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Abstract 16 

  The current COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of 17 

confirmed cases and thousands of deaths globally. Extensive efforts and progress have been 18 

made to develop effective and safe vaccines against COVID-19. A primary target of these 19 

vaccines is the SARS-CoV-2 spike (S) protein, and many studies utilized structural vaccinology 20 

techniques to either stabilize the protein or fix the receptor-binding domain at certain states. In 21 

this study, we extended an evolutionary protein design algorithm, EvoDesign, to create 22 

thousands of stable S protein variants without perturbing the surface conformation and B cell 23 

epitopes of the S protein. We then evaluated the mutated S protein candidates based on predicted 24 

MHC-II T cell promiscuous epitopes as well as the epitopes’ similarity to human peptides. The 25 

presented strategy aims to improve the S protein’s immunogenicity and antigenicity by inducing 26 

stronger CD4 T cell response while maintaining the protein’s native structure and function. The 27 

top EvoDesign S protein candidate (Design-10705) recovered 31 out of 32 MHC-II T cell 28 

promiscuous epitopes in the native S protein, in which two epitopes were present in all seven 29 

human coronaviruses. This newly designed S protein also introduced nine new MHC-II T cell 30 

promiscuous epitopes and showed high structural similarity to its native conformation. The 31 

proposed structural vaccinology method provides an avenue to rationally design the antigen’s 32 

structure with increased immunogenicity, which could be applied to the rational design of new 33 

COVID-19 vaccine candidates.  34 
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Introduction 35 

The current Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute 36 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 18 million confirmed 37 

cases and 702,642 deaths globally as of August 6 2020 according to the World Health 38 

Organization [1]. Tremendous efforts have been made to develop effective and safe vaccines 39 

against this viral infection. The Moderna mRNA-1273 induced vaccine-induced anti-SARS-40 

CoV-2 immune responses in all 45 participants of phase I clinical trial [2], and advanced to 41 

phase III clinical trial in record time. On the other hand, the Inovio INO-4800 DNA vaccine not 42 

only showed protection from the viral infection in rhesus macaques, but was also reported to 43 

induce long-lasting memory [3]. In addition to these two vaccines, there are over a hundred 44 

COVID-19 vaccines currently in clinical trials including other types of vaccines such as the 45 

Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) [4], CanSino’s 46 

adenovirus type-5 (Ad5)-vectored COVID-19 vaccine [5], and Sinovac’s absorbed COVID-19 47 

(inactivated) vaccine (ClinicalTrials.gov Identifier: NCT04456595). Among all the vaccines, a 48 

vast majority of them select the spike glycoprotein (S) as their primary target. 49 

The SARS-CoV-2 S protein is a promising vaccine target and many clinical studies 50 

reported anti-S protein neutralizing antibodies in COVID-19 recovered patients [6]. After the 51 

SARS outbreak in 2003 [7], clinical studies reported neutralizing antibodies targeting the SARS-52 

CoV S protein [8,9], which was selected as the target of vaccine development [10,11]. Since 53 

SARS-CoV-2 shares high sequence identity with SARS-CoV [12], it is presumed that 54 

neutralization of the SARS-CoV-2 S protein could be an important correlate of protection in  55 

COVID-19 vaccine development [13]. Many computational studies utilizing reverse vaccinology 56 

and immuno-informatics reported the S protein to be a promising vaccine antigen [14–16], and 57 

clinical studies identified anti-S protein neutralizing antibodies in COVID-19 recovered patients 58 

[17–19]. The cryo-EM structure of the S protein [20] and the neutralizing antibodies binding to 59 

the S protein [21,22] were determined. Besides neutralizing antibodies, studies have also shown 60 

the importance of CD4 T cell response in the control of SARS-CoV-2 infection and possible pre-61 

existing immunity in healthy individuals without exposure to SARS-CoV-2 [6,23,24]. Overall, 62 

successful vaccination is likely linked to a robust and long-term humoral response to the SARS-63 

CoV-2 S protein, which could be further enhanced by the rational structural design of the 64 

protein. 65 
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Structural vaccinology has shown successes to improve vaccine candidates’ 66 

immunogenicity through protein structural modification. The first proof-of-concept was achieved 67 

by fixing the conformation-dependent neutralization-sensitive epitopes on the fusion 68 

glycoprotein of respiratory syncytial virus [25]. A similar strategy has been applied to SARS-69 

