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The advancement of neuroscience, perhaps one of the most information rich disciplines
of all the life sciences, requires basic frameworks for organizing the vast amounts of
data generated by the research community to promote novel insights and integrated
understanding. Since Cajal, the neuron remains a fundamental unit of the nervous system,
yet even with the explosion of information technology, we still have few comprehensive
or systematic strategies for aggregating cell-level knowledge. Progress toward this goal is
hampered by the multiplicity of names for cells and by lack of a consensus on the criteria
for defining neuron types. However, through umbrella projects like the Neuroscience
Information Framework (NIF) and the International Neuroinformatics Coordinating Facility
(INCF), we have the opportunity to propose and implement an informatics infrastructure
for establishing common tools and approaches to describe neurons through a standard
terminology for nerve cells and a database (a Neuron Registry) where these descriptions
can be deposited and compared. This article provides an overview of the problem and
outlines a solution approach utilizing ontological characterizations. Based on illustrative
implementation examples, we also discuss the need for consensus criteria to be adopted
by the research community, and considerations on future developments. A scalable
repository of neuron types will provide researchers with a resource that materially
contributes to the advancement of neuroscience.
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INTRODUCTION
To understand the brain, one must first understand its com-
ponent parts and their relationships to one another. A key
component of the brain, from an information processing per-
spective, is the neuron. There are estimated to be 1011 neurons
(Azevedo et al., 2009; Herculano-Houzel, 2009) in the human
brain with 1015 connections (Sporns, 2011). It is uncontrover-
sial that all neurons cannot simply be considered the same; at
the same time, it is impractical and most likely of little value to
consider all 1011 unique. Traditionally, neurons have been clas-
sified on the basis of one or more morphological, physiological,
molecular, and/or developmental properties. Yet, there are rela-
tively few clearly identified cell classes; rather the literature is rife
with partially overlapping or irreconcilable classification schemes
published for a particular brain region and usually based on a
single technique. Trying to integrate these different classification
schemes is bewildering at best and impossible at worst. Yet, inter-
relating different experimental findings requires common points
of reference (Ref). Since the nineteenth century, the cell has pro-
vided such point of Ref for most tissues of the body. We believe
it is time for the neuroscience community to come together and
jointly devise a strategy for dealing with the cellular complex-
ity of the nervous system. Specifically, we call for a common
description framework to describe, identify, and name neuron

types. In this perspective, we discuss current national and inter-
national efforts to begin to address the complexity of neuronal
types within the Neuroscience Information Framework (NIF) and
the International Neuroinformatics Coordinating Facility (INCF
(http://incf.org) Neuron Registry initiative.

A way to deal with the cellular complexity of the nervous sys-
tem is to group neurons into types based on their properties. The
term property in this context means descriptive characterizations
of neurons that include, but are not limited to, morphological,
molecular, and physiological aspects. This approach is comple-
mentary to the emergent attempts to provide a classification
purely based on molecular expression patterns and developmen-
tal transcription pathways (Bernard et al., 2009). A property-
based characterization has clear empirical value, as it reflects
the natural language used by scientists to record and communi-
cate their observations. At the same time, the granularity of the
description must be chosen carefully. Using too large a number
of properties to maximize the resolution of neuron types might
produce so many types as to hinder the understanding of basic
mechanisms and common principles. Conversely, using too small
a number of properties, while still possibly capturing substan-
tive information, could potentially yield such general categories
as to miss essential functional and computational consequences
of neuronal diversity.
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Describing neuron types by properties that refer to neuronal
component parts (e.g., soma, axons, dendrites) and their interac-
tions (e.g., connectivity) could enable an ideal balance between
these extreme scenarios (Larson et al., 2007; Larson and Martone,
2009). Such an approach allows for the development of a powerful
structured vocabulary for neuronal description. In addition, this
style of vocabulary can be extended dynamically during property
entry. In such a way, the level of detail of the property descriptors
can be tailored to the most effective level of abstraction for any
given context.

Ontologies are formal representations of domain knowl-
edge leveraging normalized logical relationships (Larson and
Martone, 2009). In recent years, ontological characterization
has emerged as a promising mechanism to describe biological
systems (http://www.obofoundry.org, http://bioportal.bioonto-
logy.org, http://www.ebi.ac.uk/ontology-lookup). As an exam-
ple of a relevant ontology instantiation, we refer the reader
to the Subcellular Anatomy Ontology (SAO; http://bioportal.
bioontology.org/ontologies/1068). A particularly suitable entry
mechanism for the descriptive semantics of neuronal properties
can be based on the Resource Description Framework (RDF)
approach (Decker et al., 2000). By relating descriptors (i.e., onto-
logical terms), concepts can be formed much in the same way that
sentences are constructed in natural language. Graphs of onto-
logical relationships (Udrea et al., 2005) can be depicted, thereby
illustratively defining the semantics of a property language. In
this article we propose the use of subject-predicate-object triples
(Horrocks et al., 2003) to form the basis of the ontological neu-
ronal property descriptors. Founding a property language on
these triples provides flexibility while maintaining specificity. This
type of neuronal characterization has the advantage that it can
accommodate the wide variety of informational variants associ-
ated with neuronal properties while facilitating unambiguous and
computer readable scribing of those variants.

