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Abstract: Oxidative stress is an important feature in the pathogenesis of COPD. Targeting 

oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is 

likely to be benefi cial in the treatment of COPD. Antioxidant agents such as thiol molecules 

(glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary 

polyphenols (curcumin, resveratrol, green tea, catechins/quercetin), erdosteine, and 

carbocysteine lysine salt, all have been reported to control nuclear factor-kappaB (NF-κB) 

activation, regulation of glutathione biosynthesis genes, chromatin remodeling, and hence 

infl ammatory gene expression. Specifi c spin traps such as α-phenyl-N-tert-butyl nitrone, 

a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), 

and a superoxide dismutase mimetic M40419 have also been reported to inhibit cigarette 

smoke-induced infl ammatory responses in vivo. Since a variety of oxidants, free radicals, 

and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic 

administration of multiple antioxidants will be effective in the treatment of COPD. Various 

approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds 

in COPD are discussed. 

Keywords: reactive oxygen species, lipid peroxides, polyphenols, glutathione, antioxidants, 

NF-κB, corticosteroids, chronic obstructive pulmonary disease, lungs

Introduction
Reactive oxygen species (ROS), such as superoxide anion (O

2
•–) and the 

hydroxyl radical (•OH), are highly unstable species with unpaired electrons 

capable of initiating oxidation. Lungs are continuously exposed to oxidants, 

generated either endogenously by metabolic reactions (eg, from mitochondrial 

electron transport during respiration or during activation of phagocytes) or 

exogenously, such as from air pollutants or cigarette smoke. Production of ROS 

has been directly linked to oxidation of proteins, DNA, and lipids, which may 

cause direct lung injury or induce a variety of cellular responses through the 

generation of secondary metabolic reactive species. ROS may alter remodeling 

of extracellular matrix and blood vessels, stimulate mucus secretion, inactivate 

antiproteases, cause apoptosis, and regulate cell proliferation (Rahman and 

MacNee 1996a, 1999). Furthermore, increased levels of ROS have been 

implicated in initiating inflammatory responses in the lungs through the 

activation of transcription factors such as nuclear factor-kappaB (NF-κB) and 

activator protein-1 (AP-1), signal transduction, chromatin remodeling, and gene 

expression of proinflammatory mediators (Rahman and MacNee 1998; Rahman 

2003) (Figure 1). Since a variety of oxidants, free radicals, and aldehydes 

are implicated in the pathogenesis of COPD, it is possible that therapeutic 

administration of a variety of antioxidants will be effective in the treatment 

of COPD.

This paper discusses the rationale for antioxidant therapeutic intervention in the 

light of oxidative stress in the management of COPD.

Antioxidant therapies in COPD
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Figure 1 Mechanism of reactive oxygen species (ROS)-mediated lung infl ammation. Infl ammatory response is mediated by oxidants inhaled and/or released by the 
activated neutrophils, alveolar macrophages, eosinophils, and epithelial cells, leading to production of ROS and membrane lipid peroxidation.  Activation of transcription 
of the proinfl ammatory cytokine and chemokine genes, up-regulation of adhesion molecules, and increased release of proinfl ammatory mediators are involved in the 
infl ammatory responses in patients with COPD.
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Inhaled oxidants and cigarette 
smoke
COPD is a slow, progressive condition characterized by 

airfl ow limitation, which is largely irreversible (ATS 1995; 

Pauwels et al 2001). Cigarette smoking is the major etiologi-

cal factor in this condition. More than 90% of patients with 

COPD are smokers, but only 15%–20% of cigarette smokers 

show a rapid decline FEV
1
 and develop the disease (Snider 

1989). An increased oxidant burden in smokers derives 

from the fact that cigarette smoke contains more than 1017 

oxidant/free radical molecules per puff and more than 4700 

chemicals (Church and Pryor 1985). 

Cell-derived ROS 
The common feature of COPD is the development of an 

infl ammatory response, characterized by activation of epi-

thelial cells and resident macrophages and the recruitment 

and activation of neutrophils, eosinophils, monocytes, and 

lymphocytes (Rahman and MacNee 1996a). The activa-

tion of macrophages, neutrophils, and eosinophils generates 

O
2

•–, which is rapidly converted to H
2
O

2
 under the infl u-

ence of superoxide dismutase (SOD), and •OH is formed 

non-enzymatically in the presence of Fe2+ as a secondary 

reaction. ROS can also be generated intracellularly from sev-

eral sources. The primary ROS-generating enzyme is NADPH 

oxidase, a complex enzyme system that is present in phago-

cytes and epithelial cells. In addition to NADPH oxidase, 

phagocytes employ other enzymes to produce ROS, which 

involves the activity of heme peroxidases (myeloperoxidase, 

MPO) or eosinophil peroxidase (EPO). Superoxide anion and 

H
2
O

2
 can also be generated by mitochondria and the xanthine/

xanthine oxidase (XO) reaction. XO activity has been shown 

to be increased in cell-free bronchoalveolar lavage (BAL) 

fl uid and plasma from COPD patients, compared with normal 

individuals. This has been associated with increased O
2
•– and 

lipid peroxide levels (Pinamonti et al 1998).

Oxidative stress biomarkers in 
exhaled breath condensate
Identifi cation of non-invasive biomarkers of oxidative stress 

is important because antioxidant clinical trials or supplemen-

tation studies could potentially be monitored by measuring 

markers of oxidative stress. Recent studies have focused 

on applying non-invasive techniques, such as biomarkers 
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in exhaled breath condensate to evaluate oxidative stress 

in COPD (Rahman and Kelly 2003; Rahman and Biswas 

2004). Smokers and patients with COPD have higher levels 

of exhaled H
2
O

2
 than non-smokers, and levels are even 

higher during exacerbations of COPD (Kharitonov and 

Barnes 2001; Montuschi and Barnes 2002). The levels of 

8-iso-prostaglandin F
2
α (8-isoprostane) in exhaled breath 

condensate are elevated in healthy smokers and more mark-

edly in patients with COPD, refl ecting the degree of oxidative 

stress (Rahman and MacNee 1998; Montuschi et al 2000). 