CoV-2 to conformationally control the S protein’s receptor-binding domain (RBD) domain 70 

between the “up” and “down” configurations to induce immunogenicity [26]. In this study, we 71 

extended structural vaccinology to rationally design the SARS-CoV-2 S protein by generating 72 

thousands of stable S protein variants without perturbing the surface conformation of the protein 73 

to maintain the same B cell epitope profile. In the meantime, mutations were introduced to the 74 

residues buried inside the S protein so that more MHC-II T cell epitopes would be added into the 75 

newly designed S protein to potentially induce a stronger immune response. Finally, we 76 

evaluated the computationally designed protein candidates and compared them to the native S 77 

protein. 78 

 79 

Materials and methods 80 

Computational redesign of SARS-CoV-2 S protein 81 

Fig 1 illustrates the workflow for redesigning the SARS-CoV-2 S protein to improve its 82 

immunogenic potential toward vaccine design. The full-length structure model (1,273 amino acids 83 

for an S monomer) of SARS-CoV-2 S assembled by C-I-TASSER [27] was used as the template 84 

for fixed-backbone protein sequence design using EvoDesign [28]. Although the cryo-EM 85 

structure for SARS-CoV-2 S is available (PDB ID: 6VSB) [20], it contains a large number of 86 

missing residues, and therefore, the full-length C-I-TASSER model was used for S protein design 87 

instead. The C-I-TASSER model of the S protein showed a high similarity to the cryo-EM structure 88 

with a TM-score [29] of 0.87 and RMSD of 3.4 Å in the common aligned regions, indicating a 89 

good model quality. The residues in the S protein were categorized into three groups: core, surface, 90 

and intermediate [30], according to their solvent accessible surface area ratio (SASAr). 91 

Specifically, SASAr is defined as the ratio of the absolute SASA of a residue in the structure to 92 

the maximum area of the residue in the GXG state [31], where X is the residue of interest; the 93 

SASAr ratios were calculated using the ASA web-server (http://cib.cf.ocha.ac.jp/bitool/ASA/). 94 

The core and surface residues were defined as those with SASAr <5% and >25%, respectively, 95 

while the other residues were regarded as intermediate. Since the surface residues may be involved 96 
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in the interactions with other proteins (e.g., the formation of the S homotrimer, S-ACE2 complex, 97 

and S-antibody interaction) and may partially constitute the B cell epitopes, these residues were 98 

excluded from design, and more rigorously, their side-chain conformations were kept constant as 99 

well. Besides, the residues that may form B cell epitopes reported by Grifoni et al. [15] were also 100 

fixed. The remaining core residues were subjected to design, allowing amino acid substitution, 101 

whereas the intermediate residues were repacked with conformation substitution. Specifically, 243, 102 

275, and 755 residues were designed, repacked, and fixed, respectively; a list of these residue 103 

positions is shown in Supplementary Table S1. 104 

 105 

During protein design, the evolution term in EvoDesign was turned off as this term would 106 

introduce evolutionary constraints on the sequence simulation search which were not needed for 107 

this design [32]; therefore, only the physical energy function, EvoEF2 [30], was used for design 108 

scoring to broaden sequence diversity and help to identify more candidates with increased 109 

immunogenicity. We performed 20 independent design simulations and collected all the simulated 110 

sequence decoys. A total of 5,963,235 sequences were obtained, and the best-scoring sequence 111 

had stability energy of -4100.97 EvoEF2 energy unit (EEU). A set of 22,914 non-redundant 112 

sequences that were within a 100 EEU window of the lowest energy and had >5% of the design 113 

residues mutated were retained for further analysis (Fig. 1). 114 

 115 

MHC-II T cell epitope prediction and epitope content score calculation 116 

The full-length S protein sequence was divided into 15-mers with 10 amino-acid overlaps. For 117 

each 15-mer, the T cell MHC-II promiscuous epitopes were predicted using NetMHCIIpan v3.2 118 

[33], and an epitope was counted if the median percentile rank was ≤ 20.0% by binding the 15-119 

mer to any of the seven MHC-II alleles [34] (i.e., HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-120 

DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, and HLA-121 

DRB5*01:01). The selection of these seven MHC-II alleles aimed to predict the dominant MHC-122 

II T cell epitopes across different ethnicity and HLA polymorphism. The MHC-II promiscuous 123 

epitopes of the native SARS-CoV-2 S protein (QHD43416) predicted using this method were also 124 

validated and compared to the dominant T cell epitopes mapped by Grifoni et al. [15]. In brief, 125 

