-6 in obesity and insulin
resistance likely depends upon the specific sites of expression that
is integrated with other adipokine/cytokine factors in a systems
integrated manner.

TUMOR NECROSIS FACTOR
TNF-α was originally identified as an endotoxin-induced serum
factor that mediates tumor necrosis and cancer cachexia. TNF-α
is mainly expressed in monocytes and macrophages as a 26 kDa
transmembrane protein and then is converted to active trimer by
TNF-α converting enzyme. TNF-α is a typical pro-inflammatory
cytokine that is increased in obese humans and rodents suggesting

that TNF-α contributes to insulin resistance. TNF-α treatment
in cell lines and rodents induces insulin resistance, and neutral-
ization of TNF-α in obese fa/fa rats enhances insulin sensitivity
(Hotamisligil et al., 1993). Accordingly TNF-α or its receptors
deficient mice show improved insulin sensitivity in white adi-
pose tissues and skeletal muscles of HFD fed and Lepob/Lepob

mice (Uysal et al., 1997). TNF-α stimulates the phosphoryla-
tion of IRS on Ser-307 residues that suppresses insulin-induced
IRS1 tyrosine phosphorylation and activation of down stream
targets (Hotamisligil et al., 1996). Although TNF-α levels in the
circulation is positively correlated with insulin resistance, and neu-
tralization of TNF-α improved the insulin sensitivity in rodents,
clinical effects of TNF-α neutralization in humans are still contro-
versial. Short-term administration of TNF-α blocking reagents to
obese T2D patients suppresses inflammation but dose not show
improved insulin sensitivity (Ofei et al., 1996). In contrast, long-
term treatment of TNF-α blocking reagents in obese patients
with severe inflammatory diseases such as rheumatoid arthritis
improves insulin sensitivity (Gonzalez-Gay et al., 2006; Stanley
et al., 2011). TNF-α also suppresses the expression of phospho-
diesterase 3B (PDE3B) and perilipin. As PDE3B reduces cAMP
after insulin stimulation, and perilipin regulates the access of
hormone-sensitive lipase in adipocytes, TNF-α induces lipoly-
sis in adipocytes to release free fatty acid (Souza et al., 1998;
Zhang et al., 2002). Free fatty acid in turn binds to TLR4, and
pro-inflammatory factors are expressed through NF-κB activa-
tion (Lee et al., 2001). Consistent with this model, TLR4 deficient
mice show improved HFD-induced insulin resistance (Kim et al.,
2007a).

RETINOL BINDING PROTEIN 4
Retinol binding protein 4 expressed in liver, adipocytes, and
macrophages is significantly increased in obese diabetic rodents
and humans. The expression of RBP4 is inversely correlated with
that of GLUT4 in adipocytes, and administration of recombinant
RBP4 to normal mice induces insulin resistance (Yang et al., 2005).
RBP4 inhibits insulin-induced phosphorylation of IRS1 suggest-
ing that adipocyte secreting RBP4 induces insulin resistance. Clin-
ical studies show that increased RBP4 levels are closely associated
with high blood pressure, high levels of triacylglycerol, high body
mass index (BMI) (Graham et al., 2006), subclinical inflammation,
and nephropathy (Akbay et al., 2010). In fact, RBP4 stimulates
human primary endothelial cells to produce pro-inflammatory
molecules such as vascular cell adhesion molecule 1 (VCAM1),
CCL2, and IL-6 resulting in the progression of endothelial inflam-
mation in cardiovascular disease and microvascular complication
in diabetes (Farjo et al., 2012).

RESISTIN
Resistin (ADSF/FIZZ3/XCP1), 10 kDa polypeptide with 114
amino acids in rodents, is identified as an inducer of pulmonary
inflammation (Holcomb et al., 2000) and insulin resistance (Step-
pan et al., 2001). Resistin belongs to the cysteine-rich family and
circulates as a hexamer and trimer. High molecular weight hexa-
mer is more abundant but less active than trimer that strongly
induces insulin resistance. Resistin is involved in the activa-
tion of SOCS3 resulting in the suppression of insulin-mediated
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signaling in adipocytes (Steppan et al., 2005). Thus resistin defi-
cient Lepob/Lepob mice show improved glucose tolerance and
insulin sensitivity (Qi et al., 2006). In contrast the function
of resistin in humans is not clear, as resistin levels in blood
circulation are not correlated with obesity and insulin resis-
tance. Monocytes and macrophages are major sources of resistin
in humans although the expression of resistin is restricted in
adipocytes in rodents. Inflammatory cytokines such as IL-1β,
IL-6, TNF-α, and LPS induce the resistin expression in human
macrophages. Resistin stimulates human peripheral mononuclear
cells to produce IL-6 and TNF-α through the NF-κB signal-
ing pathway, and rosiglitazone a PPARγ agonist suppresses the
resistin expression in adipose tissues resulting in the attenua-
tion of inflammatory responses (Bokarewa et al., 2005). Resistin
also activates JNK and p38 MAPK to induce insulin resistance
through TLR4 binding in the hypothalamus (Benomar et al.,
2013).