Non-specifi c lipid peroxidation products, such as thiobar-

bituric acid reactive substances (TBARS), have also been 

shown to be elevated in breath condensate and in lungs of 

patients with stable COPD (Pratico et al 1998; Nowak et al 

1999). Other specifi c products of lipid peroxidation such as 

malondialdehyde and 4-HNE have also been shown to be 

increased in exhaled breath condensate of COPD patients 

(Rahman et al 2000; Rahman, van Schadewijk, et al 2002; 

Aoshiba et al 2003). 

Antioxidant therapeutic 
interventions
Systemic antioxidant capacity 
and antioxidant vitamins
Smoking and exacerbations of COPD result in decreased 

antioxidant capacity in plasma in association with depleted 

protein sulfhydryls in the plasma (Rahman et al 1996, 1997; 

Corradi et al 2003). The decrease in antioxidant capacity 

in smokers occurs transiently during smoking and resolves 

rapidly after smoking cessation. In exacerbations of COPD, 

however, antioxidant capacity remains low for several days 

after the onset of the exacerbation, tending to return towards 

normal values at the time of recovery from the exacerbation 

(Rahman et al 1997). The depletion of antioxidant capacity 

could in part be explained by the increased release of ROS 

from peripheral blood neutrophils, as shown by a signifi cant 

negative correlation between neutrophil superoxide anion 

release and plasma antioxidant capacity (Rahman et al 1996). 

Thus, there is clear evidence that oxidants in cigarette smoke 

markedly decrease plasma antioxidants, which may play an 

important role in the pathogenesis of COPD. Furthermore, 

it is possible that interindividual differences in antioxidant 

capacity may contribute to the differences in susceptibility to 

cigarette smoke-induced COPD. Therefore, it is imperative to 

propose the rationale for antioxidant therapy ameliorating the 

increased oxidative stress and consequently the infl ammatory 

response in COPD. There are various options to enhance the 

lung antioxidant screen (Table 1). 

Depletion of total antioxidant capacity in smokers is 

associated with decreased levels of major plasma antioxidants 

in smokers (Pelletier 1970; Petruzzelli et al 1990; Duthie et al 

1991; Antwerpen et al 1993; Bridges et al 1993; Mezzetti 

et al 1995; Rahman and MacNee 1996a). These studies 
show depletion of vitamin C, vitamin E, β-carotene, and 
selenium in the serum of chronic smokers and in patients 
with COPD (Pelletier 1970; Chow et al 1986; Duthie et al 
1991; Antwerpen et al 1993; Bridges et al 1993; Mezzetti 
et al 1995; Tug et al 2004). Moreover, decreased vitamin 
E and vitamin C levels were reported in leukocytes and 
BAL fl uids from smokers (Barton and Roath 1976; Bridges 
et al 1990; Theron et al 1990). Ascorbate appears to be 
a particularly important antioxidant in the plasma (Pacht 
et al 1988). Cigarette smoke-induced lipid peroxidation 
of plasma in vitro is decreased by ascorbate (Cross 
et al 1994). Reduced levels of vitamin E and a marginal 
increase in vitamin C have been shown in the BAL fl uid 
of smokers, compared with non-smokers (Rahman and 
MacNee 1996b). Similarly, alveolar macrophages from 
smokers have both increased levels of vitamin C and 
augmented uptake of ascorbate, suggesting that these cells 
are trying to redress their antioxidant balance (Rahman and 
MacNee 1996b). 

Dietary antioxidant supplementation is one of the 
simplest approaches to boost antioxidant defense systems. 
Supplementation of vitamin C, vitamin E, and β-carotene 

has been attempted in cigarette smokers and patients with 

COPD (Cross et al 1993; Allard et al 1994; Rautalahti 

Table 1 Antioxidant therapeutic interventions in COPD

Antioxidant compounds

Thiol compounds: N-acetyl-L-cysteine, N-acystelyn, glutathione esters, thioredoxin, procysteine, erdosteine, N-isobutyrylcysteine
Inducers of glutathione biosynthesis
Antioxidant vitamins (vitamin A, E, C), β-carotene, CoQ10

Polyphenols (curcumin, resveratrol, quercetin, and green tea catechins)
Nitrone spin traps
Superoxide dismutase and glutathione peroxidase mimetics
Ebselen
Porphyrins



International Journal of COPD 2006:1(1)18

Rahman

Table 2  Clinical trials conducted for the effi cacy of antioxidants in smokers and in COPD

   Disease/
Trial  Antioxidant used Aim of study Condition Outcome Reference

BRONCUS NAC Effect of NAC on FEV1 COPD 30% reduction in COPD  Decramer et al 2001,
    hospitalization obtained  2005
    without change on decline in 
    FEV1 

Systematic  NAC (2 months of  Effect of NAC and  COPD Signifi cant reduction in  Poole and Black 2001, 
Cochrane  oral therapy) antibiotics on number of   days of disability (0.65 day  2003
review of 23   days of disability  per patient per month) 
randomized,     and 29% reduction in 
controlled trails     exacerbations. No difference 
    in lung function 

Systematic  NAC Use of validated score to  COPD 9 trials showed prevention of Stey et al 2000
Cochrane   evaluate the quality  exacerbation; 5 addressed
review of   of each study  improvement of symptoms 
randomized,     compared with 34.6% of
controlled     patients receiving placebo 
trials; 11 of 39 
retrieved trials       

Meta-analysis  NAC Assess possible  COPD 23% decrease in number of  Grandjean et al 2000
of published   prophylactic benefi t of   acute exacerbations
trials  prolonged treatment   

– NAC (600 mg once  Effect of NAC on H2O2 COPD No change in TBARS; reduced Kasielski and Nowak 
 daily for 12 months) and TBARS in exhaled   H2O2 levels  2001
  breath condensate      

