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ABSTRACT

Protein design aims to identify new protein
sequences of desirable structure and biological
function. Most current de novo protein design
methods rely on physics-based force fields to
search for low free-energy states following
Anfinsen’s thermodynamic hypothesis. A major
obstacle of such approaches is the inaccuracy of
the force field design, which cannot accurately
describe the atomic interactions or distinguish
correct folds. We developed a new web server,
EvoDesign, to design optimal protein sequences of
given scaffolds along with multiple sequence and
structure-based features to assess the foldability
and goodness of the designs. EvoDesign uses an
evolution-profile–based Monte Carlo search with
the profiles constructed from homologous structure
families in the Protein Data Bank. A set of local struc-
ture features, including secondary structure, torsion
angle and solvation, are predicted by single-
sequence neural-network training and used to
smooth the sequence motif and accommodate the
physicochemical packing. The EvoDesign algorithm
has been extensively tested in large-scale protein
design experiments, which demonstrate enhanced
foldability and structural stability of designed
sequences compared with the physics-based
designing methods. The EvoDesign server is freely
available at http://zhanglab.ccmb.med.umich.edu/
EvoDesign.

INTRODUCTION

The number of possible amino acid sequences is huge
(�20L with L being the sequence length). But only a few
of them have folded into real proteins in nature that have
a unique folding state with physiological activities. The
driving force of such ‘nature protein design’ includes
both physicochemical interaction and evolutionary
pressure (1,2). Computer-based rational protein design

aims to engineer novel sequences of stable folding states
and in particular those with desirable physiological func-
tionality. Technically, it can be considered as a reversal of
protein folding that critically challenges our understand-
ing of the fundamental principles of protein folding and
stability (3–5). Protein design has also significant biomed-
ical implications on its own. Successful protein designs
and engineering have been shown to generate novel cata-
lytic activities (6,7) and result in new therapeutic develop-
ments (8,9).
Most of the computer-based protein design efforts are

based on Anfinsen’s thermodynamic hypothesis (10),
which aim to identify new sequences of lowest free
energy on various designed force fields. One obstacle in
using physics-based approaches comes from the inaccur-
acy of the force field potentials for structural and thermo-
dynamic optimization of the protein stability. Motivated
by the superiority of template-based approaches in protein
structure prediction, which construct structural models
using evolutionarily related protein as template (11,12),
we have developed an evolutionary profile-based method
for de novo protein design (13), where sequence space
search is constrained by the amino acid sequence profiles
as computed from the homologous structure families. The
physicochemical features of the designed sequence are
smoothed by neural-network predictions of local struc-
tural features, including secondary structure, backbone
torsion angle and solvation. The evolutionary profile-
guided simulation search has the advantage to allow for
designing and engineering proteins of larger size and more
complex topology compared with that on physical force
fields.
Here, we describe EvoDesign, an evolutionary profile-

based web server for de novo protein design, which is
developed based on our recent protein design method
(13). The server offers several options for users to select
different guiding force fields, structural thresholds for
profile construction and residue conservations. The execu-
tion time of the server is fast and scales in hours because
of the quick convergence of the simulation search under
the profile restraints. EvoDesign is established as an auto-
mated, and yet reliable, on-line facility most useful for
protein engineering and drug discovery studies.
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MATERIALS AND METHODS

Figure 1 depicts a flow chart of the EvoDesign server,
which is divided into three stages: (i) pre-processing: gen-
eration of scaffold-specific evolutionary profile restraints;
(ii) simulation: Monte Carlo search on the sequence space;
and (iii) clustering and selection: sequence clustering for
design selection.

Pre-processing

Starting from a scaffold protein structure, EvoDesign first
collects a set of proteins of similar folds from the PDB
library by the structural alignment program TM-align
(14). By default, a high-structural similarity (TM-score
>0.7) is used, which will be gradually reduced till the
number of structural homologies is >10 or the TM-score
threshold is equal to 0.5. Based on the preference in struc-
tural variations, users can control the diversity of the pro-
tein by specifying different lower-limit of fold cut-offs.
An evolutionary profile is then constructed from the
multiple sequence alignments that are constructed based
on TM-align alignments. This profile will be used to guide
the conformational search of amino acid sequence space in
the next step of Monte Carlo simulation, where the phy-
sicochemical packing of side-chain and backbone atoms
is accommodated by neural-network–based solvation,
torsion angle and secondary structure predictions (13).

