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Abstract: With the development of micro-nanotechnology, smart electronic devices are being updated
and developed, and more and more flexoelectric sensors, actuators, and energy harvesters attached
to elastic substrates have attracted a surge of interest due to unique features at the nano-scale. In
this paper, the static bending behavior and vibration characteristics of a flexoelectric beam structure
based on a linear elastic substrate under a magnetic field environment are investigated. Based on the
electrical Gibbs free energy density, the governing equations and boundary conditions of structures
are derived by using the Euler–Bernoulli beam theory and the Hamilton’s variational principle. The
expressions of the deflection and the induced electric potential of the beam structure are expressed
analytically. The natural frequency of the beam under the open-circuit electrical conditions with
surface electrodes (OCI) are obtained after further extending the solution. The results show that the
flexoelectric effect, the linear elastic substrate, and the magnetic field have significant effects on the
static bending and vibration behaviors of the flexoelectric beam which are beneficial for designing
and developing flexoelectric devices with elastic substrates.

Keywords: flexoelectric effect; linear elastic substrate; induced electric potential; magnetic field;
natural frequency

1. Introduction

With the rapid development of modern science and technology, there is a tendency
toward ultra-precision and miniaturization in the smart material and smart structure
research. There is a large market for smart devices at the nano-scale, when the flexoelectric
effect, which is neglected at the macro-scale, plays an increasingly vital role due to its high
electromechanical coupling. The flexoelectric effect is a kind of electromechanical coupling
caused by strain gradients or non-uniform deformations [1–4], and this electromechanical
phenomenon is size-dependent at the nano-scale [5]. Therefore, it is essential to understand
and analyze the flexoelectric effect in nanoscale materials and structures.

Researchers have carried out many studies on the size-dependent static and vibration
behaviors in micro-nanostructures considering the flexoelectric effect. Zhang et al. [5]
established a Timoshenko dielectric beam model considering the direct flexoelectric effect
and found that the deflection of cantilever and simply supported beams decreased with in-
creasing beam thickness. Their results showed that flexoelectricity plays a major role in the
electromechanical coupling response of piezoelectric beams when the beam thickness is at
the nano-scale. Liang et al. [6,7] resolved and discussed the role of flexoelectric and surface
effects in cantilever beam structures. Their results showed that surface and flexoelectric
effects can reduce the bending deformation of the structure. Zhou et al. [8] investigated
the flexoelectric effects in piezoelectric nanobeams with three different electrical boundary
conditions based on the classical Euler–Bernoulli beam model. They gave the analytical
expression of the induced electric potential of flexoelectric beams. Sladek et al. [9] analyzed
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curved nanoscale Timoshenko beams with the flexoelectric effect. The deflection, rotation,
and induced electric intensity have been presented for various flexoelectric coefficients and
the beam curvature. Park et al. [10] designed and analyzed a structural model based on
piezoelectric polymer (PVDF) film with strain gradient response, and further extended
the application of dielectric materials to flexoelectric sensors. Malikan and Eremeyev [11]
modeled the dynamics of a visco-piezo-flexoelectric nanobeam considering a converse
flexoelectric effect. Their results showed that the viscoelastic coupling will have an influ-
ence on the flexoelectricity property of the material. Yang and Zu [12] investigated the
flexoelectric effect on the natural frequency of the conventional cantilever beam harvesting
structure with an end mass block. Yan [13] elaborated the flexoelectric effect in composite
flat plate harvesters by the weighted residual method based on the Kirchhoff plate theory.
Liang et al. [14] studied the buckling and vibration of flexoelectric nanofilms under the
mechanical loading. Chang [15,16] used the differential quadrature method and the finite
element method to study the longitudinal vibration of nanobeams with variable cross-
sections, respectively. Lin et al. [17] investigated the effects of end mass blocks and beam
dimensions on the natural frequency and the effective frequency shift of a flexoelectric
beam. Therefore, the study of flexoelectric structure properties is of directional guidance
for the development and application of nanoresonators and nanosensors, etc.