– β-Carotene (20 mg/day)  Effect on symptoms  COPD No benefi t on symptoms Habib et al 1999
 and vitamin E  (chronic cough, phlegm, 
 (50 mg/day) or dyspnea)   

_ β-Carotene (20 mg  Effect on lipid peroxide  Smokers Reduced lipid peroxidation Allard et al 1994; 
 daily for 4 weeks) levels in exhaled breath  (pentane levels) in exhaled  Rautalahti et al 1997; 
    breath Steinberg and Chait  
     1998

The MORGEN  Diet rich in Effect on FEV1, chronic  COPD Positively associated with  Tabak et al 2001
study polyphenols and  cough, breathlessness,   decline in FEV1 and inversely
 biofl avonoids  and chronic phlegm  associated with chronic cough
 (catechin, fl avonol, and    and breathlessness, but not 
 fl avone) (58 mg/day)   chronic phlegm 

European  Diet rich in fruits,  Effect on 20-year COPD COPD 24% lower COPD mortality Walda et al 2002
countries  vegetables, and fi sh mortality  risk
(Finnish, Italian,  intake  
and Dutch 
cohorts)        

– Vitamin C (500 mg  Effect on lipid peroxide  Smokers No change in lung function Allard et al 1994
 daily for 4 weeks) levels in breath and plasma  No change in lipid 
    peroxidation (breath pentane 
    and plasma MDA levels) 

– Vitamin C (600 mg),  Effect on lipid peroxidation Smokers Reduced lipid peroxidation Aghdassi et al 1999; 
 vitamin E (400 IU),     Lykkesfeldt et al 2000
 β-carotene (30 mg)   

– Vitamin E (400 IU twice  Effect on breath ethane  Smokers No effect on breath ethane Habib et al 1999
 daily for 3 weeks) levels  levels 

Abbreviations: BRONCUS, Bronchitis Randomized on NAC Cost-Utility Study; MDA, malondialdehyde; NAC, N-acetyl-L-cysteine;  TBARS, thiobarbituric acid reactive 
substances.
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et al 1997; Steinberg and Chait 1998; Aghdassi et al 1999; 

Habib et al 1999; Lykkesfeldt et al 2000) (Table 2). In the 

general population there is a positive association between 

dietary intake of antioxidant vitamins and lung function. 

Epidemiological studies have demonstrated negative 

associations of dietary antioxidant intake with pulmonary 

function and with obstructive airway disease (Grievink 

et al 1998). Britton and co-workers (1995) showed a posi-

tive association between dietary intake of the antioxidant 

vitamin E and lung function in a population of 2633 subjects, 

supporting the hypothesis that this antioxidant may have a 

role in protecting against the development of COPD. Another 

study has suggested that antioxidant levels in the diet could 

be a possible explanation for differences in COPD mortal-

ity in different populations (Sargeant et al 2000). Dietary 

polyunsaturated fatty acids may also protect cigarette smok-

ers against the development of COPD (Shahar et al 1999). 

These studies support the concept that dietary antioxidant 

supplementation including polyphenols may be a possible 

therapy to prevent or inhibit oxidative stress and infl amma-

tory responses, which are key features in the development 

of COPD. 

Antioxidant vitamin supplementation reduces oxidant 

stress in smokers, measured as a decrease in pentane 

levels in breath as an indication of lipid peroxides in the 

airways (Euler et al 1996). Dietrich and colleagues (2002) 

have recently shown that vitamin C or an antioxidant 

mixture containing vitamin C, α-lipoic acid, and vitamin 

E decreases plasma F
2
-isoprostane levels in smokers with 

high body mass index, suggesting modulation of lung 

oxidative stress with these dietary supplements. This 

study suggested that cigarette smoking depletes a variety 

of multiple antioxidants needed to quench an array of free 

radicals present in cigarette smoke and inhibit infl amma-

tory response induced by cigarette smoking. However, 

robust clinical trials using dietary antioxidant vitamins and 

polyphenols are urgently needed to address the benefi cial 

effects of these antioxidants in COPD.

Directly increasing lung antioxidant 
capacity
The development and progress of COPD are associated with 

increased oxidative stress or decreased antioxidant resources 

(Boots et al 2003). The most direct way to redress the oxidant 

imbalance in COPD would be to increase the lung’s capacity 

to produce antioxidants. A variety of means by which to do 

this have been attempted with varying success. 

Lung thiols: glutathione and its biosynthesis
The thiol antioxidant glutathione (GSH) is concentrated in 
epithelial lining fl uid compared with plasma (Cantin et al 
1987; Pacht et al 1988) and has an important protective role 
in the airspaces and intracellularly in epithelial cells. Several 
studies have suggested that GSH homeostasis may play a 
central role in the maintenance of the integrity of the lung 
airspace epithelial barrier. Decreasing the levels of GSH in 
epithelial cells leads to loss of barrier function and increased 
permeability (Li et al 1996; Morrison et al 1999). Human 
studies have shown elevated levels of GSH in epithelial lin-
ing fl uid in chronic cigarette smokers compared with non-
smokers (Cantin et al 1987; Morrison et al 1999). However, 
this increase is not present immediately after acute cigarette 
smoking (Morrison et al 1999). The twofold increase in BAL 
fl uid GSH in chronic smokers may not be suffi cient to deal 
with the excessive oxidant burden during smoking, when 
acute depletion of GSH may occur (Harju et al 2002). Harju 
and colleagues (2002) found that the immunoreactivity of 
glutamate cysteine ligase (GCL), the rate-limiting enzyme 
in GSH synthesis, was decreased in the airways of smokers 
compared with non-smokers, suggesting that cigarette smoke 
predisposes lung cells to ongoing oxidant stress. Neurohr and 
colleagues (2003) recently showed that decreased GSH levels 
in BAL fl uid cells of chronic smokers were associated with a 
decreased expression of GCL light subunit without a change 
in GCL heavy subunit expression. Increasing the activity of 
GCL would be expected to increase cellular GSH levels. The 
induction of GCL by molecular means to increase cellular 
GSH levels or GCL gene therapy also holds great promise in 
protection against chronic infl ammation and oxidant-medi-
ated injury in COPD.