Force field design
The EvoDesign force field is a linear combination of four
terms: (i) log-odds match between decoy sequence and
the structure profile of the target scaffold; (ii) secondary
structure (SS) match between decoy and target scaffold;
(iii) backbone torsion angle (TA) match between decoy
and target; (iv) match of solvent accessibility (SA) of
residues between decoy and target. If the target structure
from user input is full-atomic, the SS, TA and SA on
target are pre-assigned by DSSP program (15). If the
scaffold is C-a only, an atomic model including
backbone and side-chain heavy atoms is quickly con-
structed using the statistical parameters collected from
the PDB (16), which is then fed into DSSP to assign the
structural features.

The SS, TA and SA value of decoy sequences is predicted
from neural-network learning, which was mostly trained
on the PSI-BLAST position-specific scoring matrix
(PSSM) (17). As new decoys are generated at each step
of movement, we trained the features separately on
single-sequences, which is much faster than the PSSM pre-
dictors (�5min versus <1 s) but with comparable predic-
tion accuracy.

As an option, the EvoDesign server also allows users
to select a physics-based potential, which will be lin-
early combined with the evolution-based energy terms.
The FoldX (version 3.0b5) is exploited to count for
the physics-based energy terms, including hydrogen-
bonding, electrostatics, van der Waals, steric, solvation
and entropy interactions (18). As FoldX requires
3D structure for energy calculation, the backbone struc-
ture of decoys is first obtained by projecting the target
scaffold to the decoy sequence using Needleman–
Wunsch dynamic programming based on the evolution-
ary scoring terms. The side-chain conformation is
then calculated by SCWRL V4.0 (19) before FoldX
calculation.

Monte Carlo simulation

The sequence space is searched by Metropolis Monte
Carlo simulation. Following the idea of negative design
where the bias is introduced against misfolded states
(4,20), our Monte Carlo simulation is guided by the
Z-score of the decoy energy

EMC ¼ �
Eevolution � Eevolutionh i

�Eevolution
+w

EFoldX � EFoldXh i

�EFoldX
ð1Þ

where Eh i and dE are average and standard deviation
of energy scores calculated from baseline scores of 1000
random protein sequences. w=�2.44 or 0 when users
select using or without using the physics-based force
fields, respectively.

The simulation temperature is selected as 0.03. Ten
simulation trajectories, each starting from different
random sequences and running 30 000 sweeps, are con-
ducted for a given target. If the job is submitted with
evolution-based force field, the simulations are more
than five times faster (but only slightly less accurate, see
later in the text) than that using both evolution- and
physics-based force fields.

Figure 1. The overview of the EvoDesign server. The process is divided
into three steps. Pre-processing and clustering take place in a single pro-
cessor, whereas simulations are completed in parallel on 10 processors.
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Sequence clustering and selection

In all, 290 000 decoy sequences from 10 different tra-
jectories are pooled from the simulation, excluding the
first 1000 sequences in each trajectory that are close to
random. The sequence of the lowest free energy is
selected by the SPICKER clustering algorithm (21) with
the distance matrix between sequence decoys defined by
BLOSUM62 substitution scores. Following the procedure
by Bazzoli et al. (22), the distance threshold is initialized
to zero, and then allowed to expand until the 40% of
the sequences are included in the primary cluster. Top
10 seed sequences corresponding to the 10 largest
clusters are output as the design sequences.

The method has been tested on 87 non-redundant
proteins covering different fold classes (13). The data
analysis showed that the evolution-based design signifi-
cantly improves the foldability and ligand-binding
affinity of the designed sequences compared with the trad-
itional physics-based methods based on the computational
validation of the designs (13,22). Without using homolo-
gous proteins, the designed sequences can be folded by
the I-TASSER structural assembly simulation (23) with
an average root-mean-square deviation (RMSD) 2.1 Å to
the target. We have also used the method to redesign two
cancer-related proteins, the X-linked inhibitor of apop-
tosis protein (XIAP) and the mouse double minute 2
homolog (MDM2), with the 3D structure and the
peptide-binding affinity experimentally validated through
circular dichroism, nuclear magnetic resonance spectros-
copy and isothermal calorimetry experiments (D. Shultis,
P. Mitra and Y. Zhang, submitted for publication).