Grifoni et al. mapped the experimentally verified SARS-CoV T cell epitopes reported in the IEDB 126 

database to the SARS-CoV-2 S protein based on sequence homology and reported as the dominant 127 
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T cell epitopes. The epitope content score (ECS) for a full-length S protein was defined as the 128 

average value of the median percentile ranks for all the 15-mers spanning the whole sequence. 129 

 130 

Human epitope similarity and human similarity score calculation 131 

The human proteome included 20,353 reviewed (Swiss-Prot) human proteins downloaded from 132 

Uniprot (as of July 1, 2020) [35]. A total of 261,908 human MHC-II T cell promiscuous epitopes 133 

were predicted, as described above. The human epitope similarity between a peptide of interest 134 

(e.g., a peptide of the S protein) and a human epitope was then calculated using a normalized 135 

peptide similarity metric proposed by Frankild et al. [36]. In brief, the un-normalized peptide 136 

similarity score, 𝐴(𝑥, 𝑦), was first determined by the BLOSUM35 matrix [37] for all the positions 137 

between a target peptide (y) and a human epitope (x), which was subsequently normalized using 138 

the minimum and maximum similarity scores for the human epitope (Eq. 1). Finally, the maximum 139 

normalized similarity score of a 15-mer peptide was calculated by comparing to all the predicted 140 

human MHC-II T cell promiscuous epitopes. The human similarity score (HSS) of the full-length 141 

S protein was calculated by averaging the human epitope similarity of all the 15-mers. 142 

 143 

𝑆(𝑥, 𝑦) =
𝐴(𝑥,𝑦)−𝐴𝑚𝑖𝑛

𝑥

𝐴𝑚𝑎𝑥
𝑥 −𝐴𝑚𝑖𝑛

𝑥      (1) 144 

 145 

Pre-existing immunity evaluation of the designed proteins 146 

The pre-existing immunity of the designed proteins was evaluated and compared to that of the 147 

native S protein of seven human CoVs (i.e., SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, 148 

HCoV-OC43, HCoV-NL63, and HCoV-HKU1). The sequences of the seven HCoV S proteins 149 

were downloaded from Uniprot [35] (Table S2), and the MHC-II T cell epitopes were predicted as 150 

described above. The conserved epitopes were determined by the IEDB epitope clustering tool [38] 151 

and aligned using SEAVIEW [39]. 152 

 153 

Foldability assessment of the designed proteins 154 

Since EvoDesign only produces a panel of mutated sequences, it is important to examine if the 155 

designed sequences can fold into the desired structure that the native S protein adopts. To examine 156 

their foldability, we used C-I-TASSER to model the structure of the designed sequences, where 157 
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the structural similarity between the native and designed S proteins was assessed by TM-score 158 

[40]. Here, C-I-TASSER is a recently developed protein structure prediction program, which 159 

constructs full-length structure folds by assembling fragments threaded from the PDB, under the 160 

guidance of deep neural-network learning-based contact maps [41,42]. The ectodomain of the S 161 

homotrimers was visualized via PyMOL [43]. 162 

 163 

Results 164 

The epitope content score (ECS) and human similarity score (HSS) of the S proteins from 165 

seven HCoV strains (severe HCoV: SARS-CoV-2, SARS-CoV, and MERS-CoV; mild HCoV: 166 

HCoV-229, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) were computed. The ECS for the 167 

severe HCoV S proteins was significantly different from that for the mild ones (p = 0.0016, Mann-168 

Whitney). In terms of HSS, the severe HCoV S proteins tended to be less self-like compared to 169 

the mild ones (p = 0.097, Mann-Whitney). Overall, it was shown that both ECS and HSS might be 170 

used as indicators of the immunogenic potential of the designed S proteins. 171 

On the other hand, previous studies suggested the potential role of pre-existing immunity 172 

in fighting COVID-19 [6,23,24]. Therefore, the predicted MHC-II T cell promiscuous epitopes of 173 

the SARS-CoV-2 S protein were compared to those from the other six HCoVs. There were two 174 

SARS-CoV-2 predicted MHC-II T cell promiscuous epitopes, which were also present on all of 175 

the seven HCoV S proteins (Fig 2), which could be potentially linked to pre-existing immunity. 176 