Direct increase of lung cellular levels of GSH would be 
a logical approach to enhance the antioxidant potential in 
the treatment of COPD. In fact, extracellular augmentation 
of GSH has been tried through intravenous administration 
of GSH, oral ingestion of GSH, and aerosol inhalation of 
nebulized GSH in an attempt to reduce infl ammation in 
various lung diseases (Rahman and MacNee 1999, 2000). 
However, all these routes of administration lead to undesir-
able effects, which suggests that direct GSH therapy may 

not be an appropriate way of increasing GSH levels in lung 

epithelial lining fl uid and cells in COPD. The bioavail-

ability of GSH, pH, and osmolality in the infl ammatory 

microenvironment, and resultant formation of toxic products 
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(GSSG and GSH-adducts) are further challenges for direct 

GSH administration. Alternative formulations may address 

bioavailability, such as liposomal delivery, but at present it 

seems that direct administration of GSH will not be success-

ful in treating COPD.

N-acetyl-L-cysteine (NAC)
NAC, a cysteine-donating reducing compound, acts as a 

cellular precursor of GSH and becomes deacetylated in the 

gut to cysteine following oral administration (Cotgreave 

1997). NAC may also reduce cystine to cysteine, which is 

an important mechanism for intracellular GSH elevation in 

vivo in lungs. It reduces disulfi de bonds (a property of a 

good reducing agent), but also has the potential to interact 

directly with oxidants. NAC is also used as a mucolytic 

agent, to reduce mucus viscosity and to improve mucocili-

ary clearance. A Cochrane systematic review evaluated 

the effects of treatment with mucolytic agents in patients 

with COPD. Mucolytic treatment was associated with a 

signifi cant reduction of 0.79 exacerbations per patient 

per year compared with placebo, a 29% decrease. How 

mucolytic agents work is unknown, although they may 

reduce exacerbations by altering mucus production, by 

breakdown of sulfhydryl groups, or through antibacterial 

or immunostimulatory effects (Poole and Black 2001, 

2003). Although small-scale trials failed to demonstrate 

any clear clinical benefi ts, a few meta-analyses have shown 

a small but signifi cant clinical benefi t in COPD (Grandjean 

et al 2000; Dekhuijzen 2004).

Pharmacological administration of NAC has been 

used, with varying success, in an attempt to enhance lung 

GSH in patients with COPD (Rasmusse and Glennow 

1988; Bridgemen et al 1994). Van Schooten et al (2002) 

have reported that in a randomized, double-blind, 

placebo-controlled phase II trial, a 6-month oral dose 

of 600 mg twice daily reduced various plasma and BAL 

fl uid oxidative biomarkers in smokers. Similarly, it has 

been shown that treatment with NAC 600 mg once daily 

for 12 months also reduced the concentration of H
2
O

2
 

in exhaled breath condensate compared with placebo in 

stable COPD patients (Kasielski and Nowak 2001). A more 

recent clinical trial also proves that oral administration 

of NAC 600 mg twice daily for 2 months rapidly reduces 

the oxidant burden in airways of stable COPD patients 

(De Benedetto et al 2005). This reduction in oxidative 

biomarkers results in clinical benefi t such as reduction in 

bronchial hypersecretion (Aylward et al 1980) in addition 

to a decline in FEV
1
 and in exacerbations (Stey et al 2000). 

Orally administered NAC has been shown to increase 

phagocytic activity of BAL macrophages from healthy 

smokers (Linden et al 1993); similar results were not seen 

in COPD patients, possibly owing to active concentrations 

of NAC not reaching the lung, as in vitro analysis of 

cells supports an induction of phagocytosis by NAC 

(Vecchiarelli et al 1994). It has also been reported recently 

that orally administered NAC increased the quadriceps 

endurance time of severe COPD patients (Koechlin et al 

2004), thus suggesting that NAC administration may 

have benefi cial effects on the systemic oxidative stress 

associated with COPD. However, a multicenter study 

using NAC delivered by metered-dose inhalers in patients 

with chronic cough failed to show a positive effect on 

wellbeing, sensation of dyspnea, cough, or lung function 

(Dueholm et al 1992). 

Although there is a body of evidence that the 

administration of NAC provides benefi t for COPD patients, 

it is not clear whether this represents a maintenance 

therapy (Decramer et al 2001). A phase III multicenter 

trial, Bronchitis Randomized on NAC Cost-Utility Study 

(BRONCUS), has recently been completed, with the aim 

of addressing this question and determining whether the 

effectiveness of NAC as an “antioxidant” results in an 

alteration in the rate of decline in FEV
1
, exacerbation 

rate, and quality of life in patients with moderate to severe 

COPD and hence supporting NAC administration as a 

maintenance therapy for COPD (Gerrits et al 2003) (Table 

2). The results of the phase III BRONCUS trial showed no 

effect on decline in FEV
1 
but a reduction in overinfl ation 

in patients with severe COPD and exacerbation rate in 

patients not treated with inhaled glucocorticoids (Decramer 

et al 2005). 