SERVER SETTING: INPUT, OUTPUT AND
USER INTERFACE

Input

The only input to the EvoDesign server is a scaffold struc-
ture of interest in PDB format. The minimal atoms needed
in the file are C-a atoms, although including full-atom
details may increase the accuracy of the structural
feature assignments. User can customize their design by
specifying: (i) fold similarity cut-offs (TM-score); (ii) in-
clusion of physics-based energy terms; and (iii) freezing
specific residues by residue name or by residue number.
By default, EvoDesign starts with a high TM-score thresh-
old (TM-score >0.7) to construct profiles and exploits the
evolution-based force field for free sequence design
without any restrictions on residues.

The user has the option to control the fold-level
homology for the construction of the structural profile.
A higher homology (TM-score >0.7) insures a more
accurate match with the scaffold (usually with a higher
sequence identity as well), whereas a lower-homology
threshold is an indication of incorporation of larger struc-
ture/sequence variability in the design. Generally, proteins
with TM-score <0.5 to the scaffold do not retain the
target structural fold well enough and are, therefore,
excluded from profile construction in the default simula-
tion. The evolution-based energy function alone is suffi-
cient to design reasonable protein sequences based on our

benchmark results. Moreover, it is faster than the combin-
ation of evolution and physics-based energy functions.
Therefore, the default energy function for the EvoDesign
server is set as evolution-based only. Option is also
provided for users to exclude certain amino acids from
the design at certain position, and/or to specify a set of
residues (by residue number), which should be kept the
same as in the input structure. This is particularly useful
if the user has previous knowledge on the required
function of the protein and does not want to (or prefer
to) replace conserved residues, such as those that involved
in ligand binding. The server needs a scaffold of at least
30 residues to achieve a meaningful fold.

Output

The EvoDesign server provides users the design results
and all assessment parameters of the target, with an illus-
tration shown in Figure 2, which is taken from a snapshot
of the output webpage sent to the users after the job is
complete. A typical example of output is also available at
http://zhanglab.ccmb.med.umich.edu/EvoDesign/example/
index.php.
Region A and region B in Figure 2 appears in the

output page as soon as the job is submitted. The
original template scaffold structure is linked to the PDB
format structure that was uploaded for design. If the
uploaded structure is C-a only model, this will be linked
to the full-atom structure file that is used for the protein
design on successful completion of the job. The force field
used for the design is also shown in this region. The image
of the target scaffold structure is displayed through Jmol
software [Jmol: an open-source Java viewer for chemical
structures in 3D (http://www.jmol.org/)]. To view and
operate on the image, the user needs to update the
browser with current version of Java.
The summary of the design results is tabulated in

region C that appears on the output page as soon as
the design simulation is completed. EvoDesign outputs
a maximum of 10 design sequences as listed in a
decreasing order of the cluster size (or an increasing
order of free energy), although the first-rank sequence is
always suggested. The first column in the result table in-
dicates the EvoDesign rank, followed by the EvoDesign
score, which is the total confidence score of the designed
sequences. The lower the EvoDesign score is, the higher
the confidence is. In general, a design with the EvoDesign
score <1.0 indicates a sufficiently high-confidence design,
which corresponds to the model predictions with an aver-
age TM-score >0.7 and RMSD <2.0 Å in our benchmark
test. The percentage of the sequence identity between the
designed and the scaffold sequences is denoted at the
third column.
Columns 4–7 present the estimated quality of the design

sequence in term of normalized relative error (NRE) based
on neural-network predictions. Here, the normalized
relative error is defined as NRE=(EDS�ETS)/ETS,
where EDS is the error of the neural-network predictions
relative to the scaffold structure on the design sequence
and ETS is the error of the predictions based on the
sequence of the target scaffold. The secondary structure,
solvent accessibility and backbone torsion angles are
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Figure 2. The screenshot of the result page of EvoDesign. The user choices and input structure are shown in region A and region B, which appears
as soon as the job is submitted. The summary of EvoDesign will appear in region C after successful completion of the job.
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assigned using DSSP program for the scaffold structure
(15). The predictions of secondary structure for target and
design sequences are generated by PSSPred (24), an
accurate SS predictor (with an average Q3 accur-
acy=0.84 in 2000 test proteins) that combines seven
neural-network predictors from different PSI-BLAST
profiles and parameters. The torsion angles and solvent
accessibility predictions of the sequences are generated
by ANGLOR (25) and Chen and Zhou (26), respectively.
Therefore, a negative NRE value indicates the design
sequence has less prediction error relative to the scaffold
structure compared with the scaffold sequence. Further
details on the explanations can be found at the help
page of the EvoDegin server (http://zhanglab.ccmb.med.
umich.edu/EvoDesign/help.html).