After briefly introducing the specific problem of representing
and organizing the knowledge of neurons and their relations, we
describe a methodology, some of the proposed properties to ini-
tiate an iterative refinement, and the infrastructure being devel-
oped to enable and encourage community interaction. Given
the topic of this article, a note on terminology is appropriate.
Anatomists tend to use “feature” for a morphological character-
istic, whereas physiologists use “property” for most phenomena
they record. We will use the terms “feature” and “property”
interchangeably to signify descriptors of neuronal phenotypes.

THE PROBLEM
The outward forms of nerve cells were first seen clearly using
the silver impregnation method introduced by Camillo Golgi
in the late nineteenth century. The Golgi method showed that,
in any given brain region, cells are divided into several distinct
types, which are characteristic for that region. A fundamental
problem from the start was the haphazard naming of these cell
types and their component parts. In the cerebellum, for exam-
ple, some types were eponymous (Purkinje cell, named after its
discoverer, Jan Purkinje; Golgi cell, named after Golgi). Some
neurons had appellations based on size (granule cell, so-called
because it appeared as small as a grain under the microscope).

Other cells were named according to the form of their axonal end-
ings (mossy fiber, because of its mossy-looking terminal; climbing
fiber, because it appeared to climb over the Purkinje cell dendritic
tree), on the basis of their dendritic trees (stellate cell, because of
its star-shaped dendritic tree emanating in all directions). The cell
type names in other regions were equally idiosyncratic.

By the early twentieth century, many types of nerve cells had
been described by the classical histologists, which are summarized
in Ramon y Cajal’s great work on the histology of the nervous sys-
tem (Cajal, 1911). His classification scheme was primarily based
on the output connectivity, but this logic was not reflected in the
terminology. Nevertheless, the names stuck, and people simply
proceeded with their studies using the terms they preferred. The
same lack of rules for a systematic terminology continues through
the present day to hinder the inventorying of cells.

From a modern biological perspective, it is likely that neu-
ronal classification will ultimately be based on, or at least relate
to, developmental ontogeny (Wonders and Anderson, 2006).
However, knowledge of lineage specification in mammals is still
sparse and too many details are missing to attempt a systematic
effort in that direction at this time. In addition, many properties
of mature neurons will be dependent upon their local environ-
ment in the adult brain rather than their embryonic origin. A
far more comprehensive identification of distinct neuron types in
the literature depends on the phenotypic characterization of their
properties.

What properties should be used to define neuron types? The
most desirable categorization would be maximally informative of
how each neuron type relates to others in the context of neuronal
processing. For example, simply stating that our brain contains
billions of neurons does little to advance our understanding of
the brain. It is of higher value to describe the cellular composi-
tion of regions of the brain, such as the diencephalon, cerebellum,
and cerebrum. More information is gleaned by further refining
the parcels. For instance, the diencephalon contains the tha-
lamus, hypothalamus, and epithalamus. The chosen properties
should also reflect the myriad ways through which neurosci-
entists classify neurons in their studies. Most introductory text
books provide an overview of these classification systems: by mor-
phology, e.g., pyramidal or bipolar; by functional role (excitatory
vs. inhibitory); by neurotransmitter(s) released; by physiological
characteristics (fast-spiking, adapting, etc.,) and by the range of
their connectivity (i.e., local circuit or projection neuron).

Combining these dimensions yields a combinatorial subdi-
vision, with the danger of becoming lost in the detail while
missing the context of overall function. Some descriptors, how-
ever, might seem too detailed to be useful only at first glance.
Yet these same descriptors could be revealing when viewed in
the proper perspective. For example, at the molecular level, DNA
sequences could highlight the developmental tendencies of con-
nectivity (Toni et al., 2007), which might lead to a prediction of
all of the connections in the brain or a part of it, called a connec-
tome (Lichtman et al., 2008) based on genetics. It is thus expected
for approaches with a primary interest in distinct scales, such as
subcellular neuroanatomy (Larson et al., 2007) or network con-
nectivity (Bota and Swanson, 2008), and unique species, such as
the fruit fly (Tweedie et al., 2009), to focus on different levels and
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types of detail. Given these different levels of focus, integration
across scales is facilitated by use of a common framework.