N-acystelyn (NAL)
NAL, a lysine salt of NAC, is a mucolytic and antioxidant 

(reducing) thiol compound. The advantage of NAL over 

NAC is that it has a neutral pH in solution, whereas NAC is 

acidic. NAL can be aerosolized into the lung without caus-

ing signifi cant side effects (Gillissen et al 1997). Gillissen 

and co-workers compared the effect of NAL and NAC 

and found that both drugs enhanced intracellular GSH in 

alveolar epithelial cells and inhibited hydrogen peroxide 

and O
2

•– released from human blood-derived polymorpho-

nuclear leukocytes from smokers with COPD. NAL also 

inhibited ROS generation induced by serum-opsonized 



International Journal of COPD 2006:1(1) 21

Antioxidant therapies in COPD

zymosan by human polymorphonuclear neutrophils. This 

inhibitory response was comparable to the effects of NAC 

(Gillissen et al 1997). Recently, Antonicelli and colleagues 

(2002) have shown that NAL inhibited oxidant-mediated 

interleukin (IL)-8 release in alveolar epithelial A549 cells, 

suggesting an antiinfl ammatory effect of NAL. Therefore, 

NAL may represent an interesting alternative approach to 

augment the antioxidant screen, thereby inhibiting infl am-

matory responses in the lungs, and it has the advantage 

over other antioxidant agents in that it may be administered 

by inhalation. A clinical trial using NAL in the treatment 

of COPD is in progress.

N-isobutyrylcysteine (NIC)
Because NAC becomes hydrolyzed in biological systems, 

the measured bioavailability of the drug is low. Thus, it 

was speculated that a drug might be synthesized that had 

greater bioavailability than NAC and could be used as a 

more effective treatment for chronic bronchitis. NIC is a 

NAC-like thiol compound that does not undergo effec-

tive fi rst-pass hydrolysis and hence has higher oral bio-

availability than NAC (Ekberg-Jansson et al 1999). The 

oral bioavailability can be as high as 80%, depending on 

food intake. However, when evaluated as a therapy for 

exacerbations of chronic bronchitis, NIC performed no 

better than placebo and not as well as NAC (Gillissen et al 

1997). Furthermore, a study of NIC also failed to reduce 

exacerbation rates in patients with COPD (Ekberg-Jansson 

et al 1999). 

Erdosteine 
Erdosteine is a new thiol compound that acts as an antioxidant, 

but in addition has mucoactive properties and reduces bacte-

rial adhesiveness. In the “Equalife” randomized, placebo-

controlled clinical study, erdosteine was administered orally 

300 mg twice daily for 8 months (Moretti et al 2004). Patients 

receiving erdosteine had signifi cantly fewer exacerbations 

and spent fewer days in hospital than the placebo group. 

Moreover, patients receiving erdosteine showed no reduction 

in lung function over this period and showed a signifi cant 

improvement in health-related quality of life. It is not clear 

whether this clinical benefi t is due to antioxidant effects of er-

dosteine. The mucolytic effect of erdosteine is perhaps due to 

the presence of a sulfhydryl group. It may be possible that er-

dosteine reduces bacterial colonization through a direct effect

on adhesion. 

Procysteine
Procysteine (L-2-oxothiazolidine-4-carboxylate) is a 

cysteine-donating compound that increases the cysteine 

levels of the cells and has greater bioavailability than 

NAC. This thiol compound is well tolerated and has been 

shown to increase mitochondrial levels of GSH in alveolar 

type II cells (Guidot and Brown 2000). Glutathione esters, 

particularly GSH monoethyl esters, can increase the GSH 

levels of the cells by cleavage of ester bond (an ethyl 

group esterifi ed to glycine). GSH esters have been shown 

to increase GSH levels in the lungs of rats; however, this 

compound can be cytotoxic, and variation in the uptake 

levels of GSH has been shown in various cellular models 

(Butterworth et al 1993). 

Antioxidant enzyme mimetics and spin traps
Increased activity of antioxidant enzymes (SOD and su-

peroxide catalase) in alveolar macrophages from young 

smokers has been reported (McCusker and Hoidal 1990). 

However, Kondo and co-workers (1994) found that the in-

creased superoxide generation by alveolar macrophages in 

elderly smokers was associated with decreased antioxidant 

enzyme activity when compared with that of non-smokers. 

The activities of CuZn superoxide dismutase (CuZnSOD), 

glutathione-S-transferase, and glutathione peroxidase are 

all decreased in alveolar macrophages from elderly smokers 

(Gilks et al 1998). 

The activities of SOD and glutathione peroxidase have 

been shown to be higher in the lungs of rats exposed to 

cigarette smoke (York et al 1976). McCusker and Hoidal 

(1990) have also demonstrated enhanced antioxidant enzyme 

activity in alveolar macrophages from hamsters after cigarette 

smoke exposure, which resulted in reduced mortality when 

the animals were subsequently exposed to >95% oxygen. 

They speculated that alveolar macrophages undergo an adap-

tive response to chronic oxidant exposure that ameliorates 

potential damage to lung cells from further oxidant stress. 

The mechanisms for the induction of antioxidant enzymes 

in erythrocytes (Toth et al 1986), alveolar macrophages 

(McCusker and Hoidal 1990), and lungs (York et al 1976) 

by cigarette smoke exposure are currently unknown. 

Spin traps such as α-phenyl-N-tert-butyl nitrone react 

directly with reactive oxygen and reactive nitrogen species 

at the site of infl ammation (Chabrier et al 1999). Smith 

and colleagues (2002) have shown that intratracheal in-

stillation of a catalytic antioxidant, manganese(III) meso-

tetrakis (N,N’-diethyl-1,3-imidazolium-2-yl) porphyrin 
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(AEOL 10150 and AEOL 10113), inhibited the cigarette 

smoke-induced infl ammatory response (decreased number 

of neutrophils and macrophages) in rats after 2 days or 

8 weeks (6 hours/day, 3 days/week) exposure. These 

compounds also mimic extracellular SOD and superoxide 

catalase, scavenging both lipid peroxides and peroxyni-

trite, and have been shown to be effective in a number of 

animal models of lung disease. 

SOD mimetic M40419 has been shown to block the 

development of emphysema and signifi cantly reduce lung 

markers of oxidative stress in an animal model (Tuder et al 

2003). Animal studies have shown that recombinant SOD 

treatment can prevent the neutrophil infl ux to the airspaces 

and IL-8 release induced by cigarette smoking through a 

mechanism involving down-regulation of NF-κB (Nishikawa 

et al 1999). This further substantiates the idea that compounds 

with antioxidant enzyme properties may be able to act as 

novel antiinfl ammatory drugs by regulating the molecular 

events in COPD.