CC-CHEMOKINE LIGAND 2 AND CC-CHEMOKINE RECEPTOR TYPE 5
Chemokines and their receptors play essential roles in mediating
infiltration of immune cells into adipose tissue. CCL2 (MCP1)
and CCR5 are typical chemokine and chemokine receptor, respec-
tively that mediate inflammatory responses and are significantly
enhanced in obese rodents and humans. Accordingly CCR2, the
receptor of CCL2, deficient mice show attenuated macrophage
infiltration, inflammation, and insulin resistance (Weisberg et al.,
2006). In addition, genetic deletion of a related receptor CCR5
has recently been shown to improve inflammation, insulin sensi-
tivity, and hepatic steatosis with reduced macrophage infiltration
and preferred anti-inflammatory M2 macrophage differentiation
in obese mice (Kitade et al., 2012). However the role CCL2 in
inflammation and insulin resistance is not clear. In one study
CCL2 deficient mice show decreased macrophage infiltration and
inflammation in adipose tissues (Kanda et al., 2006) whereas
in another study CCL2 deficient mice show no differences in
macrophage accumulation and inflammation in adipose tissue of
obese mice (Kirk et al., 2008). Although the basis for this dif-
ference is not known, it is possible that CCL2 deficiency might
be compensated by other related chemokines in certain genetic
background.

ANGIOPOIETIN-LIKE PROTEIN 2
Adipose tissue is the primary source of angiopoietin-like pro-
tein 2 (ANGPTL2), and ANGPTL2 expression is enhanced in
obese humans and rodents (Tabata et al., 2009). ANGPTL2 has
the N-terminal coiled coil domain for oligomerization and the
C-terminal fibrinogen-like domain. ANGPTL2 activates endothe-
lial cells and macrophages to increase inflammatory responses
through integrin mediated signaling. Thus ANGPTL2 deficiency
ameliorates inflammation and insulin resistance in HFD fed mice.
In addition, inflammatory cytokines such as TNF-α induce the
expression of ANGPTL2 in 3T3-L1 adipocytes through PI3K-
FOXO1 activation (Zheng et al., 2011).

CHEMERIN
Chemerin is a ligand of the G protein-coupled receptor ChemR23
(Wittamer et al., 2003) and expressed in most tissues except

leukocytes. Chemerin mediates inflammatory responses, as it is a
chemoattractant to induce the infiltration of macrophages, imma-
ture dendritic cells, and NK cells in inflammatory disease such as
ulcerative colitis and skin lupus (Albanesi et al., 2009). In addition
chemerin has been shown as an adipokine to regulate adipoge-
nesis and adipocytes metabolism (Goralski et al., 2007) although
molecular mechanisms are still controversial (Bondue et al., 2011).
Chemerin level is positively correlated with BMI, fasting glucose,
triacylglycerols, and inflammatory cytokines in obese subjects,
and administration of chemerin exacerbates glucose intolerance
in obese mice (Ernst et al., 2010). However, chemerin suppresses
the zymosan-induced peritonitis suggesting that chemerin also has
anti-inflammatory activity (Cash et al., 2008).

ANTI-INFLAMMATORY ADIPOKINES
ADIPONECTIN
Adiponectin is highly expressed by adipocytes with potent
anti-inflammatory properties. Adiponectin has an N-terminal
collagen-like domain and a C-terminal complement factor C1q-
like globular domain and circulates as trimers, hexamers, and a
high molecular weight form. As pro-inflammatory factors such
as TNF-α, IL-6, ROS, and hypoxia suppress the expression of
adiponectin in adipocytes, adiponectin levels are decreased in
obese rodents and humans (Li et al., 2009). Recently it has
been shown that not only inflammatory signals but iron over-
load in adipocytes suppresses adiponectin expression in obese
humans through FOXO1 (Gabrielsen et al., 2012). In contrast
PPARγ antagonists stimulate the expression of adiponectin in
adipocytes (Maeda et al., 2001). Adiponectin activates AMP-
dependent protein kinase (AMPK) through its receptors, ADI-
POR1/2, to enhance fatty acid oxidation and glucose uptake in
muscle and to suppress gluconeogenesis in liver (Yamauchi et al.,
2002). Exogenous administration of adiponectin or overexpres-
sion in transgenic mice results in improved insulin sensitivity
whereas adiponectin deficient mice develop HFD-induced inflam-
mation and insulin resistance (Maeda et al., 2002; Kim et al.,
2007b). Adiponectin inhibits LPS-induced TNF-α production in
macrophages through inhibition of NF-κB activation and stimu-
late the production of anti-inflammatory IL-10 (Yokota et al., 2000;
Kumada et al., 2004). Adiponectin also promotes the differentia-
tion of anti-inflammatory M2 macrophages and phagocytosis to
remove apoptotic cells (Takemura et al., 2007). Adiponectin mod-
ulates T cells activation and inflammatory function of NK cells.
Adiponectin receptors are upregulated on the surface of human
T cells after antigen stimulation and mediate apoptosis of anti-
gen specific T cells resulting in the suppression of antigen specific
T cells expansion (Wilk et al., 2011). Furthermore adiponectin
suppresses TLR-mediated IFN-γ production in NK cells with-
out affecting in cytotoxicity of NK cells (Wilk et al., 2013). Thus
adiponectin can also suppresses the development of atherosclero-
sis, fatty liver diseases, and liver fibrosis (Okamoto et al., 2002; Xu
et al., 2003).