Recently, there have been some research reports on nanostructures considering flexible
substrates and magnetic fields. Hong [18] examined the static bending and free vibra-
tion of piezoelectric functionally graded plates on a two-parameter elastic foundation.
Baradaran et al. [19] studied the surface effect on the static bending of nanowires on an elas-
tic foundation. Ebrahimi and Barati [20] evaluated the buckling of flexoelectric nanobeams
with an elastic foundation based on non-local and surface elasticity theories. They found
that the nanostructures could tolerate higher buckling loads due to the flexoelectric and
surface effects at the nano-scale. Yinusa et al. [21] analyzed the transverse and longitu-
dinal vibrations and stability of the carbon nanotube in a magnetic environment. They
determined that the magnetic term has a 20% attenuation or damping effect on the system
vibration. Based on the variation method and the principle of minimum potential energy,
Gobadi et al. [22] studied the thermo-electro-magnetic mechanical behavior of flexoelectric
nanoplates, in which the analytical solutions have been presented. Akgoz and Civalek [23]
analyzed the size-dependent stability of single-walled carbon nanotubes surrounded by
a two-parameter elastic substrate. They found that increasing the Winkler and Pasternak
parameters can increase the buckling load of carbon nanotubes. Jalaei et al. [24] studied
the transient response of viscoelastic functionally graded nanobeams under dynamic loads
and magnetic fields. The results showed that the oscillation amplitude decreases while
the number of periods of nanobeams increases by increasing the magnetic field and the
length scale parameter. Barati [25] analyzed the vibration characteristics of flexoelectric
beams attached to a nonlinear foundation under the short-circuit electrical condition based
on the surface elasticity and non-local elasticity theories. Recently, Xu et al. [26] estab-
lished a rectangular piezoelectric cantilever beam energy harvester with a copper substrate.
Employing the finite element method, the influence of the copper substrate size on the
output performance of piezoelectric harvesters was analyzed, and the optimal size of the
substrate was obtained to achieve the maximum voltage output at a low frequency. The
substrates and external fields have significant effects on the electromechanical properties of
flexoelectric or piezoelectric actuators, sensors or harvesters. It is not clear how the coupling
of substrate parameters and magnetic fields acts on the electromechanical responses of
sensors or harvesters. However, to our knowledge, none of the previous studies mentioned
how the linear elastic substrate and magnetic fields affect the static bending and vibration
behaviors of flexoelectric sensors under the open-circuit electrical condition. The induced
electric potential and the natural frequency under the OCI condition are very important
performances of the flexoelectric sensors or energy harvesters.

The purpose of the present paper was to study the bending behavior and vibration
properties of a flexoelectric cantilever beam attached to a linear elastic substrate under
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the OCI condition. Based on the electrical Gibbs free energy density and the Hamilton’s
variational principle, the dynamic governing equations and the corresponding general
boundary conditions were derived. Then, the characteristic equations of the natural
frequency and the static electromechanical responses were further obtained. The bending
behavior, vibration response, and the effects of linear elastic parameters and magnetic field
on structural performance are discussed in detail.

2. Basic Theory of Flexoelectric Materials

Based on the electrical Gibbs free energy density function, according to the traditional
piezoelectric theory, the basic theoretical model of the flexoelectric material is constructed
with the interaction between the electric field and the strain gradient. Thereby, electrical
Gibbs free energy density function U of the material can be written as:

U = −1
2

aijEiEj +
1
2

cijklεijεkl − eijkEiε jk + fijklEiε jk,l + dijklEi,jεkl (1)

where aij, cijkl , eijk, fijkl , and dijkl are the material property parameters, respectively. aij de-
notes the dielectric coefficient, cijkl denotes the modulus of elasticity, eijk is the piezoelectric
coefficient, fijkl denotes the positive flexoelectric coefficient, and dijkl denotes the inverse
flexoelectric coefficient. Ei is the electric field, Ei,j is the electric field gradient, εij denotes
the strain, and ε jk,l denotes the strain gradient. Sharma et al. [27] investigated the flexo-
electric effect equivalent to piezoelectricity in bending film and defined µijkl = dijkl − fijkl
as the effective flexoelectric coefficient. Considering the effective flexoelectric coefficient,
Equation (1) can be rewritten as:

U = −1
2

aijEiEj +
1
2

cijklεijεkl − eijkEiε jk − µijklEiε jk,l (2)

Under the assumption of linear deformation, the expression between the strain and
strain gradient and its displacement ui is:

εij =
1
2
(
ui,j + uj,i

)
(3)

εij,k =
1
2

(
ui,jk + uj,ik

)
(4)

Correspondingly, the constitutive equations for flexoelectric materials can be further
obtained under linear small deformation conditions:

σij =
∂U
∂εij

= cijklεkl − eijkEk (5)

σijk =
∂U

∂εij,k
= −µijklEl (6)

Di = −
∂U
∂Ei

= aijEj + eijkε jk + µijklε jk,l (7)

where, σij, σijk, Di are the Cauchy stress tensor, the higher-order stress tensor, and electric
displacement vector, respectively. Substituting Equations (5)–(7) into Equation (2), an
alternative expression for the electrical Gibbs free energy density function is obtained:

U =
1
2

σijεij +
1
2

σijkεij,k −
1
2

DiEi (8)

3. Analysis Model of Flexoelectric Beams Based on Linear Elastic Substrates

The present research object is the flexoelectric cantilever beam structure with an end
mass based on linear elastic substrates. The cantilever beam model is shown in Figure 1.
The length, width, and thickness of the cantilever beam are L, b, and h, respectively. The
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mass of the end mass block is Mt, where the end mass block is set as a cube and the side
length is d = b. The force F is applied at the end of the beam. The top and bottom surfaces
of the beam are covered with electrodes, in which the thickness and stiffness of electrode
layers would be neglected. This cantilever beam structure is connected to a linear elastic
substrate and subjected to an in-plane axial magnetic field Hx. The linear elastic substrate
can be simulated by a two-parameter linear elastic foundation model consisting of linear
and shear layers. Here, kp is the Pasternak constant, which describes the shear effect, and
kw is the Winkler constant, which describes the tensile effect.

Figure 1. The model of a flexoelectric cantilever beam based on a linear elastic substrate.

The Hamilton’s variational expression for a flexoelectric cantilever beam is [6]:

δ

∫ T

0
(K− G + W)dt = 0 (9)

where K, G, and W are the total kinetic energy of the system, the total electrical Gibbs free
energy, and the work done by the external loads, respectively. Equation (9) can be written as:

K =
∫

V
1
2 ρ
∣∣∣ .
wm
∣∣∣2dV +

[
1
2 Mt

∣∣∣ ∂(w+yw′)
∂t

∣∣∣2 + 1
2 It

∣∣∣ ∂
.

wm

∂x1

∣∣∣2]|x1=L

G =
∫

V UdV

W =
∮

s vφdA0 +
1
2 Fw

∣∣∣∣L0 + We

(10)

where ρ is the flexoelectric material density,
.

wm is the primary derivative of the absolute
displacement of the flexoelectric beam with respect to time, where wm(x1, t) = w(x1, t).
w(x1, t) denotes the transverse displacement of the neutral layer of the beam along the x3
direction, which is the deflection of the beam. It is the moment of inertia corresponding to
the end mass block. v(x1, t) denotes the free charge density of the electrodes on the top
and bottom surfaces of the beam. φ(x1, t) is the electric potential on the surfaces generated
by the bending of the cantilever beam. V and A0 are the volume and top and bottom
surface areas of the beam, respectively. We is the work performed on the system by the
external conditions (the substrate and magnetic field). For a planar beam deformation,
combined with the Maxwell relation, the form of the Lorentz force generated under the
action of the magnetic field can be expressed as: fLz = ξ AH2

x
d2w
dx2 [28], where fLz is the

Lorentz force, ξ is magnetic parliamentary, and A is the cross-sectional area of the beam.
Combined with the two-parameter foundation model, the work variation of the external

fields can be written as: δWe =
∫ L

0

(
−kww + kp

∂2w
∂x2

1
+ ξ AH2

x
∂2w
∂x2

1

)
δwdx1 [20,25,28].

According to the Euler–Bernoulli theory, the displacement expression of the flexoelec-
tric beam is:

u1 = −x3
dw
dx1

, u2 = 0, w = w(x1, t) (11)
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where u1, u2 are the displacements along x1 and x2 directions, respectively, and w is the
deflection of the beam structure as bending. The expression of strain and strain gradient of
the flexoelectric cantilever beam is:

ε11 = −x3
d2w
dx2

1
, ε11,3 = −d2w

dx2
1

, ε11,1 = −x3
d3w
dx3

1
(12)

Under the condition of linear small deformation, the constitutive equations of the
flexoelectric material can be further obtained:

σ11 = c11ε11 − e311E3 (13)

σ113 = −µ3113E3 (14)

D3 = a33E3 + e311ε11 + µ3113ε11,3 (15)

The electric field E3 inside the cantilever beam can also be expressed as a negative
gradient of the internal electric potential Φ0(x1, x3, t) along the thickness direction:

E3 = −∂Φ0

∂x3
(16)

No free charge exists in flexoelectric cantilever beams, and thus, the electric displace-
ment should satisfy the Gauss’s law, i.e., D3,3 = 0. After substituting Equation (15) into
Gauss’s law, combined with Equation (16), we obtained:

∂2Φ0

∂x2
3

= − e311

a33

d2w
dx2

1
(17)

Under the OCI condition, it is assumed that the electric potential on the top surface
of the cantilever beam is Φ0