Glutathione peroxidase mimic
Small molecules with enzymatic activity similar to glutath-

ione peroxidase, such as the seleno-organic compound eb-

selen, have been developed. Ebselen increases the effi ciency 

of GSH as an antioxidant and can thus be used as therapy 

against oxidative stress and infl ammation. Recent studies 

have shown that ebselen inhibits airway infl ammation (neu-

trophil recruitment and chemokine expression) in response 

to lipopolysaccharide in various animal models (Haddad 

et al 2002; Zhang et al 2002). It would be interesting to 

see whether similar results can be obtained with ebselen in 

response to smoking in vivo.

Redox sensor molecules
There is a range of small redox molecules such as β-strand 

mimetic templates MOL-294 and PNRI-299 that have been 

shown to inhibit NF-κB and AP-1-mediated transcription 

and block allergic airway infl ammation in a mouse asthma 

model (Henderson et al 2002). The mechanism of inhibition 

is based on the reversible inhibition of redox sensor proteins 

(similar to redox effector factor-1). These redox compounds 

are novel and have been shown to reduce airway eosinophil 

infi ltration, mucus hypersecretion, edema, and cytokine 

release in a mouse asthma model. However, the activity of 

these compounds in cigarette smoke-induced oxidative stress 

and proinfl ammatory mediator release assays in vitro or in 

vivo has not been reported.

Inhibition of superoxide production 
from infl ammatory neutrophils: 
phosphodiesterase 4 inhibitor
Various mechanisms inhibit superoxide production in vitro 

through increasing intracellular levels of cyclic adenosine 

monophosphate (cAMP); the most advanced of these being 

the use of phosphodiesterase 4 (PDE4) inhibitors. These 

inhibitors act by increasing intracellular concentrations of 

cAMP, which has a broad range of antiinfl ammatory effects 

on various key effector cells involved in asthma and COPD 

(Lipworth 2005). Raising cAMP in neutrophils blocks the 

assembly of NADPH oxidase and hence inhibits superoxide 

production. These compounds also potently inhibit expres-

sion of a variety of cytokines, such as tumor necrosis factor 

(TNF)-α and monocyte infl ammatory protein (MIP)-1β, and 

therefore may have a broad antiinfl ammatory profi le. Clinical 

benefi t of PDE4 inhibitors has been demonstrated in COPD 

(Compton et al 1999; Soto and Hanania 2005), although 

these compounds are dose limited by emetic and cardiac ef-

fects (Sturton and Fitzgerald 2002). This is perhaps due to 

inhibition of a wrong isoform of PDE4 isoenzyme (PDE4D), 

instead of PDE4B (antiinfl ammatory). Currently the PDE4 

inhibitor daxos and rofl umilast (Altana) is in phase III trials 

and may represent the most likely new mechanism to enter 

the market for the treatment of COPD in the short term. 

Modulation of redox-sensitive 
transcription factors and 
infl ammatory pathways
A number of transcription factors involved in the regula-
tion of a variety of infl ammatory genes, such as NF-κB 
and AP-1, are activated by oxidative stress (Rahman 2002). 
NF-κB exists as a heterodimeric complex usually of p50 
and p65/RelA subunits. Di Stefano and colleagues (2002) 
demonstrated increased expression of the p65 protein of 
NF-κB in bronchial epithelium of smokers and patients 
with COPD. The increased expression of p65 in epithelial 
cells was correlated with the degree of airfl ow limitation in 
patients with COPD. Similarly, Caramori and co-workers 
(2003) have shown that the p65 subunit of NF-κB was 
increased in sputum macrophages but not in sputum 
neutrophils during exacerbations of COPD, suggesting 
cell-specifi c activation of this factor. The activation of 
NF-κB in monocytes/macrophages can then trigger the 
release of proinfl ammatory mediators in lung epithelial 
fl uid, which would then amplify the infl ammatory cascade 
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by activation of epithelial cells as well as recruitment 

of neutrophils to the airways. Activation of NF-κB by 

oxidative stress is inhibited by co-incubation with NAC in 

vitro, providing evidence for activation of this transcrip-

tion factor in these patients being due to oxidative stress 

(Schreck et al 1992). Small molecule inhibition of this 

pathway is currently of great interest as a potential means 

to down-regulate the infl ammation characteristic of COPD. 

I-κB kinase-2 (IKK)-mediated phosphorylation of I-κB is 

required for its subsequent ubiquitination and degradation; 

therefore small molecule inhibitors of this enzyme would 

be expected to block the nuclear translocation of NF-κB. 

A variety of compounds are in preclinical development for 

this target from GlaxoSmithKline, AstraZeneca, Altana, 

and Tularik, but as yet no compound suitable for clinical 

studies has been reported in the literature. Alternative 

means to inhibit NF-κB activation, such as inhibitors 

of ubiquitin ligase (Wertz et al 2004), peptide inhibitors 

of NEMO (a protein that forms a complex with IKK 2) 

(Choi et al 2003), PPARα agonists, and direct inhibition 

of NF-κB transport through nuclear pores, are being in-

vestigated in preclinical studies. 

A recent study reported on the potential therapeutic effect 

of the small molecule antagonist siRNA against NF-κB subu-

nit p65 in airway epithelial cell lines (McIntyre et al 2003). In 

this in vitro study, cells treated with TNFα showed reduced 

NF-κB p65 expression and concomitant IL-6 and CXCL8 

expression. An antisense antagonist for NF-κB p65 may be 

benefi cial in inhibiting the NF-κB-mediated infl ammatory 

genes in patients with COPD.