Therefore, the designs were subsequently filtered based on the availability of these pre-existing 177 

immunity-related epitopes (Fig 1). In particular, the SARS-CoV-2 promiscuous epitope S816-178 

D830 overlapped with the dominant B cell epitope F802-E819 reported by Grifoni et al. [15]. 179 

Among the 22,914 designs with relatively low stability energy, 19,063 candidates that 180 

contained the two pre-existing immunity-related epitopes were ranked based on ECS and HSS (Fig 181 

3A). Using the ECS and HSS of the native SARS-CoV-2 S as the cutoff, we obtained 301 182 

candidates with a better immunogenic potential (i.e., lower ECS and HSS) (Fig 3B). Ten 183 

candidates with balanced ECS and HSS were selected and evaluated (Table 1, full-length 184 

sequences in Table S3). 185 

 186 

 Design-10705 was overall the best candidate with high structural similarity to the native S 187 

protein and good immunogenic potential (in terms of promiscuous epitope count, ECS and HSS 188 
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scores) amongst the top ten candidates. The candidate Design-10705 had a 93.9% sequence 189 

identity to the native S protein with TM-score (0.931) and RMSD (3.45 Å) to the C-I-TASSER 190 

model of the native S protein. The homo-trimer 3D structure of Design-10705 was visualized and 191 

compared to the S protein C-I-TASSER and cryo-EM structural models (Fig 4). In terms of 192 

immunogenicity, it had the second-highest number of promiscuous epitopes. Table 2 showed the 193 

complete MHC-II T cell epitope profile of Design-10705. There were 32 predicted promiscuous 194 

epitopes in the native S protein (Table S4), and 31 of them were recovered in Design-10705. The 195 

two pre-existing immunity-related epitopes, V991-Q1005 and S816-D830, were both recovered in 196 

the new design. Besides these two epitopes, there were 19 epitopes identical to the native S protein 197 

epitopes, while 10 epitopes had at least one mutation in Design-10705. Compared with the native 198 

S protein, the only missing MHC-II epitope in design 10705 was V911-N926, which was predicted 199 

to have reduced binding affinity to HLA-DRB1*03:01 and HLA-DRB4*01:01. Critically, this 200 

design introduced nine new MHC-II T cell promiscuous epitopes, which could potentially induce 201 

a stronger immune response with minimal perturbation compared with the native S protein. 202 

Discussion 203 

 The subunit, DNA, and mRNA vaccines are typically considered to be safer but often 204 

induce weaker immune responses than the live-attenuated and inactivated vaccines. Although the 205 

addition of adjuvant or better vaccination strategies can compensate for the immunogenicity, the 206 

addition of new epitopes to the antigen provides an alternative way to induce stronger immune 207 

responses [44,45]. During the protein design process, we applied design constraints so that the 208 

surface conformation, and in particular, B cell epitopes of the designed S protein variants were 209 

unchanged. For the designed S proteins with at least 5% of the core residues mutated, the 210 

immunogenicity potential of these candidates was evaluated and was structurally compared to 211 

the native S protein. The top candidate (Design-10705) recovered 31 out of 32 MHC-II 212 

promiscuous epitopes, and, the two pre-existing immunity-related epitopes (V991-Q1005 and 213 

S816-D830) were present in the design. In addition to the 31 recovered epitopes, Design-10705 214 

also introduced nine new MHC-II promiscuous epitopes with the potential to induce stronger 215 

CD4 T cell response. 216 

 The concept of manipulating epitopes to decrease the immunogenicity has been applied 217 

to therapeutic proteins. King at el. disrupted the MHC-II T cell epitopes in GFP and 218 

Pseudomonas exotoxin A using the Rosetta protein design protocol [46,47]. The EpiSweep 219 
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program was also applied to structurally redesign bacteriolytic enzyme lysostaphin as an anti-220 

staphylococcal agent with reduced immunogenicity to the host [48,49]. In this study, a similar 221 

strategy, but to improve immunogenicity, was applied to redesign the SARS-CoV-2 S protein as 222 

an enhanced vaccine candidate; specifically, we aimed to increase immunogenicity by 223 

introducing more MHC-II T cell promiscuous epitopes to the protein without reducing the 224 

number of B cell epitopes. 225 

 The addition of epitopes to induce stronger immune responses has been previously 226 

applied to develop H7N9 vaccines. The H7N9 hemagglutinin (HA) vaccine elicits non-227 