(
x1, h

2 , t
)
= 0 and the electric potential on the bottom surface

is Φ0

(
x1,− h

2 , t
)
= φ(x1, t). Then the electric potential difference between the top and

bottom surfaces of the beam is φ(x1, t). Solving Equation (17) and combining with the
electrical boundary conditions, the expression for the internal electric potential of the
flexoelectric cantilever beam can be obtained:

Φ0(x1, x3, t) = − e311

2a33

d2w
dx2

1
x2

3 −
φ(x1, t)

h
x3 + C(x1,, t) (18)

where C(x1, t) is the potential value of the neutral axis of the beam with respect to x1. By
the above equation, the electric field E3, stress σ11, higher order stress σ113, and electric
displacement D3 can be obtained:

E3 = − e311

a33
ε11 +

φ(x1, t)
h

(19)

σ11 = (c11 +
e2

311
a33

)ε11 − e311
φ(x1, t)

h
(20)

σ113 = µ3113
e311

a33
ε11 − µ3113

φ(x1, t)
h

(21)

D3 = µ3113ε11,3 + a33
φ(x1, t)

h
(22)
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Substituting Equations (19)–(22) into the Equation (8), we can obtain the expansion of
the electrical Gibbs free energy density function U of the cantilever beam structure:

U =
1
2
(c11 +

e2
311
a33

)ε2
11 +

µ3113e311

a33
ε11ε11,3 −

µ3113φ(x1, t)
h

ε11,3 −
1
2

a33
φ2(x1, t)

h2 (23)

U is a functional expression related to time t in the vibration. Therefore, the electrical
Gibbs free energy density function could be expanded by the generalized variational
method, i.e.,

δ
∫ T

0 dt
∫

V UdV =
∫ T

0

∫ L
0

[(
GP

∂4w
∂x4

1
+ µ3113b

∂2φ

∂x2
1

)
δw +

(
µ3113b

∂2w
∂x2

1
− a33

φb
h

)
δφ

]
dx1dt

+
∫ T

0

(
GP

∂2w
∂x2

1
+ µ3113bφ

)
δ

(
∂w
∂x1

)
|x1=Ldt−

∫ T
0 GP

∂3w
∂x3

1
δw|x1=Ldt

(24)

where GP =
bh3

12
(c11 +

e2
311
a33

) is the effective bending rigidity of the piezoelectric nanobeam.

By using the parallel axis theorem, the expression for the moment of inertia of the end
mass block can be obtained as:

It =
1
6

Mtd2 + Mt(
d + h

2
)

2
(25)

Then, by substituting Equations (24) and (25) into Equation (9), the generalized Hamil-
ton’s variational equation of the flexoelectric cantilever beam structure is obtained:∫ T

0 dt
∫

V ρ
( ..
w
)
δwdV

+
∫ T

0 dt
∫ L

0

[(
Gp

∂4w
∂x4

1
+ µ3113b

∂2φ

∂x2
1
+ kww− kp

∂2w
∂x2

1
− ξ AH2

x
∂2w
∂x2

1

)
δw

−
(

µ3113b
∂2w
∂x2

1
+ a33

φb
h

)
δφ

]
dx1 +

∫ T
0

(
Gp

∂2w
∂x2

1
+ µ3113bφ + It

∂3w
∂x1∂t2

)
δ

(
∂w
∂x1

)
|x1=Ldt

−
∫ T

0

(
Gp

∂3w
∂x3

1
+ F−Mt

∂2w
∂t2

)
δw|x1=Ldt+

∫ T
0 dt

∫
S vδφdA0 = 0

(26)

where
..
w is the second derivative of the deflection w with respect to time, δ(x1) is the

Diracdelta function. The following variational expansion is applied in the further derivation
of Equation (26):

δ
∫ T

0
1
2

Mt

(
∂w
∂t

)2
dt|x1=L = −Mt

∫ T
0

∂2w
∂t2 δwdt|x1=L

δ
∫ T

0
1
2

It

∣∣∣∣∣∂
.

wm

∂x1

∣∣∣∣∣
2

dt|x1=L = −
∫ T

0 It
∂3w

∂x1∂t2 δ

(
∂w
∂x1

)
dt|x1=L

(27)

3.1. The Bending Response of Flexoelectric Beams Attached to Linear Elastic Substrates

The top and bottom surfaces of a flexoelectric cantilever beam are covered with
electrodes, thus the top and bottom surfaces are electrical equipotential bodies and the
electric potential difference φ(t) is a function independent of x1. In the analysis of the
beam structure statically, let t = 0 and Mt = 0. For any δw, Equation (26) is satisfied, in
which the electromechanical coupling governing equation and boundary conditions of the
flexoelectric cantilever beam under the OCI condition can be obtained:

GP
d4w
dx4

1
−
(

kp + ξ AH2
x

)d2w
dx2

1
+ kww = 0 (28)
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w =

dw
dx1

= 0, (x1 = 0)

GP
d2w
dx2

1
+ µ3113bφ = 0, GP

d3w
dx3

1
+ F = 0 (x1 = L)

(29)

Similarly, for Equation (26), δφ can be chosen arbitrarily, and there is the following relation:

∫ L

0
(v + µ3113

d2w
dx2

1
− a33

φ

h
)dx1 =

∫ L

0
(v− D3)dx1 = 0 (30)

Under OCI conditions, the charges on the bending surfaces of the flexoelectric beam are
redistributed, however, the total surface free charge or the surface electric displacement of
the flexoelectric beam is zero [8,29,30]. Thus, the electrical boundary condition expression is:

∫ L

0

(
µ3113

d2w
dx2

1
− a33

φ

h

)
dx1 = 0 or

∫ L

0
−D3dx1 = 0 (31)

So, the electric potential could be obtained φ(t) = µ3113h
a33L

∂w
∂x1
|x1=L for the flexoelectric

cantilever beam.
Therefore, the expressions of the deflection and induced electric potential as only force

F (case I) are:

w1 =
3FLx2

1 − Fx3
1

6GP
−

µ3113
2bFLhx2

1
4GP

(
µ2

3113bh + GPa33
) (32)

φ1 =
µ3113FLh

2
(
µ2

3113bh + GPa33
) (33)

The expressions of the deflection and induced electric potential as the force F and the
magnetic field (case II) are:

w2 =
1

2r3GP

{
[sin h(rx1) + cos h(rx1)][−F− rµ3113bφ]

[sin h(rL) + cos h(rL)]
+

[sin h(rx1)− cos h(rx1)][F− rµ3113bφ]

[sin h(rL)− cos h(rL)]

}
+

[
r2µ3113bφsin h(rL)− rFcos h(rL)

]
x1 + Fsin h(rL)− rµ3113bφcos h(rL)

r3GP
[
sin2 h(rL)− cos2 h(rL)

] (34)

φ2 =
hµ3113F

[
sin2 h(rL)− cos2 h(rL) + cos h(rL)

]
r
{

µ2
3113bhsin h(rL)− a33rLGP

[
sin2 h(rL)− cos2 h(rL)

]} (35)

where : r =
√

ξAH2
x

GP
.

Based on a linear elastic substrate, the expressions of the deflection and induced
electric potential as only force F (case III) are:

w3 =

{
4µ2

3113bα1nhF(m1α1u1 + t1u2)

Z
[
2µ2

3113bα1h(α1nu1 + m1u2)− Za33L
] − 2Fm1

Z

}[
sin h(α1x1)−

α1

α2
sin h(α2x1)

]

+

{
4µ2

3113bα1m1hF(m1α1u1 + t1u2)

Z
[
2µ2

3113bα1h(α1nu1 + m1u2)− Za33L
] − 2Ft1

Z

}
[cos h(α2x1)− cos h(α1x1)]

(36)

φ3 =
hµ3113F(m1α1u1 + t1u2)

2µ2
3113bα1h(α1nu1 + m1u2)− Za33L

(37)

where:

s1 =
kp

GP
, s2 =

kw

GP
, α1 =

√√√√ s1 +
√

s2
1 − 4s2

2
, α2 =

√√√√ s1 −
√

s2
1 − 4s2

2
,

m1 = α3
1cos h(α1L)− α1α2

2cos h(α2L), n = α3
1sin h(α1L)− α3

2sin h(α2L),
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t1 = α3
1 sin h(α1L)− α2

1α2sin h(α2L), Z = 2GP

(
m2

1 − nt1

)
Based on a linear elastic substrate, the expressions of the deflection and induced

electric potential acting on the force F and the magnetic field (case IV) are the same as in the

case III, with the difference of the parameter s1 which should be changed to s1 =
kp+ξAH2

x
GP

.

