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Abstract

The catalytic reaction in SARS-CoV-2 main protease is activated by a proton trans-

fer (PT) from Cys145 to His41. The same PT reaction is likely also required for the

covalent binding of some classes of inhibitors. Here we use a hybrid quantum/classical

approach to investigate the PT thermodynamics in the apo state and in the presence

of a covalent inhibitor, N3. We show that in the apo state a neutral catalytic dyad

is favored whereas in the presence of N3 the PT reaction becomes thermodynamically

favorable. We also show that a few key sites (including a water molecule) are able to

significantly enhance or reduce the thermodynamic feasibility of the PT reaction. The

approach presented is a general and cost-effective procedure to identify the enzyme

regions that control the activation of the catalytic reaction. It is also useful to guide

the screening and design of potential covalent inhibitors.
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Introduction

The rapid and broad spread of the pandemic caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has led to an urgent need for effective therapeutics. One of

the most promising targets for drug development among coronaviruses is the main protease

(Mpro), as this protein plays a key role in viral replication and transcription. SARS-CoV-2

Mpro cleaves the virus non-structural polyprotein at 11 sites, acting on the sequence Leu/Phe-

Gln*Ser/Ala/Gly (where * marks the cleavage site).1 Inhibition of its cleaving activity would

therefore block the viral replication cycle. In addition, the recognition sequence of SARS-

CoV-2 Mpro is different from that of all human proteases and thus inhibitors of its activity
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are less likely to be toxic.2 Furthermore, the structure of Mpro and of its catalytic pocket is

very similar among the coronaviruses family, suggesting that broad-spectrum antiviral drugs

might be obtained by targeting this enzyme.1

SARS-CoV-2 Mpro is a three-domain cysteine protease. Domains I (residues 8-101) and

II (residues 102-184) are arranged in an antiparallel β-barrel structure, whereas domain III

(residues 201-303) contains five α-helices arranged in a globular cluster.3 Domain III has

been suggested to be essential in the proteolytic activity by keeping domain II and the long

loop connecting domains II and III (residues 185-200) in the proper orientation, and/or by

orienting the N-terminal residues that are essential for the dimerization.4 Dimerization of

the enzyme was itself shown to be essential for catalytic activity by maintaining the proper

shape of the pocket of the substrate-binding site.2

Similarly to other cysteine proteases, SARS-CoV-2 Mpro features a cysteine-histidine

catalytic dyad (Cys145/His41) (see Figure 1). Protein hydrolysis is mediated by the catalytic

Cys145 via a nucleophilic attack on the carbonyl carbon of a susceptible peptide bond. It is

widely accepted that the imidazole of His41 is the base of the proton transfer (PT) reaction

that itself leads to a highly reactive zwitterionic couple (Cys145−/His41+) which reacts with

the substrate.1 However, it is still debated whether the PT and the formation of the thiolate

anion are induced by the presence of the functional substrate or occur in the apo state.5–9 For

a comprehensive understanding of the catalytic activity of SARS-CoV-2 Mpro, it is crucial

to achieve a clear picture of the chemical, structural and dynamical features of the active

site and its neighborhood in the apo state. This point is also relevant for the design and

screening of potential inhibitors of SARS-CoV-2 Mpro. The covalent binding of an inhibitor

to the thiol of Cys145 requires the deprotonated cysteine, and therefore the protonation

state of the residues of the catalytic dyad in the apo state plays a crucial role in effective

inhibition. The propensity of catalytic cysteines to be deprotonated is in fact considered the

prime determinant of their reactivity toward inhibitors.10

The present work focuses on the investigation of the thermodynamics of the protonation

3



states of the catalytic dyad and of the PT reaction in SARS-CoV-2 Mpro by means of MD

simulations and the perturbed matrix method (PMM), a hybrid quantum/classical approach

for the investigation of chemical processes in complex systems.11,12 To determine the proto-

nation state of the catalytic dyad in the apo state, we calculate by means of the perturbative

MD-PMM approach the energy variation upon PT and, from that, the corresponding free

energy change. We also calculate with the same approach the energy change (and related free

energy change) for the tautomerization reaction (His41E ⇀↽ His41D). In its neutral state,

His41 can be in fact protonated either at its ε or at its δ nitrogen, possibly leading to a

different structural and dynamical behavior of the catalytic site and its neighborhood. We

therefore investigate three possible protonation states: the neutral dyad Cys145H-His41E