NF-κB-targeted therapies, inhibitors of IKK, may prove to 

be useful in antiinfl ammatory therapies (Table 3). The potential 

disadvantage of using inhibitors of cell signaling molecules is 

that mitogen-activating protein kinase (MAPK), NF-κB, and 

Table 3 Direct and indirect antioxidant drugs under development for the treatment of COPD

Drug name Drug type Company Indication Stage of development

Arifl o-S207499 PDE4 inhibitor SmithKline Beecham COPD Phase III

Rofl umilast PDE4 inhibitor Altana COPD and asthma Phase III in EuropePhase II/III in US

D-4418 PDE4 inhibitor CellTech in UK in   COPD and asthma Phase II
  collaboration with Merck 

SCH351591 PDE4 inhibitor Schering-Plough in   COPD and asthma Phase I
  collaboration with CellTech 
  of UK 

Daxos PDE4 inhibitor Altana COPD Phase III

IC485 PDE4 inhibitor Icos Corp, WA, USA COPD and rheumatoid Preclinical 
   arthritis 

BAY019-8004 (a  PDE4 inhibitor Bayer COPD and asthma Phase I
benzofuran 
derivative) 

ATRA (all trans  Derivative of vitamin A Roche Emphysema Phase II; approved as Vesanoid for 
retinoic acid)    acute promyelocytic leukemia

Mucolytic N-acetyl-L-cysteine and its  Zambon COPD Phase III
 derivatives, carbocysteine    No effects on lung function
 and N-isobutyrylcysteine,   but frequency of exacerbations  
    reduced

NAL  N-acystelyn SMB Pharma, Belgium COPD Phase I 
(CAS 89344-48-9) 

BO-653 Lipid peroxidation inhibitor Chugai Pharma, Japan COPD Preclinical

BXT-51072 Glutathione peroxidase  Oxis, USA COPD Phase I
 mimetic 

ZD4407 5-lipoxygenase inhibitor AstraZeneca COPD Preclinical

NF-κB inhibitors IPL-576092 (an analog of  Aventis Pharma COPD Phase II 
 contignasterol, a natural 
 compound) 

NF-κB inhibitors BMS345541 and  BristolMyersSquibb  COPD Clinical trials awaited
 SPC600839 and Celgene/Serono 
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IKK are general signal transduction proteins involved in multiple 

processes and therefore inhibitors may have unacceptable side 

effects. In addition, inhibition of these molecules may also 

impair defense mechanisms against infections.  

Oxidative stress and steroid effi cacy in 
COPD
It has been suggested that oxidative stress may have a role 

in the poor effi cacy of corticosteroids in COPD. Ito and co-

workers (2001) showed a role for histone acetylation and 

deacetylation in IL-1β-induced TNFα release in alveolar 

macrophages derived from cigarette smokers. They also 

suggested that oxidants may play an important role in the 

modulation of histone deacetylase (HDAC) and infl ammatory 

cytokine gene transcription. Furthermore, we have shown that 
both cigarette smoke/H

2
O

2
 and TNFα caused an increase in 

histone acetylation (HAT activity) leading to IL-8 expression 
in monocytes and alveolar epithelial cells both in vitro and 
in vivo in rat lungs (Rahman, Gilmour, et al 2002; Marwick 
et al 2004; Moodie et al 2004).

Glucocorticoid suppression of infl ammatory genes 
requires recruitment of HDAC2 to the transcription 

activation complex by the glucocorticoid receptor (Ito 
et al 2001; Rahman et al 2004). This results in deacetyla-
tion of histones and a decrease in infl ammatory gene 
transcription. A reduced level of HDAC2 was associated 
with increased proinfl ammatory response and reduced 
responsiveness to glucocorticoids in alveolar macro-
phages obtained from smokers (Ito et al 2001; Rahman, 
Gilmour, et al 2002; Marwick et al 2004; Moodie et al 
2004; Rahman et al 2004). Culpitt and co-workers have 
shown that cigarette smoke solution stimulated release 
of IL-8 and granulocyte-macrophage colony-stimulating 
factor, which was not inhibited by dexamethasone, in 
alveolar macrophages obtained from patients with COPD 
compared with those of smokers (Culpitt, Rogers, Shah, 
et al 2003). They suggested that the lack of effi cacy of 
corticosteroids in COPD might be due to steroid insensi-
tivity of macrophages in the respiratory tract. Thus, the 
cigarette smoke/oxidant-mediated reduction in HDAC2 
levels in alveolar epithelial cells and macrophages will 
not only increase infl ammatory gene expression but also 
cause a decrease in glucocorticoid function in patients 

with COPD (Figure 2). HDAC activity has also been 

measured in bronchial biopsies and alveolar macrophages 
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Figure 2 Model showing the possible mechanism of histone acetylation by oxidative stress and its repression by corticosteroids (GCs), leading to inhibition of gene 
transcription. Mitogen-activating protein kinase (MAPK) signaling pathways may be activated by oxidative stress, leading to histone acetylation. Direct interaction between 
co-activators (HAT), histone deacetylase (HDAC), and the glucocorticoid receptor (GR) may result in repression of the expression of proinfl ammatory genes. HDAC 
forms a bridge with HAT to inhibit gene transcription. However, when the HDAC is inhibited by oxidants or the NF-κB subunit p65 is acetylated, steroids may not be able 
to recruit HDACs into the transcriptional complex to inhibit proinfl ammatory gene expression.
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from COPD patients and smoking controls, demonstrating 

a signifi cant decrease in HDAC activity, the magnitude of 

which increased with severity of disease (Ito et al 2005). 

Moreover, protein expression of HDAC2 was decreased 

in a similar manner in COPD patients.

Consequently, a potential means by which to treat 

COPD would be to increase HDAC2 expression and activ-

ity such that steroids regain their antiinfl ammatory activity. 

We have shown that co-incubation of cells with NAC and 

H
2
O

2
 protects HDAC2 from down-regulation and reduc-

tion of specifi c activity (Moodie et al 2004). In addition, 

it has been reported that theophylline has a similar effect 

in lung macrophage cells, increasing HDAC2 expression 

and re-sensitizing the cells to steroids (Borja et al 2004). 

Alternative means of up-regulating HDAC2 activity would 

be of great interest for potential combination therapies of 

the future.