3.2. The Vibration Response of Flexoelectric Beams Attached to Linear Elastic Substrates

When the vibration characteristics of the beam structure are analyzed, t 6= 0 and F = 0
have been set. Therefore, Equation (26) can be satisfied for any choice of δw, so that the
dynamic governing equation of the flexoelectric cantilever beam system under the OCI
condition can be obtained:

Gp
∂4w
∂x4

1
+ kww−

(
kp + ξ AH2

x

)∂2w
∂x2

1
+ m

∂2w
∂t2 = 0 (38)

where m = ρbh denotes the mass per unit length of the flexoelectric beam.
Correspondingly, the dynamic induced electric potential could be expressed as

φ(t) = µ3113h
a33L

∂w(t)
∂x1
|x1=L. From Equation (26), the dynamic mechanical boundary condi-

tions of the flexoelectric beam based on the linear elastic substrate under the OCI condition
can be obtained: 

w(t, 0) = 0
∂w(t)
∂x1

|x1=0 = 0[
Gp

∂2w(t)
∂x2

1
+

µ2
3113bh
a33L

∂w(t)
∂x1

+ It
∂3w(t)
∂x1∂t2

]
|x1=L = 0[

Gp
∂3w(t)

∂x3
1
−Mt

∂2w(t)
∂t2

]
|x1=L = 0

(39)

By the separated variables method, the characteristic equation for the natural frequency
of the flexoelectric energy harvester based on a linear elastic substrate under the OCI
condition can be solved. The solution of this equation can be set according to the form of
Equation (38) as [31,32]:

w(x1, t) = ∅(x1)η(t) (40){
∅(x1) = A1sinβ1x1 + A2cosβ1x1 + A3sinhβ2x1 + A4coshβ2x1

η(t) = A5eλit (41)

where ∅(x1) denotes the modal vibration pattern, β1, β2 are the eigenvalues of the struc-
tural vibration, the five parameters A1, A2, A3, A4, and A5 are independent of t and x1,
η(t) denotes the generalized coordinate, and i is the imaginary root. After substituting
Equations (40) and (41) into Equations (38) and (39), the dynamic governing equation and
the corresponding boundary conditions of the cantilever beam structure can be obtained:

Gp
d4∅(x1)

dx4
1
−
(

kp + ξ AH2
x

)d2∅(x1)

dx2
1

+ kw∅(x1)−mλ2∅(x1) = 0 (42)



∅(0) = 0
d∅(x1)

dx1
|x1=0 = 0[

Gp
d2∅(x1)

dx2
1

+

(
µ2

3113bh
a33L

− Itλ
2

)
d∅(x1)

dx1

]
|x1=L[

Gp
d3∅(x1)

dx3
1

+ λ2Mt∅(x1)

]
|x1=L = 0

= 0 (43)
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The circular frequency expression of the natural vibration of the system can be obtained

from Equation (42): λ =

√
kw−(kp+ξAH2

x)β2+Gpβ4

m . Then, the following relation can be
obtained after substituting Equation (41) into Equation (43):{

B1 A1 + B2 A2 = 0
B3 A1 + B4 A2 = 0

(44)

In which:

B1 = Gp
(
−β2

1 sin β1L− β1β2sin hβ2L
)
+

(
µ2

3113bh
a33L

− Itλ
2

)
(β1 cos β1L− β1cos hβ2L)

B2 = Gp
(
−β2

1 cos β1L− β2
2cos hβ2L

)
+

(
µ2

3113bh
a33L

− Itλ
2

)
(−β1 sin β1L− β2sin hβ2L)

B3 = Gp
(
−β3

1 cos β1L− β1β2
2cos hβ2L

)
+ λ2Mt

(
sin β1L− β1

β2
sin hβ2L

)
B4 = Gp

(
β3

1 sin β1L− β3
2sin hβ2L

)
+ λ2Mt(cos β1L− cos hβ2L)

(45)

r1 =
kp + ξ AH2

x

Gp
, r2 =

kw −mλ2

Gp
,

β1 =

[(
r2

1 − 4r2
)1/2 − r1

2

]1/2

, β2 =

[
r1 +

(
r2

1 − 4r2
)1/2

2

]1/2

To ensure that the system of homogeneous Equation (44) has non-zero solutions, the
coefficient determinant corresponding to the equations must be zero. By solving and
simplifying the matrix determinant, the characteristic equation for the natural frequency of
this flexoelectric energy harvester under the OCI condition can be obtained as:

G2
p
[
−β5

1
(
S2

1 + C2
1
)

+β2
1β2

2(β2S1S2 − β1C1C2)− β3
1β2(β1S1S2 + β2C1C2) + β1β4

2
(
S2

2 − C2
2
)]

+Gpλ2Mt

[
β2

1

(
S1C2 −

β1

β2
S2C1

)
+ β2(β2S1C2 − β1S2C1)

]
−Gp

(
µ2

3113bh
a33L

− Itλ
2

)[
β1β2

2(β1S1C2 + β2S2C1) + β3
1(β2S2C1 + β1S1C2)