(i.e., His41 protonated at Nε), the neutral dyad Cys145H-His41D (i.e., His41 protonated

at Nδ) and the zwitterionic dyad Cys145−-His41H+. The energy variation upon PT is also

calculated in the presence of an inhibitor (N3), which was previously shown to covalently

bind to the SARS-CoV-2 Mpro catalytic cysteine.13

Figure 1: Representative structure of the binding site of SARS-CoV-2 Mpro and its neigh-
borhood in the apo state (A) and in the presence of the inhibitor N3 (B). The residues of
the catalytic dyad (Cys145 and His41), the catalytic water molecule (Cwat) and some key
residues surrounding the binding site are highlighted in licorice.

The hybrid quantum/classical approach we apply here, the MD-PMM approach,11,12 is

based on the joint use of classical MD simulations and quantum mechanical (QM) calcula-

tions. As commonly done in hybrid multiscale approaches,14–17 also for the investigation of
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enzyme catalysis,6,8,18–22 the portion of the system in which the chemical event takes place

is treated quantum mechanically (the quantum center, QC) while the rest of the system

is treated classically and atomistically and exerts an electrostatic perturbation on the QC

electronic states. However, the main difference with other hybrid methods is that in the

MD-PMM the whole system configurational space (including the QC) is sampled by fully

classical MD simulations. The electrostatic perturbation of the environment on the electronic

properties of the QC is included a posteriori: the electronic properties of the isolated QC

(unperturbed properties) are calculated quantum-mechanically in vacuum (i.e., in the gas

phase) and then, for each configuration generated by all-atom classical MD simulations of

the whole system, the electrostatic effect of the instantaneous atomistic configurations of the

environment is included as a perturbing term to the quantum properties of the isolated QC,

providing the properties of the QC embedded in the perturbing environment. To include the

perturbation of the environment on the QC quantum states, the electrostatic potential and

electric field that each atom of the environment exerts on the QC is evaluated at each frame

of the MD simulation, and their effect on the QC quantum properties (e.g., energies) are

calculated. In the present case, the energy change upon PT is calculated at each frame of the

MD simulation, and used to compute the free energy change associated to the PT reaction.

Free energy calculations are therefore based on a sampling that is much more extensive than

the one that can be typically obtained with standard QM/MM approaches. In addition, the

MD-PMM approach also allows us to treat explicitly and dynamically the coupling of the

quantum observables with the external environment, and in particular with the collective

motions of the system. This is a very relevant point in charge transfer processes, which have

been shown to strongly depend on the structural fluctuations of the environment.23,24 More

details on the MD-PMM approach can be found in the Supporting Information (SI).

The MD-PMM approach has been successfully used to model electron transfer reactions

and to calculate reduction potentials in proteins,25–33 and, more recently, to evaluate the pKa

of amino acids and to compute PT reactions free energies.34,35 The investigation of charge

5



transfer processes in complex bio-molecular systems with the MD-PMM approach has been

also used to identify the protein/enzyme sites that are able to modulate the charge transfer

energetics,29,30,35 explaining at the molecular level the effect of point mutations and also

providing hints for new possible mutations. With the same approach, we focus here on the

identification of the enzyme regions that can be targeted to inhibit its catalytic activity.

Results

Proton transfer thermodynamics

To investigate the active site PT reaction in SARS-CoV-2 Mpro, we select the side chains of

Cys145 and His41 as QCs and perform quantum mechanical calculations on these QCs in

both the reactant and product state, as defined by the following PT reaction:

Cys145H + His41 ⇀↽ Cys145− + His41H+ (1)

Three MD simulations are performed. Two of these are performed in the reactant en-

semble (Cys145H + His41): one with His41 protonated at Nε (His41E) and one with His41

protonated at Nδ (His41D). The third MD simulation is performed in the product ensem-

ble (Cys145− + His41H+). More details on the quantum chemical calculations and MD

simulations can be found in the SI.

Then, by applying the MD-PMM approach, we compute at each MD frame for each

simulation ensemble the time evolution of the energy change upon PT that provides the

reaction free energy ∆G0 (see Eq. 6 in the SI).