AN APPROACH TO A SOLUTION
A historically useful approach to characterization of types is that
of ontology (Lorhard, 1606). Ontological characterizations are
flexible yet structured, not too restrictive, and explicit enough
to build logical inferences. Defining a neuronal ontology implies
the formulation of universal descriptions from instances of neu-
ron types and their associated properties. For example, published
experimental evidence describes neurons with pyramidal-shaped
somata in a single layer of the hippocampal CA1 region, with
afferents from CA3 and efferents ending in the entorhinal cortex.
These instances can then be generalized into universals defining
a pyramidal-type neuron in region CA1 with like properties. The
construction of a neuronal ontology could naturally leverage a
relational approach. In this approach, relations such as “has part,”
(in this example, soma), “has shape” (pyramidal), and “is located
in” (principal layer of CA1) might constitute the properties that
define neuron type universals along with “receives contact from”
(afferents from CA3), and “makes contact to” (targets in the
entorhinal cortex).

As illustrated in the above example, properties may thus be
described as consisting of three fundamental aspects, namely a
part descriptor, the relation itself, and a value target. In onto-
logical terms, these are subject-predicate-object triples (Horrocks
et al., 2003). For example, a neuron part, the soma, has a relation,
shape, with a value of pyramidal. These facts are ontologically
described as “part” = “soma,” “relation” = “has_shape,” and
“value” = “pyramidal.” Figure 1 shows a graphical depiction of
these types of ontological relationships, which define the prop-
erties of the neuronal classification. These properties could be
extended to include neuronal location, axo-dendritic structure,
brain subregions, local circuit connectivity, projection connectiv-
ity, neurotransmitters, other chemical markers, and membrane
properties.

The advantage of a semantically consistent and formal rep-
resentation of neuronal properties is the ability to automatically
generate additional classifications of neurons through any single
or multiple set of properties. For example, from the above rela-
tionships, we could automatically generate a set of all neurons
with soma located in the principal layer of CA1 or that receive
afferents from CA3. These are reasonable questions to ask, but
currently this information is buried in the literature or scattered
in databases requiring considerable human effort to assemble.

To formalize this approach to neuronal categorization, an
effort is being sponsored by the INCF (http://incf.org) under the
Program on Ontologies of Neural Structures (PONS; http://incf.
org/core/programs/pons). The aim is to define a standard set of
neuronal properties, and the associated ontologies required to
define these properties for mammalian neurons. These standards
will then be used to create a Neuron Registry that will serve as
a knowledge base of neuronal types and the means to add def-
initions of new neurons based on their properties (Figure 1).
Domain experts have knowledge acquired through years of prac-
tical experience, much of which is unique and often unpublished
(Gardner et al., 2008). This knowledge must be gleaned from

FIGURE 1 | Ontological Graphical Depiction (courtesy of the INCF

Neuron Registry task force) and Neuron Registry Establishment →
and illustration of the many-to-many relationship between neurons

and their properties. The Neuron Registry will constitute a resource to
browse and search neuron types based on their properties, and properties
based on the neuron types in which they are found.

participating scientists and encoded into a searchable electronic
form, using ontological techniques to formulate a structured,
formalized description method.

The Neuron Registry is building upon other prior and foun-
dational efforts to employ a property-based approach to neu-
ronal classification. Examples include BAMS (http://brancusi.
usc.edu/bkms), SenseLab (http://senselab.med.yale.edu), SAO
(http://bioportal.bioontology.org/ontologies/1068), and the NIF
(http://www.neuinfo.org). Specifically, SAO is a formal ontology
for the subcellular anatomy of the nervous system, covering mul-
tiple scales from neuron to its ultrastructural components, as well
as the interactions between these components. The NIF stan-
dard ontology is an integration of different ontologies, including
SAO. In SenseLab, the description of neurons is based on a
predefined set of features, such as a schematic compartmen-
tal representation of the morphology, synaptic receptors, and
membrane properties. The Neuron Registry aims to facilitate the
expert definition of neuron types based on machine-readable
descriptors of their properties. Thus, the scope of the Neuron
Registry, as such, is aimed at providing semantic information
about neurons in a community platform. The NIF project has
taken steps toward providing the basic relations and entities for
establishing a common neuronal knowledge base through the
establishment of the NeuroLex (http://neurolex.org), a wiki facil-
itating the establishment of a lexicon of neuroscience concepts
(Figure 2). The NeuroLex provides a semi-structured represen-
tation of neuroscience concepts necessary to construct state-
ments about neurons and their properties. It assigns each of
these concepts a unique identifier in the form of a numeric
ID, to which multiple synonyms can be referenced. Thus, the
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FIGURE 2 | NeuroLex—Neuroscience Lexicon.