SECRETED FRIZZLED-RELATED PROTEIN 5
Secreted frizzled-related protein has an N-terminal cysteine-rich
domain that is homologous to frizzled proteins, the cell surface
receptors for wingless-type MMTV integration site family (WNT).
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Thus SFRP5 that is highly expressed in adipocytes of mouse
white adipose tissues prevents the binding of WNT proteins to
its receptors. WNT proteins especially WNT5a is closely linked
inflammatory responses. The expression of SFRP5 is decreased,
but the expression of WNT5a, an antagonizing target of SFRP5, is
increased in white adipose tissues of obese rodents and humans
suggesting that SFRP5 might have potential to attenuate inflam-
matory effect of WNT5a in adipose tissues. Accordingly, HFD fed
SFRP5 deficient mice Sfrp−/− have insulin resistance and fatty
liver along with enhanced inflammatory macrophage accumula-
tion to produce IL-6, TNF-α, and CCL2 suggesting that SFRP5
is an anti-inflammatory adipokine (Ouchi et al., 2010). WNT5a
induces the non-canonical activation of JNK1, and SFRP5 defi-
cient mice show highly activated JNK1 in HFD indicating that
SFRP5 inhibits WNT5a mediated non-canonical JNK1 activa-
tion in adipose tissues to suppress obesity-induced inflammation
and insulin resistance. In contrast, another SFRP5 deficient mice
Sfrp5Q27stop recently show that SFRP5 expression is increased in
obese mice,and SFRP5 enhances adipogenesis as SFRP5 suppresses
WNT signaling (Mori et al., 2012).

VISCERAL ADIPOSE TISSUE-DERIVED SERINE PROTEASE INHIBITOR
Visceral adipose tissue-derived serine protease inhibitor is iden-
tified from visceral white adipose tissues of Otsuka Ling-Evans
Tokushima fatty (OLETF) rat as an insulin sensitizing adipokine
because vaspin suppresses the expression of pro-inflammatory
adipokines such as resistin, leptin, and TNF-α (Hida et al., 2005).
Vaspin is highly expressed by rat adipocytes and improves insulin
sensitivity whereas the effect of vaspin in humans is still unclear.
Inflammatory stimulators including TNF-α play an important role
in the development of atherosclerosis. Vaspin also suppresses TNF-
α-induced ROS production and monocytes adhesion to smooth
muscle cells by inhibiting the activation of NF-κB and PKCθ

(Phalitakul et al., 2011).

OMENTIN-1
Human omental adipose tissues secrete omentin-1 that is preferen-
tially expressed by omental stromal vascular fraction cells, but not
by adipocytes (Schaffler et al., 2005). Omentin-1 levels in blood
circulation are inversely related with obesity and suppressed by
glucose and insulin (de Souza Batista et al., 2007). Omentin-1
enhances the insulin-induced glucose uptake in human visceral
and subcutaneous adipocytes through increased phosphorylation
of AKT/PKB (Yang et al., 2006). Interestingly, omentin-1 attenu-
ates C-reactive protein (CRP) and TNF-α-induced NF-κB activa-
tion in human endothelial cells suggesting that omentin-1 might
be an anti-inflammatory adipokine in humans (Tan et al., 2010).