The computed PT reaction free energies reported in Table 1 clearly show that, accord-

ing to our results, in the apo state both residues of the catalytic dyad are neutral. The

zwitterionic couple is in fact at a higher energy for both His41E and His41D in the reactant

state (by 31 and 36 kJ/mol for His41D and His41E, respectively, see Table 1). Previous
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findings obtained with a different computational approach analyzed only the reactant state

with His41D and showed, in agreement with the present results, that the zwitterionic couple

is at higher energy.6,8

The PT reaction free energy was also calculated within the linear response approximation,

i.e. by assuming a Gaussian distribution for the energy change upon PT and considering the

average of the mean values of the PT energy obtained in the two ensembles along the MD

trajectories.36,37 The results are in qualitative agreement with those obtained by explicitly

calculating the reaction free energy ∆G0 (see Eq. 6 in the SI) providing a free energy change

upon PT of 41 and 45 kJ/mol for His41D and His41E, respectively, with a standard error

of ≈ 5 kJ/mol. The full calculation of ∆G0, being based on an exact relation (see Eq. 6

in the SI), provides a more accurate result than the one that can be obtained within the

linear response approximation. However, the latter is less affected by inaccuracies due to

finite-sampling issues. The qualitative agreement between the results obtained with the two

approaches enhances therefore the reliability of the computed estimates.

The above results also show that the His41E and His41D reactant states are essentially

isoenergetic, with His41E slightly more stable with respect to His41D (by ≈5 kJ/mol with

the full free energy calculation and by ≈4 kJ/mol within the linear response approximation).

This small free energy difference upon tautomerization, which is in agreement with previous

relative free energy calculations with the free energy perturbation (FEP) method,38 suggests

that in the apo state at physiological temperatures both protonation states may be accessible.

This also implies that the thermodynamic cost to reach the charge-separated state, which

has a higher free energy then the neutral dyad couple, is slightly lower in the reactant state

with His41D.

Beside the slightly lower free energy change upon PT, the His41D state appears the most

probable reactant state for the PT reaction also on the basis of structural considerations. In

the crystal structure and in the MD simulations in the reactant state with both His41D and

His41E, the Nε of His41 is in fact at a lower distance from the sulfur of Cys145 with respect
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to the Nδ (see Figure S1 and the representative snapshots Figure 2). The proximity of the

sulfur and Nε would strongly favor a direct PT from Cys145 to His41 from a kinetic point

of view.

Table 1: Calculated free energy difference ∆G0 in kJ/mol for the proton transfer reaction
in Eq. 1 in the apo state and in the presence of inhibitor N3 and for the tautomerization
reaction of His41 in the apo state. The standard error for the computed values is ≈6 kJ/mol
and is obtained using three subtrajectories for each MD simulation. Details on the ∆G0 can
be found in the SI.

∆G0

(Cys145H + His41E ⇀↽ Cys145− + His41H+)apo 36
(Cys145H + His41D ⇀↽ Cys145− + His41H+)apo 31
(Cys145H + His41D ⇀↽ Cys145− + His41H+)N3 -2
(His41E ⇀↽ His41D)apo 5

It was recently shown that a previously designed Michael acceptor inhibitor (N3) exhibits

potent inhibition for SARS-CoV-2 Mpro. The crystal structure of the protein in complex with

N3 reveals that the Cβ atom of the inhibitor vinyl group is covalently bound to the sulfur

of Cys145 of the protein catalytic dyad. As the formation of this covalent bond requires a

deprotonated sulfur, the functional PT from Cys145 to His41 is required for the covalent

binding of the inhibitor.22

In order to compute the energy variation upon PT in the presence of the N3 inhibitor

inside the substrate binding pocket, we simulate the complex between the non-covalently

bound inhibitor and the enzyme. Given the above considerations about the comparison

between the His41D and His41E reactant states in the apo protein and given that previous

computational results showed that the inhibitor N3 better interacts with His41D,38 the

computation of the PT energy in the presence of N3 focuses on the His41D reactant state.

Therefore, two MD simulations are performed, one in the reactant ensemble (Cys145H +

His41) with His41 protonated at Nδ and one in the product ensemble (Cys145− + His41H+).

From the calculation (see Methods section in the SI) we obtain that, in the presence of

the inhibitor in the active-site, the PT reaction free energy is significantly lower, changing
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from ∆G0 = 31±6 kJ/mol to ∆G0 = -2±6 kJ/mol (see Table 1).