NeuroLex provides a platform for knitting together the multiplic-
ity of terms currently used to describe the nervous system. The
NeuroLex also assigns each concept a preferred label. Although
formal ontologies do not depend on the nomenclature choice,
the systematic adoption of an agreed-upon terminology will
benefit neuroscientists and automated agents (e.g., text proces-
sors) alike. Thus, a crucial contribution of the NeuroLex can
be the establishment of a comprehensive controlled vocabulary
for neuroscience. In particular, the NeuroLex and the Neuron
Registry have created a consistent scheme for naming neuron
types, which is described in section “Naming Conversion” below.
The NeuroLex also selected several key properties that are useful
for the classification of neuron types (e.g., their neurotrans-
mitter), leading to the ability to infer broad classes such as
“GABAergic neurons.”

The NeuroLex definition of major “canonical” neuronal types,
described based on a predetermined set of properties, is thus
complementary to the goal of the Neuron Registry, which leaves
the choice of defining properties up to the neuroscience expert.
Such strategy provides a platform for describing any neuron
that might be encountered during an experimental investiga-
tion, as is further expanded in sections “Implementation and
a Representative Use Case Application” and “Guidelines for
Describing a Neuronal Taxonomy based on Formal Ontologies”
below. The Neuron Registry also more easily accommodates
organism-specific characterizations of individual neuron types.
At the same time, a synergistic collaboration is also in place
(Figure 3): the Neuron Registry will define neurons using terms
contained in the NeuroLex; and new terms defined in the Neuron
Registry will be deposited into the NeuroLex (initially manu-
ally, but eventually automatically) so as to ensure continuous
maintenance of a comprehensive repository of the entire neu-
roscience lexicon. Interoperability among the Neuron Registry,
the NeuroLex, and other related neuroinformatics resources may
be facilitated by recently developed tools such as Harmony
(Smith et al., 2009), which provides interactive thresholding of
schema correlation parameters, giving a researcher insight into

prospective element matches (Figure 4). It is also planned to pro-
vide a SPARQL endpoint and RESTful web services for direct
queries and data pulls from the Neuron Registry.

IMPLEMENTATION AND A REPRESENTATIVE USE
CASE APPLICATION
An information repository such as the Neuron Registry must
be designed to house neuron properties, ontological depictions,
type definitions, along with Refs, comments, and general addi-
tional related information. The design parameters of this database
must include the facilitation of information importation and
extraction, which are essential for information sharing and col-
laboration. Reports of data relations pertinent to answering the
questions of investigators must be easily generated and quickly
rendered. The database schema must also be flexible and adapt-
able, since the Neuron Registry is in its infancy and will evolve
over time.

The RDF data model, with its subject-predicate-object triple
form of representation (http://en.wikipedia.org/wiki/Resource_
Description_Framework), is considered to be conceptually simi-
lar to the classic Entity-Relationship approach to data modeling
(Chen, 1976). An extension to this classic modeling approach,
the Extended Entity Relationship (EER) model, was subse-
quently proposed (Thalheim, 2007). An existing software tool
called MySQL Workbench (http://wb.mysql.com) was leveraged
to diagram the data models underlying the Neuron Registry as
an Extended Entity-Relationship Diagram (EERD). An EERD
depicts relations between objects in a database design (Figure 5).
The key aspect of this design is to emphasize a highly indexed
structure, which enables fast queries of nearly any combination
of entity relationships. Objects are shown as labeled boxes con-
taining the list of corresponding elements. Relations between the
objects are shown with lines connecting the objects.

In this design, the blue labeled boxes designate the primary
informational objects such as category (Cat), property (Prop),
and type. These primary objects are then related through rela-
tionship objects (Rel) such as CatPropRel and TypePropRel. Each
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FIGURE 3 | Neuron Registry NIF Interface—This is a concept diagram depicting a planned capability not yet realized at the time of this writing.

FIGURE 4 | Schema Mapping using Harmony—Interoperability

among neuroinformatic resources is aided through

synchronization and sharing of data. Schema matching across
disparate informatic repositories is critical to this sharing. Harmony

assists the implementer in mapping data types properly so as to
preserve integrity of meaning. Both automated (e.g., pattern
recognition) and manual (e.g., thresholding) techniques are leveraged
in this tool.

record entered into the database is also tagged with a unique
identity (id) along with the date/time stamp of entry. This allows
for various manipulations such as cross-referencing by row id,
multi-level indexing, sorting by date, and archival by date/time
stamp, just to name a few. Being able to capture Refs and to cor-
relate them across entries into the registry is also important. To
facilitate this, a Ref object along with a related author (Auth)
object is included as well in the database design. All other objects
within the database, including the relationships themselves,

can be related to the Ref object through the above-described
cross-referencing mechanism (i.e., the relationship objects). This
allows for Ref tagging of all information entered.