APELIN
Apelin expressed in many tissues such as lung, mammary gland,
and testis is identified as the endogenous ligand of orphan G
protein-coupled receptor termed APJ (Tatemoto et al., 1998).
Apelin has diverse physiological functions to regulate fluid home-
ostasis, heart rate, and metabolic functions (Carpene et al., 2007).
Adipocytes produce apelin, and its plasma level is increased in
obese humans and rodents. As apelin enhances glucose uptake
through AMPK-dependent manner and suppresses lipolysis,

apelin deficient mice show insulin resistance following HFD feed-
ing (Yue et al., 2010, 2011) suggesting that apelin improves glucose
homeostasis and insulin sensitivity. Apelin is also involved in
inflammatory responses in obese subjects. Apelin expression is
positively associated with TNF-α, and TNF-α treatment induces
the apelin expression in adipose tissue. In addition, apelin activates
JNK and NF-κB to induce inflammatory adhesion molecules such
as ICAM in human umbilical vein endothelial cells (Lu et al., 2012).
However, apelin administration reduces inflammation in kidney
to ameliorate diabetic nephropathy through the suppression of
CCL2 expression, monocytes infiltration, and NF-κB activation
(Day et al., 2013). Thus the precise role for apelin in regulating
inflammatory responses remains undefined.

INFLAMMATION AND INSULIN RESISTANCE
As described above, in both rodents and humans obesity-related
insulin resistance is strongly associated with a relative increase
in inflammation in adipose tissue. Numerous genetic mouse
models have clearly demonstrated that prevention against this
pro-inflammatory response protects against diet-induced insulin
resistance but not against obesity (Kim et al., 2008). Moreover,
in humans approximately 20% of the obese population remains
fully insulin sensitive and metabolically normal, termed metaboli-
cally benign obesity (Ferrannini et al., 1997). Although the insulin
resistant obese population displays adipose tissue inflammation,
the metabolically benign obese population has a similar adipose
tissue inflammatory cytokine, adipokine, and immune cell distri-
bution as normal insulin sensitive non-obese individuals (Karelis
et al., 2005). Recent clinical studies have also shown that treatment
with salsalate a non-steroidal anti-inflammatory drug (NSAID)
derived from salicylate improves insulin sensitivity in obese insulin
resistant patients (Goldfine et al., 2010, 2013).

Despite these accumulating data supporting adipose tissue
inflammation as a causative factor in diet-induced insulin resis-
tance, it remains unclear what is the initiation factor(s) that is
responsible for generating the adipose tissue inflammatory cas-
cade. It has been suggested that adipocyte released chemokines
such as CCL2 is responsible for the initiation of pro-inflammatory
macrophage infiltration (Weisberg et al., 2006). However, we now
know that infiltration of macrophages is a late step in the adipose
tissue inflammatory process and that one of the earliest events is
the infiltration of neutrophils (Elgazar-Carmon et al., 2008; Taluk-
dar et al., 2012). Whether or not neutrophil recruitment/activation
in adipose tissue is the initiator of the inflammatory cascade
and/or the signals responsible for neutrophil recruitment remain
undetermined.

In any case, another unresolved issue is the mechanisms by
which adipose tissue inflammation results in liver and skeletal
muscle insulin resistance. Several studies have also observed the
local liver and skeletal muscle expression of pro-inflammatory
cytokines and activation of inflammatory cells (Odegaard and
Chawla, 2013). Whether this results from systemic inflamma-
tion emanating from adipose tissue or is due to a local release
of pro-inflammatory chemokines/cytokines has yet to be estab-
lished. Moreover, whether this accounts for the hepatic and skeletal
muscle insulin resistance or results from alterations in central
signaling and/or systemic factors is area that needs further study.
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It is becoming clear that targeting the pro-inflammatory
pathway may provide a novel therapeutic approach to pre-
vent insulin resistance, particularly in obesity-induced insulin
resistance. For example, although early efforts to block TNF-
α failed to show efficacy, more recently the use of salicylate to
reduce inflammation by inhibiting IKKβ signaling was found
to improve insulin sensitivity in animal models and humans
(Goldfine et al., 2010, 2013). More recently, amlexanox, an
inhibitor of the non-canonical IκB kinases IKK-ε and TANK-
binding kinase 1 (TBK1) was shown to not only improve sen-
sitivity but to also increase energy expenditure and weight loss
in obese mice (Reilly et al., 2013). These data provide the
proof of principal that targeting the inflammatory signaling
pathway can be an effective approach in the treatment of insulin
resistance.

PERSPECTIVES
In summary, adipose tissue has multiple integrative functions
serving as energy storage organ that can provide fuel for energy
production in times of external nutrient shortage. However,
over the past two decades adipocytes have become established
as bona fide professional endocrine cells that integrates whole
body energy status with eating behavior, energy expenditure,
and insulin sensitivity. Moreover, adipose tissue has become a
central node for driving local and systemic sterile inflamma-
tion that is a key element in obesity-induced insulin resistance.
Although many adipokines have been identified and well stud-
ied, the identification and functional studies of new adipokines
and their control of integrative physiologic responses are essential
to understand pathophysiological mechanisms of obesity-induced
metabolic diseases.
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