neutralizing antibody responses in clinical trials [50,51]. Rudenko et al. reported that there were 228 

fewer CD4 T cell epitopes found in H7N9 HA in comparison to the seasonal H1 and H3 HA 229 

proteins [52]. Based on this finding, Wada et al. improved the H7N9 vaccine by introducing a 230 

known H3 immunogenic epitope to the H7 HA protein without perturbing its conformation, 231 

which resulted in an over 4-fold increase of HA-binding antibody response [44]. However, the 232 

number of epitopes is not the only factor that influences the protective immunity. Studies have 233 

reported that CD8 T cell epitopes might induce regulatory T cell responses [36,53], and 234 

pathogens adapted to include CD4 and CD8 epitopes with high similarity to human peptides as a 235 

means to suppress host immunity for its survival [54]. Therefore, we examined the significance 236 

of ECS and HSS in the context of mild versus severe forms of HCoV infection and then utilized 237 

these two scores to evaluate the designed S protein candidates. 238 

The computational design of the SARS-CoV-2 S protein could be coupled with some 239 

other structural modifications for a more rational structure-based vaccine design. The present 240 

study aims to introduce new epitopes to the S protein while keeping the surface residues 241 

unchanged to minimize the structural change of the designed proteins, and according to protein 242 

structure prediction, the designed candidates were structurally similar to the native S protein 243 

(Table 1 & Fig 4). The structural modifications performed on the native S protein, such as 244 

stabilizing the protein in its prefusion form [55], or fixing the RBD in the “up” or “down” state, 245 

could still be applied to the final candidate in this study. The combination of these structural 246 

vaccinology technologies into the current pipeline could further enhance the immunogenicity of 247 

the S protein as a vaccine target. However, a major limitation of the present study is the wet-lab 248 

experimental validation of the designed proteins. First, the newly designed protein sequences 249 

need to be folded properly with a structure comparable to that of the native S protein. Second, 250 
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the capability of the newly added epitopes for binding MHC-II molecules and subsequently 251 

inducing immune responses need to be validated. Finally, these candidates should be tested for 252 

their protectiveness and safety in animal models. 253 

 Overall, this study presents a strategy to improve the immunogenicity and antigenicity of 254 

a vaccine candidate by manipulating the MHC-II T cell epitopes through computational protein 255 

design. In the current settings, the immunogenicity evaluation was carried out after the standard 256 

protein design simulations with EvoDesign. In the future, the assessment of the immunogenic 257 

potential could be incorporated into the protein design process so that the sequence decoy 258 

generated at each step will be guided by balancing both the protein stability and immunogenicity. 259 

Moreover, with proper prior knowledge of known epitopes (e.g., both MHC-I and MHC-II from 260 

the pathogen proteome), it is also possible to create a chimeric protein, which integrates epitopes 261 

from antigens other than the target protein. 262 

 263 
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Fig 1. The workflow of designing and screening immunogenicity-enhanced SARS-CoV-2 S 439 

proteins. The procedure started from defining the full-length SARS-CoV-2 native S protein into 440 

surface, intermediate, and core residues. This information was then fed into EvoDesign to generate 441 

structurally stable designs that introduce mutations to the core residues while keeping the surface 442 

conformation unchanged. The output design candidates from EvoDesign were then evaluated 443 

based on their immunogenic potential. The top ten candidates were also compared and evaluated 444 

in comparison to the native S protein.  445 
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 446 

Fig 2. The two pre-existing immunity-related SARS-CoV-2 MHC-II T cell promiscuous epitopes. The first SARS-CoV-2 447 

promiscuous epitope is located within residues 816-830 (indexed by SARS-CoV-2).   448 
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 449 

Fig 3. The epitope content score (ECS) and human similarity score (HSS) for designed S proteins. (A) All 22,914 designs. Each 450 

design is shown as a blue dot, whereas the native SARS-CoV-2 S was plotted as a black dot. The dashed-line box defines the 301 451 

candidates with both lower ECS and HSS scores than the native. (B) The shaded area contains the top ten candidates with balanced 452 

ECS and HSS scores.453 
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 454 

 455 

Fig 4. The 3D structures of A) C-I-TASSER S protein trimer, B) cryo-EM trimer, C) 456 