With a schema design in hand, the problem of populating
the database becomes evident. If the task force members pro-
vide their information in freeform, translation into a usable
structured electronic form is then dependent upon knowledge
engineers. To avoid this dual-bottleneck workflow pipeline, the
Neuron Registry has adopted a different approach that arms the
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FIGURE 5 | Neuron Registry Extended Entity-Relationship Diagram.

task force with an interactive, focused entry portal (Figure 6;
http://incfnrci.appspot.com/). Such a web-based curator interface
eases information encoding and directly creates a framework
to organize neuronal property descriptors and type definitions.
In particular, a neuron type is defined by a set of proper-
ties, each consisting of ontological characterizations that include
“part,” “relation,” and “value.” Other information fields house
Ref and general notes along with the date/time that the cura-
tor entered the record. A folder view assists in the navigation
of the repository and provides hierarchical insight into the reg-
istry content. Dropdown lists of terms help guide the curator by
facilitating the adoption of structured vocabularies (Figure 6). To
enter additional information, such as a new part value, a simple
“other” option can be selected, which invokes an intuitive entry

form. Thus, task force members can use the existing ontological
descriptors or adapt and enhance the ontology to incrementally
evolve the descriptive framework.

Using this approach, freeform descriptions of neuron types
as typically reported in the scientific literature can be effi-
ciently converted into a triple form of that same neuron type.
A real-world example used during the early development of
this conceptual framework is constituted by the olfactory bulb
mitral cell. The freeform characterization provided by an olfac-
tory neuroscientist was naturally organized into three major
neuronal components: Soma, Dendrite, and Axon, which were
logically mapped into corresponding “parts.” The translation
from a freeform description to triples ensures computer read-
ability of this same information (Figure 7). The Neuron Registry
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FIGURE 6 | Neuron Registry Curator Interface—List and Edit views (http://incfnrci.appspot.com/).

FIGURE 7 | Mapping of a freeform neuronal description of the defining properties of an Olfactory bulb (main) mitral cell into a part-relation-value

ontological description.

Curator Interface (http://incfnrci.appspot.com) facilitates direct
entry in this form so as to avoid the need of a conversion
altogether.

Usage examples of the machine-readable information being
entered into this Neuron Registry include searches of neurons
based on properties (e.g., what neurons have axons located in a
given region?), finding similarities and differences between two

specific cell types (i.e., common and distinguishing properties),
and checking to determine if a neuron with a given set of proper-
ties has already been characterized or might constitute a new type.
Having described the rationale for the Neuron Registry imple-
mentation and a sample of representative use cases, we now turn
attention to the guiding principles for associating neuron types
with their defining properties.

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 15 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hamilton et al. Neurons and their relationships

GUIDELINES FOR DESCRIBING A NEURONAL
TAXONOMY BASED ON FORMAL ONTOLOGIES
To maximize utility and consistency, the Neuron Registry task
force has established a set of operating principles that guide con-
tributor entries. Following the logic described above, each neuron
type in the Neuron Registry is defined by a collection of prop-
erties, each expressed with a relation and a value referring to a
specific neuron part. For example, one of the properties defining
dentate gyrus granule cells is that their dendrites are in the molec-
ular layer of the dentate gyrus. This is expressed in the Neuron
Registry with the relation “located in,” the value “molecular layer,”
and the assignment to the part “dendrites.” To build the Neuron
Registry within the consistent semantic framework provided by
the NIF project, each value comes from existing NeuroLex cate-
gories. When such categories are not available, they are added to
the NeuroLex. By using common building blocks, the relation-
ships among the entities specified in the Neuron Registry are by
nature consistent with the entities utilized by the NeuroLex. If
contradictory statements are made, these are more easily revealed
because the id of entities referenced has been asserted. Perhaps
of greater importance, because the Neuron Registry entries Ref
their parts to anatomical structures and molecular entities within
the Neurolex, the neuron descriptions are immediately interop-
erable with any other information artifact built from these same
entities.

The defining properties are all necessary conditions for a neu-
ron to be considered of a given type. This means that if a neuron
is known or shown not to have one of these necessary properties,
then it is a different type altogether. Taken together, the collec-
tion of properties, which defines a neuron type, also constitutes
a set of sufficient conditions for a neuron to be of that type.
This means that if a neuron has all of those properties, then it
must be of that type. The adoption of “necessary and sufficient”
properties is opposed to a “comprehensive description” of neu-
ron types. The Neuron Registry aims at a minimal description of
neuron types, in the sense of only including definitional informa-
tion, rather than being generically descriptive. As such, there is no
restriction on the range of neural property descriptors as long as
the “necessary and sufficient” criterion is met.