Polyphenols
Dietary polyphenols have antioxidant and antiinfl amma-

tory properties that may explain their benefi cial effects 

(Arts and Hollman 2005). Curcumin is an active principle 

of the perennial herb Curcuma longa (commonly known 

as turmeric). Turmeric has a long traditional use in the 

Orient for many ailments, particularly as an antiinfl am-

matory agent. Recent studies have reported that curcumin 

inhibits NF-κB expression/activation, IL-8 release, cyclo-

oxygenase (COX)-2, heme oxygenase-1, cytokines, and 

neutrophil recruitment in the lungs (Shishodia et al 2003; 

Biswas et al 2005). Curcumin has multiple properties to 

protect against cigarette smoke-mediated oxidative stress 

(Shishodia et al 2003). It acts as oxygen radical and hy-

droxyl radical scavenger, increases antioxidant glutathione 

levels by induction of GCL, and acts as an antiinfl amma-

tory agent through inhibition of NF-κB and IL-8 release in 

lung cells. Resveratrol, a fl avonoid found in red wine, is an 

effective inhibitor of infl ammatory cytokine release from 

macrophages in COPD patients (Culpitt, Rogers, Fenwick, 

et al 2003). This antiinfl ammatory property of resveratrol 

may be due to its ability to induce sirtuins and HDAC ac-

tivity (Howitz et al 2003). A recent in vivo study has shown 

that resveratrol inhibits infl ammatory cytokine expression 

in response to lipopolysaccharide in rat lungs (Birrell et 

al 2005). The molecular mechanisms of antiinfl ammatory 

properties of dietary polyphenols against cigarette smoke/

oxidative stress have not yet been studied. This compound 

may induce phase II detoxifying genes by Nrf-2-

dependent mechanisms. 

Recent studies from our laboratory show that these 

dietary polyphenols restore glucocorticoid functions in 

response to oxidative stress imposed by cigarette smoke 

by up-regulation of HDAC activity in the monocyte/

macrophage (U937) and MonoMac6 cell lines (Rahman 

et al 2005). This was associated with restoration of 

HDAC1, HDAC2, and HDAC3 levels, suggesting that di-

etary polyphenol-mediated inhibition of proinfl ammatory 

cytokines increases formation of HDAC-p65 complex with 

glucocorticoid receptor, hence rendering NF-κB ineffec-

tive. The other possible mechanism of polyphenol-medi-

ated inhibition of infl ammatory response is by quenching 

oxidants and aldehydes and inhibiting histone deacetyl-

transferase activity. Catechins present in green tea (epigal-

locatechin-3-gallate) in addition to theophylline may be 

effective in cigarette smoke-mediated oxidative stress and 

infl ammatory response (Schwartz et al 2005). However, 

this compound has never been tested in in vitro or in vivo 

smoking models. Overall, these dietary polyphenols and 

fl avonols may not only act as antioxidant/antiinfl ammatory 

agents, but also possibly increase the effi cacy of gluco-

corticoids in COPD. 

Biofl avonoids possess both antioxidant and antiinfl am-

matory properties and hence may infl uence chronic infl am-

matory diseases such as COPD. Tabak and colleagues (2001) 

studied the intake of catechins, fl avonols, and fl avones in rela-

tion to pulmonary function and COPD symptoms in 13 651 

adults from three Dutch cities. Dietary intake of catechin (eg, 

green tea polyphenols, epigallocatechin gallate), fl avonol 

(eg, quercetin and kaempferol), and fl avone (eg, apigenin 

and luteolin) was positively associated with FEV
1
 and in-

versely associated with chronic cough and breathlessness, 

but not chronic phlegm. More importantly, single-component 

(such as catechin) intake was independently associated with 

FEV
1
 and all three COPD symptoms, whereas fl avonol and 

fl avone intake was independently associated with chronic 

cough only. The importance of this study was further sub-

stantiated by a study by Walda and colleagues (2002), who 

showed the benefi cial protective effect of fruit containing 

polyphenols and vitamin E against COPD symptoms in 

20-year COPD mortality from three European countries, in 

Finnish, Italian, and Dutch cohorts. These important studies 

certainly encourage further multinational studies to demon-

strate the benefi cial effects of a high intake of nutraceuticals 

(polyphenols/bioflavonoids) against COPD symptoms.
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Conclusions
There is now considerable evidence for the increased 

generation of ROS in COPD, which may be important in 

the pathogenesis of this condition. There are several small 

molecule compounds in clinical trials that target oxidant 

signaling or quench oxidants derived from cigarette smoke. 

Antioxidant and/or antiinfl ammatory agents such as thiol 

molecules, spin traps, dietary polyphenols, antioxidant 

mimetics, and inhibitors of oxidative stress-induced signaling 

pathways present potential means by which to treat this 

element of COPD. Antioxidant compounds may also enhance 

the efficacy of glucocorticoids by quenching oxidants 

and aldehydes, increasing histone deacetylase activity in 

COPD patients. Dietary polyphenols, such as resveratrol 

and curcumin, inhibit cigarette smoke/oxidant-induced NF-

κB activation, histone acetylation, and proinfl ammatory 

cytokine release and restore glucocorticoid functions via a 

mechanism involving up-regulation of HDAC activity. Thus, 

dietary polyphenols regulate infl ammatory response at the 

molecular level, and possibly this is a way forward to restore 

glucocorticoid effi cacy in the treatment of smoking-induced 

chronic infl ammatory diseases. An effective wide-spectrum 

antioxidant therapy that has good bioavailability and potency 

is urgently needed to control the localized oxidative and 

infl ammatory processes that occur in the pathogenesis of 

COPD. Although thiol antioxidant treatments have shown 

promising effects in targeting ROS and oxidant-mediated 

cellular alterations, in vivo cigarette smoke studies and human 

clinical trials of other small molecule antioxidants with dual 

activities (antioxidant and antiinfl ammatory) are urgently 

needed to validate these compounds as clinical therapies.
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