]
−λ2Mt

(
µ2

3113bh
a33L

− Itλ
2

)[
−β1

(
S2

1 + C2
1
)
+ β1

(
β1

β2
S1S2 + C1C2

)
+ (β1C1C2 − β2S1S2)

+β1
(
S2

2 − C2
2
)]

= 0

(46)

where C1 = cos β1L, C2 = cos hβ2L, S1 = sin β1L, S2 = sin hβ2L.
Equation (46) is a transcendental equation with respect to the eigenvalues β1, β2. The

analytical solutions of β1, β2 cannot be written exactly by conventional methods, but it
is possible to obtain a series of values of λ by the numerical method. Then, the natural
frequency in the OCI condition foz could be obtained. Under the short-circuit electrical
condition, the surface induced electric potential of the flexoelectric energy harvester is zero.
Hence, the natural frequency fsz of the beam structure can be obtained by the same method
of setting φ(t) = 0 in the corresponding boundary condition.

4. Numerical Analysis and Discussion

In the present study, the following dimensionless parameters are used [25]:

Kw = kw
L4

D11
, Kp = kp

L2

D11
, H̃x = Hx

√
ξbhL2

c11 I
, D11 ≈

c11h3b
12

, I =
bh3

12
. (47)



Micromachines 2022, 13, 915 10 of 15

4.1. Analysis of Static Bending Behavior of Flexoelectric Beam Structures

BaTiO3 has a large flexoelectric coefficient and significant electromechanical coupling
properties. Therefore, as analyzing the bending behavior of the beam structure, BaTiO3 material
is taken as the research object. The values of the selected parameters are [8,25,33,34]: elasticity
coefficient c11 = 167.55 GPa, piezoelectric coefficient e311 = −4.4 C/m2, dielectric constant
a33 = 12.56 nC/(V·m), electric polarization rate χ33 = 12.46 nC/(V·m), flexoelectric
coefficient of about 10−5 − 10−8 C/m, L = 50h, and b = h. In addition, the relationship
between external force F and the beam thickness is taken to be |F/h| = 1 N/m. The
dimensionless shear parameter KP = 5, the dimensionless linear parameter Kw = 5, and the
dimensionless magnetic field strength H̃x=1 [25]. We define the expression of the normalized

effective stiffness as
∫

V εec1111εedV∫
V ε f c1111ε f dV [8,35], where εe and ε f are the strain ε11 in the beam structure

without induced electric potential and with induced electric potential, respectively.
Figure 2 gives the curves of the normalized effective stiffness varying with beam

thickness for two beam structures with different flexoelectric coefficients (µ3113 = 0.1 µC/m,
1 µC/m). The figure shows that the effective stiffness increases with decreasing beam
thickness. It indicates that the decrease in the size of the structure increases the flexoelectric
effect, which in turn significantly affects the bending deformation of the beam. As the
beam thickness decreases to a few nanometers, a saturation value of the effective stiffness
gradually appears. Under different external conditions, the saturation values of the effective
stiffness are different. This is because the reduction of the beam thickness under external
loads causes the induced electric potential, which is generated by the flexoelectric effect,
to increase firstly and then decrease. When the induced electric potential decreases, the
reverse moment generated by the induced electric potential will also decrease. Therefore,
the effective stiffness does not tend to infinity but reaches saturation values. The effective
stiffness of the beam based on the linear elastic substrate is greater than that of a beam
without substrate. This is explained as the beam structure and the substrate can deform
together and can withstand relatively large deformations. The linear elasticity considers
the normal pressure and the transverse shear stress from the surrounding elastic medium,
which acts as a restraint on the deformation of the beam structure. The effective stiffness
of the beam without the substrate is greater when both the force F and magnetic field
are applied than when only force F is applied. FWhereas the effective stiffness of the
flexoelectric beam structure based on the linear elastic substrate is smaller when both the
force F and magnetic field are applied than when only force F is applied. Comparing
Figure 2a,b, it can be found that the flexoelectric coefficient does not change saturation
values of the effective stiffness. When the flexoelectric coefficient decreases to 0.1 µC/m,
the critical thickness at which the effective stiffness reaches the saturation value decreases.
This is because the decrease of the flexoelectric coefficient causes a significant decrease in
the flexoelectric effect, when a beam with a smaller thickness is able to generate a larger
strain gradient and produce a higher induced electric potential to bring the beam stiffness
to reach its saturation value.