As an example, having a relatively large soma located in a single
cell body layer of the olfactory bulb, as well as one or more radial
(“primary”) dendrites extending across the external plexiform
layer to connect to one or more olfactory glomeruli, character-
izes mitral cells of most vertebrate species. The number of radial
dendrites varies in different species, from one in many mammals
to two in turtles and up to 18 in some birds. These are, however,
all considered to be mitral cells by virtue of their relatively large
cell bodies in a single layer and smooth radial dendrite(s) con-
necting to the glomeruli. This means that if a neuron does not
have these properties, it would not be considered a mitral cell.
Likewise, if a neuron with these properties is found, then it is def-
initely a mitral cell. In contrast, one could argue that cell shape,
although descriptive, is not truly defining of cell id. However,
most, but not all, mitral cells have a cell body with a “mitral”
shape, As another example, it might be tempting to state that a
hippocampal neuron with a pyramidal-shaped soma located in
the pyramidal layer must be a pyramidal neuron. However, this

would in many cases be an incorrect assignment, as hippocampal
basket cells are known whose somata are pyramidally shaped and
lie in the pyramidal-cell layer.

At the same time, minimal descriptions must take into account
that different experimenters, reports, and findings refer to dif-
ferent aspects of neurons. In the above described example, an
olfactory bulb neuron whose soma is in the mitral cell body
layer and has a single radial trunk across the external plexiform
layer can only be a mitral cell. A researcher, however, might
lack morphological observations on the neurites, and yet pos-
sess information on the connectivity (e.g., through the use of
viral tracers). Indeed, mitral cells can be defined as neurons with
somata in the mitral cell body layer and which make dendroden-
dritic synapses with granule cell spines; or else as neurons with
somata in the mitral cell body layer and which send axons into the
lateral olfactory tract to make synapses on dendrites in the olfac-
tory cortex. Here is where other crucial aspects of information
come into play, once they are expressed through relations such
as “receives contact from” and “makes contact to” in the Neuron
Registry.

Other complementary minimal descriptions can be considered
based on pharmacological, developmental or physiological crite-
ria (PING, 2008). The following examples each constitute viable
definitions of mitral cells: neurons glutamatergic at their axonal
or dendritic synapses, with somata in the mitral cell body layer;
neurons not renewed by neurogenesis through the rostral migra-
tory stream, with somata in the mitral cell body layer; neurons
with input resistances of up to 100 megohms, with somata in the
mitral cell body layer. In general, it is not required to show that
a neuron has all of the properties defining a given type, in order
to conclude that it is of that type. Usually, only a subset of the
defining properties is observed in a given lab, time period, and
research project. However, stating that a neuron belongs to a given
type assumes that all of the defining properties would be verified
if they were measured.

The Neuron Registry cannot list all of the known properties
of a given type, nor is it expected that every neuron type entry
in the Registry will have an exhaustive or even extensive list of
properties. However, each neuron type entry should include all
of its minimal defining properties. An illustrative example of this
approach is provided by a proposal to define the “typical pyrami-
dal neurons” in the mammalian neocortex based on eight specific
features (Nieuwenhuys, 1994): (1) dendritic spines; (2) a radial
apical dendrite; (3) terminating in the most superficial layer and;
(4) distinct from basal dendrites; (5) descending axon to subcor-
tical white matter; (6) intracortical axonal collaterals establishing;
(7) asymmetric synapses with round vesicles using; (8) excitatory
neurotransmitter glutamate and/or aspartate. Any cell with all of
these features is a “typical pyramidal neuron.” However, several
“atypical or aberrant pyramidal neurons” also exist, sharing most
but not all features with their typical counterparts, such as aspiny
pyramids and inverted pyramids (Nieuwenhuys, 1994). Because
they lack at least one of the necessary defining properties, these
other cell types constitute separate classes.

Last but not least, every assignment of a defining property to
a neuron type must be accompanied by at least one citation of
a peer-reviewed publication. Multiple citations may be necessary

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 15 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hamilton et al. Neurons and their relationships

to properly attribute the source of information about particular
neuronal properties. The choice of citation(s) may follow vari-
ous criteria, such as historical credit to the original work or the
first usage of the term, the high impact or wide availability of the
source, and the perceived scholarly value of the publication and
its authors. The responsibility to select the most appropriate cri-
teria and thus citation ultimately rests with the expertise of the
curator and is likely to vary on a case-by-case basis. The assign-
ment of a property to a neuron type further may be accompanied
by notes, e.g., of explanations or comments. This is particularly
needed when there is controversy about a property, in which case
annotation about the controversy can stimulate new experiments
to resolve it. Annotation is also needed when a property changes
during the course of development. Finally, physiological charac-
terization of a neuron is highly dependent on a number of factors:
in vivo vs. in vitro, tissue slice vs. cell culture, anesthesia depth and
type, temperature, and many other factors. Thus, physiological
properties will probably be the greatest challenge for inclusion in
a neuron ontology (PING, 2008).