To evaluate the foldability of the design sequences,
columns 8–10 in the result table provide links to the struc-
ture modeling of the design sequences by I-TASSER
and its structural deviation from the input scaffold.
User can download the model structure in the PDB
format from the links provided at the eighth column of
the table. Last two columns present the TM-score and
RMSD of the I-TASSER models on the designed
sequence from the input scaffold. It should be noted
that the I-TASSER structure prediction takes a few
more hours on top of the EvoDesign. Thus, the output
page first displays the design sequences along with all the
sequence features (columns 1–7) as soon as the EvoDesign
portion is completed. The I-TASSER results will be
appended to the table when they become available.

The EvoDesign rank (first) column of the table links
with a text file containing information of the design se-
quences. In this text file, the first row shows the ligand-
binding positions (defined as residues within an 8 Å sphere
radius of the hetero atoms) if the target scaffold structure
contains hetero atoms. This facilitates a quick identifica-
tion of the residue conservation at the hetero atom-
binding sites. The second row is the DSSP secondary
structure assignment with C/H/E indicating coil, helix
and extended stand, respectively. The third and fifth row
shows the scaffold and design sequences, respectively,
where the identical residues between them are marked by
‘j’ at the penultimate row.

The bottom row of the result table is hyperlinked with
the summary text file of sequence identity (SI), secondary
structure prediction/assignment (SS), solvent accessibility
(SA) and torsion angles (j/c) of all 10 design sequences.
User can download all of the information as a single
zipped file (Data.zip: last row, first column).

Below the result table, a section ‘Detail on Design’
is added to present the detail information of each
designed sequence, including the 3D models, sequence
identity, secondary structure and other sequence-related
features.

ACCURACY VERSUS EFFICIENCY

The overall computing time of the EvoDesign server
depends on the length of the scaffold and the force field
selected for simulation. To test the impact of the force field
selections on the accuracy and efficiency of the EvoDesign

server, we arbitrarily selected seven non-homologous
proteins with varied length and different SCOP class
(27). Sequences of the selected scaffolds are designed
using the EvoDesign server without and with physics-
based force field.
As shown in the columns 4–7 in Table 1, the Monte

Carlo simulation and pre-processing steps take the
majority of the running time of EvoDesign, where the
computing time of the sequence clustering stage, which
uses a highly optimized SPICKER algorithm (21), is
almost negligible. Overall, the EvoDesign server with
physics-based force field takes 5.2-fold longer time than
that without the physics-based force field. A detailed in-
vestigation on the simulations indicates that the increase
in time is mainly because of the computationally intensive
SCWRL program (19), which takes up to several minutes
to construct side-chain conformations on a single
sequence.
As a reward, the inclusion of the physics-based

force field slightly decreases the NRE of SS, SA and
TA and increases the sequence identity between design
and target sequences (see columns 8–12 of Table 1).
When we apply the I-TASSER program to fold the
design sequences (where homologous templates with a
sequence identity >30% to the target are excluded), all
the design sequences can be folded to a model of correct
fold, with the average RMSD=0.9 and 1.6, for the se-
quences with and without combining the physics-based
force field, respectively, which also indicates an im-
provement by FoldX. These data demonstrate that the
evolution-based force field is sufficient to complete
medium- to high-resolution sequence design (with
RMSD varying from 0.4 to 3.3 Å) on its own. The inclu-
sion of physics-based force field can help slightly improve
the accuracy of local structural packing but significantly
increases the server response time. Nevertheless, we rec-
ommend the inclusion of physics-based force field if user
is interested to do more detailed study on the design
sequence.
As further validations of the foldability, we submit the

designed sequences to two independent programs Rosetta
(28) and SPARKS-X (29), which represent two typical
approaches of ab initio fold and fold recognitions. As
expected, as Rosetta does not use global templates, it is
only able to fold small proteins. If we count the proteins
with a length <132 residues, Rosetta can generate correct
fold with a TM-score >0.5 for all four targets when con-
sidering the best in top 10 predictions (Supplementary
Table S1 in Supplementary Material). The average
RMSDs are 3.9 and 4.1 Å for the EvoDesign sequences
designed with and without using physics-based potentials,
respectively. If counting the first model, however, the
average RMSDs for the four proteins increase to 5.4
and 5.7 Å, respectively (Table 1), which are generally con-
sistent with the performance of the ab initio structure
modeling on the natural proteins (28).
Starting from the EvoDesign sequences, SPARKS-X