These results clearly show that the zwitterionic couple is at a lower energy in the presence

of the inhibitor N3 than in the apo state, with the reactant and product state being almost

isoenergetic for the former (see Scheme 1). Therefore, the PT reaction is thermodynamically

feasible in the presence of N3. This result is in line with a recent computational work22

showing that in the presence of N3 the reactants and products state are almost isoenergetic,

with the former slightly thermodynamically favored (by ≈5 kJ/mol). Our estimate of a

slightly negative PT free energy in the presence if the inhibitor is in agreement with the

experimental observation of the covalent binding of N3 to the catalytic cysteine and to its

potent inhibitory activity. As a matter of fact, the inability to efficiently promote the PT

reaction has been suggested to determine the low inhibition potencies of known inhibitors.5

A mechanism similar to the one here proposed, has also been recently suggested for the

covalent binding of a different inhibitor, 13b α-ketoamide.39

Scheme 1: Representation of the free energy change upon PT in the apo state and in the
presence of inhibitor N3
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Contribution of protein residues and a conserved water molecule to

the proton transfer energy

To gain insights into the molecular mechanisms that tune the energetics of the catalytic site

in the reactant state, we analyzed the electrostatic potential contribution to the PT energy

in the simulations with both His41E and His41D in the apo state. The most important

contribution to the PT energy fluctuations around the unperturbed ground state energy

difference along the MD simulations is given by the electrostatic potential felt by the QCs30

(see The Perturbed Matrix Method section in the SI). We therefore analyzed the contribution

of each protein residue to the electrostatic potential in order to understand which protein

regions contribute the most to the PT energy. This analysis reveals which are the enzyme

sites that control, via a dynamic electrostatic effect, the catalytic activity that is triggered

by the PT reaction in the binding site.

In the crystal structure of SARS-CoV-2 Mpro a highly buried water molecule is present,

which is packed in a tight hydrogen bond (HB) network involving His41 Nδ, His41 backbone

NH group, the side chain oxygens of Asp187 and His164 Nδ. This HB network is conserved

along other available crystal structures (e.g., 6y2e, 7bqy, 6y2g, 6yb7) and the buried water

molecule, Cwat, has been suggested to play an active role in the PT reaction.40 The important

role of HB networks in proton transfer and transient proton binding is well recognized41,42

and thus the contribution of Cwat was also included as an additional “residue” in the analysis.

In Figure 2, we report qV , i.e., the contribution to the PT energy due to the electrostatic

potential, of each residue in the MD simulation with His41E (A) and His41D (B). In the

figure the residues with a negative contribution exert an electrostatic effect that favors the

PT reaction, while the opposite is true for the residues with a positive contribution. The

residues with the highest (> 20 kJ/mol) positive or negative qV are highlighted with colored

dots, being those that most contribute to determine the PT energy.

The residues that most relevantly contribute to the PT energy are the same for both

His41E and His41D: Arg40, Glu166, Asp187 and Arg188. These are charged residues in the
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Figure 2: qV is plotted for each protein residue and Cwat for the reactant state with His41E
(A) and His41D (B). qV is the mean value along the MD trajectories of the contribution due
to the electrostatic potential to the PT energy. The residues featuring an absolute value of
qV higher than 20 kJ/mol are highlighted with colored dots. The residues with a negative
contribution exert an electrostatic effect that favors the PT reaction, while the opposite is
true for the residues with a positive contribution. The contribution of the residues of the
catalytic dyad (His41 and Cys145) is not included in the plot. Two representative structures
of the different hydrogen bonding pattern involving Cwat in the MD simulations in the
reactant state with His41E and His41D are reported on the right.

vicinity of the catalytic dyad that, besides being energetically relevant, are also structurally

relevant. Arg40 and Asp187 are bound in a salt bridge linking domains I and II of the

protein. Glu166 forms a salt bridge with the amino group of the N-terminus residue of

the other monomer (Ser1) and is involved in the dimerization.2 In addition, the native loop

containing Asp187 and Arg188 was shown to be essential for the proteolytic activity of a very

similar protease from another coronavirus.40 The contribution of Ser1 of the other monomer,

related to the one of Glu166 (see above), can be also seen. Very interestingly, the only

significant difference between the His41E and His41D reactant state is in the contribution of

Cwat: in the His41E state this contribution disfavors the PT reaction, while in the His41D

state the contribution of Cwat favors the PT reaction.