During the design phase of the Registry, only Task Force
members actively entered neuron properties. Now, all neuro-
scientists are welcome to contribute. We are approaching this
research with openness and rely on the entire scientific commu-
nity to maintain quality and integrity. Specifically, we have ini-
tiated an Adopt-a-Neuron Campaign (adopt.a.neuron@incf.org)
encouraging (self-)nomination of neuroscience experts to curate
the properties of their specific neuron(s) of interest. A paral-
lel Representation and Deployment Task Force (RDTF) is envi-
sioned to support the activity of the Neuron Registry by ensuring
that the relations linking the ontological classes and the values
of instances are compliant with rigorous ontological principles
(http://obofoundry.org). This separate curation step removes the
necessity for the neuroscience experts to also possess and respect
formal ontology expertise while trying to resolve open questions
and/or integrate existing knowledge about neuron types. The
end result will also be ready for incorporation into broader cell
ontology efforts (http://cellontology.org).

NAMING CONVENTION
Each neuron type in the Neuron Registry and in the NeuroLex is
associated with a unique identifier (i.e., a code or string of char-
acters not associated with a different type). The unique identifier
is not to be confused with the common name of the neuron. Each
neuron type is also given a preferred name and possibly one or
more synonyms.

The preferred name for a neuron should adopt some standard
naming conventions so that neurons are easy to organize for a
human and easy to parse for an information system. Some defin-
ing properties are leveraged for incorporation into the name. For
example, if the locations of the soma and/or dendrites are among
the defining properties of the neuron type, then the name of that
type should begin with the noun describing the region of the
nervous system encompassing those locations (e.g., spinal cord
motoneuron, dentate gyrus granule cell). If the name of the neu-
ron includes additional terms to discriminate different subtypes,
those should be appended at the end (e.g., spinal cord motor neu-
ron alpha, spinal cord motor neuron gamma). We can uniquely

identify a set of properties associated with a neuron population
that resides in a particular brain region, regardless of the fact that
it might be derived from the same precursor as a cell residing in
another brain region.

The underlying rationale is that neuron cell bodies and sur-
rounding dendrites are located in specific regions of the nervous
system. Therefore, it is consistent for the name for all the cells in
a given region to start with the name of that region. For exam-
ple, a ganglion cell in the retina would have as its name Retina
Ganglion Cell. It is not acceptable to combine this cell type with
any other cell that happens to have the unhelpful name of “gan-
glion cell,” which has no meaning other than its discoverer calling
it by a generic name signifying “large.” In this way, all of the dif-
ferent types of cells in the retina belong to the class “Retina.” The
same logic applies to every other cell in the nervous system. Such
a convention can be characterized by “Region Cell Name,” which
avoids grouping cells haphazardly, such as granule cells of the
cerebellum, olfactory bulb, dentate gyrus, etc., all falling under
the name “granule” (Table 1).

The confusion of mixing neuron names from different regions
is striking even for just two regions, compared with the ease of
scanning and finding a specific name when structured by region
(Table 1). The mixing problem is far worse with 200 neuron
names, whereas the list remains clear when sorted by region.
The structured list has the additional advantage of enabling
the neuron names to be readily linked to brain atlases and
databases of brain regional anatomy. This naming convention
also provides the basis of logical definitions in ontologies such
as the Neuroscience Information Framework Standard (NIFSTD)
ontology (Bug et al., 2008). For example, restrictions may be
derived based on the fact that a cerebellum neuron must be part
of a cerebellum.

This convention of Region Cell Name has to subsume sev-
eral possible complications. First, there may be several parts
to the cell region. For example, the cochlear nucleus has dor-
sal and ventral parts, which are distinct in their cell types and
functions. Although we refer to them colloquially as the dorsal
cochlear nucleus and ventral cochlear nucleus, for the purposes of
listing them, they must follow a parent-child convention to keep

Table 1 | Example of comparison between lists of common neuron

names and structured neuron names as in NeuroLex.

Unstructured Neuron Names Structured Neuron Names

Basket cell in cerebellum Cerebellum basket cell

Golgi cell in cerebellum Cerebellum Golgi cell

Granule cell in cerebellum Cerebellum granule cell

Purkinje cell in cerebellum Cerebellum Purkinje cell

Stellate cell in cerebellum Cerebellum stellate cell

Granule cell in main olfactory bulb Olfactory bulb main granule cell

Mitral cell in main olfactory bulb Olfactory bulb main mitral cell

Periglomerular cell in main olfactory
bulb

Olfactory bulb main
periglomerular cell

Deep short axon cell in main
olfactory bulb

Olfactory bulb main deep short
axon deep cell

Tufted cell in main olfactory bulb Olfactory bulb main tufted cell

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 15 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Hamilton et al. Neurons and their relationships

them classified together: Cochlear Nucleus Dorsal and Cochlear
Nucleus Ventral. In each case, the cell name follows (i.e., Cochlear
Nucleus Dorsal Fusiform Cell and Cochlear Nucleus Ventral
Bushy Cell). Other examples are Olfactory Bulb Main Mitral
Cell and Olfactory Bulb Accessory Mitral Cell. Thus, we have
the expanded parent-child convention to “Region Subregion Cell
Name.” This naming convention is useful for constructing an
alphabetically arranged list of cell names. In addition, all neurons
that belong to a single brain region will be immediately obvious
in contrast to the current situation. Colloquially, we continue to
use their common names in their common order, i.e., a “mitral
cell of the main olfactory bulb.”