can identify correct template with a RMSD <5 Å or
TM-score >0.5 as the first model for all but one (PDB
ID: 2PTHA) proteins (Table 1 and Supplementary Table
S1). If we consider the best in top 10 templates, all the
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sequences have a correct template identified by SPARKS-
X with TM-score >0.5 (Supplementary Table S1). The
sequences designed with physics-based force field have a
slightly lower RMSD than that without the force field (0.9
versus 1.5 Å for the best in the top 10, or 2.3 versus 4.9 Å
for the first model, with the average alignment coverage
>90% in all cases).

The front end of the EvoDesign server is designed in
PHP (version 5.3.3) and HTML, whereas the back end
is implemented using C, C++, Perl and FORTRAN.
The low-level features of C and C++ help to optimize
the code wherever possible. The back-end computations
are conducted in a Linux cluster of 300 HP DL1000h octa-
core nodes.

CONCLUSION

We developed a new EvoDesign web server for de novo
protein design, which identifies new protein sequences
based on an evolutionary profile-guided Monte Carlo
simulation search. The physicochemical packing of local
structures is accommodated by single-chain–based neural-
network training on secondary structure, torsion angle
and solvent accessibility. An optional physics-based
force field can be added to further improve the structural
packing characteristics.

EvoDesign takes the structural coordinates of the
scaffold protein as the only input and outputs the
designed sequences along with the detailed quality
analyses. The quality estimations of design sequences are
particularly important, as it provides users with a compari-
son study with the target scaffold in terms of sequence
identity, normalized relative error on secondary structure,
solvent accessibility and backbone torsional angles, along
with the conservation of hetero atoms-binding sites
analyses. Meanwhile, a combined EvoDesign score is
provided to assess the overall confidence of the designed
sequences. The server also generates structural models
from the state-of-the-art protein structure prediction algo-
rithms, where the TM-score and RMSD of the predicted
model to the input scaffold will provide additional assess-
ment of the design confidence (Figure 2).

To facilitate specific requirements, the server provides
options for users to select different force field combin-
ations, structural fold cut-offs and conserved residue
regions of simulation searches. As EvoDesign needs to
construct the evolutionary profiles from similar protein
folds in the PDB, it is critical for EvoDesign to have a
complete and updated template library. Currently, a rep-
resentative PDB structural library is maintained
and updated weekly for EvoDesign at http://zhanglab.
ccmb.med.umich.edu/library. Meanwhile, a message
board is set-up at http://zhanglab.ccmb.med.umich.
edu/bbs/?q=forum/2 to allow users to report feedback
and discuss problems with authors.

It should be mentioned that many methods in the lit-
erature were developed to design proteins with either
improved functions or completely novel folds. One motiv-
ation for the EvoDesign algorithm is to provide a
reliable platform that can design any proteins with
improved fold stability using the restraints fromT
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evolutionary profiles of similar fold families. With this
platform, the functional characteristics, including the
enhanced and alternative ligand bindings for instance,
can be further introduced. In a recent achievement
(P. Mitra, D. Shultis and Y. Zhang, in preparation),
we have demonstrated that the introduction of specific
interface potentials can drastically improve the bind-
ing affinity of natural or drug ligands on the designed
proteins. We plan to integrate the ligand-binding
potentials, together with other biologically function-
oriented developments, to the EvoDesign server in near
future.

Last but not the least, as the EvoDesign relies on the
profile collections from solved structures in the PDB, it
can raise the issue that the method may hamper the pos-
sibility in designing proteins of novel folds (5). With the
rapid increase of the solved protein structures, however,
the PDB library has approached to its completeness. As
demonstrated by the recent studies (30–32), all single-
domain protein structures, including the artificial
polyalanine-chain models made by the computer-based
assembly requiring only hydrogen-bonding and compact-
ness, can find analogous proteins of similar fold in the
PDB using the state of the art structural alignment algo-
rithms. In this sense, there are essentially no (or very rare)
new folds outside the PDB library; the current method
should be in principle used to design sequences for any
protein scaffolds considering the increasing completeness
of the PDB library.
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