Design-10705 trimer, and D) Design-10705 monomer. The ectodomain of Design-10705 was 457 

modeled using C-I-TASSER. Both the homo-trimer and monomer of Design-10705 were 458 

rendered. The mutations introduced in Design-10705 are shown in red spheres.459 
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Table 1. Summary of the features for the top 10 designs. The table is ranked based on the 460 

designs’ free energy scores (from low to high) except the native S protein. 461 

Design ID PEC REC a ECS HSS FE (EEU) RMSD (Å) b TM-score b SI (%) 

10705 40 31 48.78 0.6394 -4051.21 3.45 0.931 93.9 

10763 40 31 48.80 0.6394 -4051.04 3.06 0.944 92 

12865 40 31 48.76 0.6396 -4044.99 3.14 0.939 91.9 

19356 41 30 48.44 0.6399 -4020.14 3.12 0.929 90.9 

20348 38 30 48.99 0.6390 -4014.74 3.33 0.929 94 

20467 38 30 48.97 0.6391 -4014.10 4.32 0.901 92 

20671 37 28 48.83 0.6395 -4013.03 3.36 0.94 94.7 

22676 36 28 48.37 0.6399 -4001.70 3.35 0.939 93.8 

22769 38 28 48.51 0.6398 -4001.11 3.27 0.937 93 

22869 38 28 48.55 0.6398 -4000.23 3.24 0.919 90.3 

Native 32 -- 49.61 0.6401 -- -- -- -- 

PEC: Promiscuous Epitope Count; REC: Recovered Epitope Count; ECS: Epitope Content Score; HSS: Human 462 
Similarity Score; FE: Free Energy (EvoEF2 energy unit); RMSD: Root Mean Square Deviation; TM: TM-score; SI: 463 
Sequence identity. 464 
a: The number of predicted promiscuous epitopes in designs that overlap with those in the native S protein. 465 
b: The RMSD and TM-score compared to the C-I-TASSER model of the native S protein. 466 

  467 
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Table 2. The predicted promiscuous MHC-II T cell epitopes of Design-17050. 468 

Epitope Start End Median Percentile Rank Comment 

VQLDRLITGRLQSLQ 991 1005 17 
Pre-existing immunity-related epitopes 

SFIEDLLFNKVTLAD 816 830 16 

VYYPDKVFRSSVLHS 36 50 11 

Identical epitopes to native S protein 

KVFRSSVLHSTQDLF 41 55 17 

SLLIVNNATNVVIKV 116 130 6.5 

EFRVYSSANNCTFEY 156 170 18 

FKIYSKHTPINLVRD 201 215 14 

SVLYNSASFSTFKCY 366 380 18 

YLYRLFRKSNLKPFE 451 465 5.7 

SIIAYTMSLGAENSV 691 705 4.7 

YGSFCTQLNRALTGI 756 770 19 

LLFNKVTLADAGFIK 821 835 17 

CAQKFNGLTVLPPLL 851 865 19 

GAALQIPFAMQMAYR 891 905 18 

IPFAMQMAYRFNGIG 896 910 3.7 

QMAYRFNGIGVTQNV 901 915 19 

TLVKQLSSNFGAISS 961 975 14 

TYVTQQLIRAAEIRA 1006 1020 20 

QLIRAAEIRASANLA 1011 1025 12 

AEIRASANLAATKMS 1016 1030 7.9 

REGVFVSNGTHWFVT 1091 1105 9.4 

LPFFSNITWFHAIHV 56 70 7.1 

Mutated epitopes 

VFVYKNIDGYFKIYS 191 205 13 

IGINITRFMTIRASS 231 245 6.2 

TRFMTIRASSRSYLA 236 250 1.2 

YVGYLQPRTFLLKFN 266 280 12 

SNFRVQPTETIVKFP 316 330 14 

IFNATRFASSYAANR 341 355 13 

RFASSYAANRKRISN 346 360 17 

VILSFELLHAPANVC 511 525 14 

KLIANQFNSAIGKLQ 921 935 17 

NITWFHAIHVSGTNG 61 75 20 

New epitopes 

FNDGVYFAATLKTNM 86 100 14 

GKQGNFKNLRVFVYK 181 195 13 

LVDLPIGINITRFMT 226 240 20 

GVVIAWNVNNLDAKV 431 445 11 

TDEMIAQYTAALLAG 866 880 19 

VVNQLAQALNTLVKQ 951 965 19 

GAISSVMNDILSRLD 971 985 20 

VFLHVNLVPAQEKNF 1061 1075 16 

  469 
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