The analysis of the HB network involving Cwat along the MD simulations with His41D

and His41E reveals relevant differences. In the His41D simulation the HB network observed

in the crystal structures is essentially maintained in the MD (see Figure S2A). In contrast, in

the MD simulations with His41E the interaction between Cwat and His41 Nδ is maintained,
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the one between Cwat and His164 Nδ is only partially maintained and those with Asp187 side

chain oxygens and His41 backbone N are lost (see Figure S2B). In fact, as a consequence of the

protonation of His41 at Nε, Cwat changes its orientation, assuming a new configuration that

prevents formation of the HBs with Asp187 and the the backbone of His41 (see representative

structures in Figure 2). This rotation implies a different electrostatic effect on the side chain

of His41, favoring the PT reaction in the His41D reactant state and disfavoring it in the

His41E reactant state. This result further supports the above conclusion that the His41D

state is the most probable reactant state for the PT reaction, both from an energetic and

from a structural point of view.

Three additional minor contributions can also be observed in Figure 2: Asp48, Glu55

and Lys61. These charged residues, that are located on the protein surface not far from the

catalytic dyad cleft, are an example of how the present approach can be used to enhance or

inhibit the catalytic activity. These residues are in fact good candidates for point mutations.

Differently from the other residues emerging from the above analysis, they are in fact located

outside the active site pocket. Therefore, mutations at these sites should not relevantly

perturb the active site structure. Nevertheless, mutation of one of these residues with a

neutral residue would result in a non-negligible change in the PT energy favoring/disfavoring

the PT reaction. In addition, the contribution of these residues shows how the catalytic

activity can be modulated by allosteric control, acting on regions outside the active site

cleft.

The analysis of the residues that contribute the most to the PT energy was also performed

for the MD simulation in the reactant ensemble in the presence of N3. The results, reported

in Figure 3B, show that in the presence of the inhibitor the residues that most significantly

contribute to the PT energy are those already identified in the apo state. In Figure 3C

the difference ∆(qV ) between the single residue contribution obtained from the MD in the

presence of N3 and that obtained in the apo (∆(qV ) = qV (N3)− qV (apo)) is also reported.

This difference highlights the protein regions that more relevantly contribute to the variation
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of the energy change upon PT in the presence of N3: the residues with a high negative

contribution in Figure 3C are those that contribute to lowering the PT energy in the presence

of the inhibitor with respect to the apo state.

Figure 3: A and B: qV is plotted for each protein residue, Cwat and all the other water
molecules as an additional virtual residue SOL for the apo state (A) and in the presence of
the inhibitor N3 (B). qV is the mean value along the MD trajectories of the contribution
due to the electrostatic potential to the PT energy. The residues featuring an absolute
value of qV higher than 20 kJ/mol are highlighted with colored dots. The residues with
a negative contribution exert an electrostatic effect that favors the PT reaction, while the
opposite is true for the residues with a positive contribution. C: ∆(qV) = qV(N3)-qV(apo)
is plotted for each protein residue and Cwat. The residues featuring an absolute value of qV
higher than 10 kJ/mol are highlighted with colored dots. The contributions of the residues
of the catalytic dyad (His41 and Cys145) are not included in the plot. The residues with a
negative contribution are those that contribute to lower the PT energy in the presence of
the inhibitor with respect to the apo state while the opposite is true for the residues with a
positive contribution.

The most relevant (positive and negative) contributions are exerted by Glu166, Arg188,

N3 and the solvent. The electrostatic contribution of N3 in Figure 3C is positive and there-

fore does not favor the reduction of the PT energy. It should be however noted that this
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contribution only takes into account the direct electrostatic effect of N3, neglecting any

possible higher-level interaction between the inhibitor and the catalytic dyad. The positive

contribution of N3 is counterbalanced by a negative contribution of the solvent, likely arising

from the fact that when N3 is located inside the active site pocket the catalytic dyad is less

hydrated (see Figure S3). It should also be noted that the contribution of the solvent, as

highlighted in Figure 3, does not include the contribution of Cwat, that is calculated sepa-

rately (see Figure 3A and B). The contribution of Cwat is essentially the same in the apo

state and in the presence of N3. This is in agreement with the fact that in the MD simulation

in the presence of the inhibitor the same HB pattern observed in the MD simulation in the

apo state with His41D is present.