Further complexities apply to cortical regions because of
their laminar characteristics. However, these are also accom-
modated by an expansion of the parent-child relation; thus a
cortical pyramidal-cell in lamina 3 of the motor cortex is termed
“Neocortex Motor Layer 3 Pyramidal-Cell.” Another level of com-
plexity to be considered in naming will be encountered when
characterizing neuron types by gene expression (Gong et al., 2003;
Hatten and Heintz, 2005) in combination with or in addition to
network connectivity (Polleux, 2005; Shepherd et al., 2005). In
spite of these challenges, the utility of this approach has been
tested on over 200 neuron types in the NeuroLex (available
at http://neurolex.org/wiki/Category:Neuron), and provides the
basis for future naming. Each of these neurons has been assigned
a soma location of the brain region indicated by their name. All
examples provided deal with the mammalian nervous system. The
same approach can be used for any species, vertebrate or inverte-
brate, in which the cell type is unique or different from the general
mammalian pattern. In those cases, an additional initial “species”
modifier may be needed for clarity.

CONCLUDING REMARKS
The Neurolex and Neuron Registry grew out of the recognition
that neuroscience needs to begin developing and implementing
common information frameworks to bring together data acquired
across scales, organisms and techniques. In the genomic world,
every sequence is registered within a standard format to a cen-
tral database where it can be compared algorithmically to all
other sequences. We do not have the luxury at the cellular level
of a simple set of characters for defining neurons. However,
having a standard grammar and centralized database where neu-
ron descriptions can be deposited in a way that is amenable to
machine-based processing and where unique identifiers can be
assigned will be an important infrastructure for finally grappling
with the cellular complexity of the nervous system. We antici-
pate that such a resource can be used, much like the genomic
resources, for comparing neurons, determining functional or
structural groupings and for building multiscale models of the
nervous system.

There are multiple dimensions to the problem of neuronal
classification. Neuronal properties can be described in a variety of
ways (PING, 2008). Depending on the relation being described,
the values can take on different meanings. For example, genetic
markers in the context of development could be used to char-
acterize neurons from a connectivity perspective. In addition to
species dependence, metadata about the experimental models,

such as age, strain, and sex, and experimental conditions, such as
caging, diet, and behavior, might ultimately affect neuronal char-
acterizations. Future considerations might also incorporate devel-
opmental/transcription factors in addition to the property-based
approaches currently in use.

The number of neuron types in the mammalian brain ulti-
mately depends on the resolution of the considered collection of
properties. Too many neuronal properties will produce too large
a number of neuron types to be useful. Too few properties will
have the opposite effect. Ontologies provide a flexible character-
ization method that can be adapted to the resolution of choice
to maximize resultant utility by neuroscientists toward advance-
ment of their research. By using a standard set of properties and
entities, we can automatically classify neurons along any single or
combination of properties automatically through the definition
of a rule. For example, in the Neurolex, we can generate the list of
GABAergic neurons (any cell that is a member of the class neu-
ron and uses GABA as a neurotransmitter), all spiny neurons, all
cortical pyramidal neurons, etc.

The Neuron Registry and Neurolex use a lightweight seman-
tic representation based on the RDF triple with the subject and
objects drawn from community ontologies. As indicated, this
representation is sufficiently flexible to generate multiple hierar-
chies based on single or multiple properties. A more semantically
enriched representation is being pursued by the Cell Ontology
consortium using OWL, to enable logical inferencing of cell
classes (Bard et al., 2005). The Neuron Registry Task force is col-
laborating with this endeavor through the INCF PONS program.
Thus, all three representations are being coordinated so that
information can flow among them in a consistent manner while
the pros and cons of each approach are determined. Given the
complexity of the neuronal identification problem, we feel that
multiple representations built from common entities currently
constitute the best approach.

Although ontological characterization is a mature process,
its application to neuroscience is relatively new. Neuron char-
acterization with ontologies should yield important results and
contribute significantly to neuroscience research. However, the
approach described here is just in its infancy. It will take a
concerted effort by teams of researchers throughout the neuro-
science community to address all of the possible neuron types.
The Neuron Registry task force will help define and refine this
approach, and will hopefully catalyze a spiraling effort to encom-
pass a wider and wider degree of community participation.
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