Interestingly, the residues that contribute the most to the reduction of the PT energy are

Glu166 and Arg188. The analysis of the crystal structure of SARS-CoV-2 Mpro bound to

N3 highlights that the inhibitor backbone forms an antiparallel sheet with residues 164-168

on one side and with residues 189-191 on the other side. The local interactions of N3 with

protein sites different from the catalytic site thus enable the PT reaction. The presence of

N3 reduces the electrostatic effect of Arg188 and Glu166 that disfavors the PT in the apo

state, both by screening the catalytic dyad from their charge and by sterically pushing away

their side chains. This reduced electrostatic effect contributes to the observed lowering of

the PT energy (see Scheme 2).

In the presence of N3 the feasibility of the PT reaction is also enhanced by a better

relative position of the two reaction partners (Cys145 and His41). In fact, the distance

between Cys145 sulfur and the Nε atom of His41 is lower and less variable in the MD

simulation with N3 (see Figure S4).
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Scheme 2: Representation of the mechanism that determines a lower PT free energy in the
presence of inhibitor N3

Discussion

The present results support the hypothesis that in the apo state of SARS-CoV-2 Mpro the

most stable state of the catalytic dyad is that in which both residues are neutral, and

suggest that for the neutral His41 the protonation at Nε is slightly favored with respect

to the protonation at Nδ. However, the two tautomers can easily interconvert, given that

the tautomerization free energy difference is rather small (5 kJ/mol). We also investigated

which protein regions have an important role in the energy change upon PT. We show that

a number of key groups (Arg40, Glu166, Asp187, Arg188 and the conserved water molecule)

within, or in the vicinity of, the catalytic site are able to significantly enhance or reduce

the thermodynamic feasibility of the PT reaction in the apo state. We believe that these

findings can be very useful in the screening of potential inhibitors. In fact, for covalent

inhibition going through a direct PT mechanism, the deprotonation of the sulfhydryl group

of Cys145 is required. The most viable route for that is the PT reaction from Cys145 to

His41 which is proposed to be the physiological reaction in the presence of the substrate.

Therefore, the knowledge of the protein regions that, in the apo state, enhance or reduce

the thermodynamic feasibility of this PT reaction, can guide the design of the recognition
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motives of an inhibitor to the catalytic site of the enzyme with the aim of promoting the PT

reaction, and thus the formation of a covalent bond.

To show that the residues that we identify here can be reliably used for the screening of

new inhibitors, we turn as a test case to a previously designed Michael acceptor inhibitor,

N3, that covalently binds to the Cys145 sulfur and exhibits potent inhibition for SARS-CoV-

2 Mpro. In the presence of N3 the PT reaction free energy decreases significantly and the

zwitterionic product state is almost isoenergetic with the Cys145H-His41D reactant state.

The free energy decrease depends on local conformational changes induced by the inhibitor:

the presence of N3 favors a lower average Cys145S-His41Nε distance and the electrostatic

contribution of two residues (Glu166 and Arg188), which was found to disfavor the PT in

the apo state, is reduced in the presence of the inhibitor.

The approach presented in this work could be of significant aid in the design of new

inhibitors by means of computer simulations. In particular, our approach could assist in

the identification of compounds that can promote the catalytic PT reaction and, therefore,

might be good candidates as covalent inhibitors. Knowledge of the key residues and water

molecules that tune the catalytic PT reaction can in fact guide the analysis of the interactions

between the recognition moieties of a candidate compound and the different sub-sites of the

binding pocket of the protein, which is a crucial step in the design and screening of potential

inhibitors. Design of analogues of known covalent inhibitors (as for example analogues of

N3 or of the 13b α-ketoamide) commonly relies on the geometrical and structural analysis

of X-ray or MD-derived structures of the reactant complex for modulating the recognition

portion. Here, we propose a procedure based on the calculation of the molecular determi-

nants of the proton transfer thermodynamics to complement the information that can be

currently obtained with the available computational procedures for the screening of covalent

candidates.43–46 As a more general application, this approach is a cost effective procedure to

reveal key sites in enzymes to be mutated or to be targeted with ligands in order to enhance

or reduce the catalytic activity.
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