Figure 3a,b plots the curves of normalized effective stiffness of flexoelectric cantilever
beams with different thicknesses as a function of linear or shear parameter. It can be
observed from the figure that with the increase of linear and shear parameters, the effec-
tive stiffness first increases rapidly, and reaches a maximum value at about Kw = 8 or
Kp = 4, then gradually decreases and stabilizes. The results show that the ability of the
beam to resist bending deformation first increases and then decreases with the increase
of the linear and shear parameters. In addition, the smaller the beam thickness, the more
significant the effect of the linear elastic parameters. Therefore, when people design or
select flexoelectric devices based on linear elastic substrates at the nano-scale, selecting
reasonable substrate parameters can make the devices obtain optimal mechanical properties
or electrical properties.
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Figure 2. The normalized effective stiffness of flexoelectric cantilever beams with and without linear
elastic substrate subjected to different applied loads under the OCI condition: (a) µ3113 = 1 µC/m;
(b) µ3113 = 0.1 µC/m.

Figure 3. The normalized effective stiffness of flexoelectric cantilever beams with different thicknesses
as a function of linear elastic parameters: (a) with linear parameters; (b) with shear parameters.

We define the normalized induced electric potential as φi/φ0i (i = 1, 2, 3, 4, φ0i denotes
the maximum induced potential of the beam without substrates subjected to force F only).
Figure 4a,b plots the induced electric potential as a function of thicknesses for two cantilever
beam structures with different flexoelectric coefficients (µ3113 = 0.1 µC/m, 0.2 µC/m). The
induced electric potential of the flexoelectric beam structure increases and then decreases
gradually to a stable value with increasing the beam thickness. The peak induced electric
potential of the flexoelectric beam based on the linear elastic substrate is smaller than that of
the beam without the substrate. The linear elastic substrate acts as a mechanical boundary
effect. The restraint on the beam will reduce the bending deformation of the beam, which
in turn reduces the induced electric potential generated by the bending deformation. The
curves of the normalized induced electric potential with the magnetic field are shifted
upward to the right with respect to the beam structure with F only. In this case, the
magnetoelectric effect of the beam structure causes a change in the electrical properties.
It can be recognized that a large strain gradient is not necessary to generate the induced
electric potential when a magnetic field is present. In addition, the comparison between
Figure 4a,b shows that the beam structure with a large flexoelectric coefficient has a larger
beam thickness corresponding to the peak induced electric potential. These conclusions
can be used to design flexoelectric nanostructures and flexoelectric materials with optimal
dimensions to obtain the best electrical output.
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Figure 4. The normalized induced electric potential for flexoelectric cantilever beams with and with-
out linear elastic substrates under the OCI condition: (a) µ3113 = 0.1 µC/m; (b) µ3113 = 0.2 µC/m.

4.2. Analysis of The Vibration Characteristics of Flexoelectric Beam Structures

BaTiO3 has a high stiffness and a very high natural frequency, which are not suitable
for practical application. It is possible to choose a less stiff material as the base material to
reduce the natural frequency of flexoelectric beam structures at the nano-scale. Therefore, in
the analysis of the vibration characteristics of the flexoelectric cantilever beam, polyvinyli-
dene fluoride (PVDF) is used. The parameters of PVDF are as follows [36]: piezoelectric
coefficient e311 = −0.01 N/(V·m), dielectric coefficient a33 = 8.15× 10−11 C2/

(
N·m2),

elasticity coefficient c11 = 3.7 GPa, and density ρ = 1.78× 103 kg/m3. The flexoelectric
coefficient is taken to be about 10−6 ∼ 10−9 C/m [17,35]. The length, width, and thickness
ratios are kept at 100: 10: 1. K is used to represent the proportion of the mass of the end
mass block in the entire flexoelectric beam structure, and the expression of the end mass
block is Mt = m× L× K, where K is taken as 0.05.

Figure 5 illustrates the natural frequency of the flexoelectric beam based on the linear
elastic substrate with the beam thickness under different linear parameters, shear parame-
ters, and the magnetic field strength. The figure indicates that the natural frequency of the
cantilever beam with and without the substrate decreases with increasing the thickness,
which is the same as that of Lin et al. [17]. Figure 5a,b shows that the natural frequency of
the cantilever beam structure with the same thickness will increase with the increase of the
linear parameters or shear parameters, and the shear parameters have a greater influence on
the natural frequency. The increase of the linear elastic parameters can significantly increase
the stiffness of the nanobeam, which has a similar effect as the flexoelectric coefficient, and
finally increases the natural frequency of the beam structure. Figure 5c shows that when the
magnetic field strength increases, the natural frequency also increases. The magnetic field
acts similarly as the shearing effect of the substrate, which reduces the bending deformation
and greatly increases the natural frequency of the flexoelectric beam.

The natural frequency shift of the beam structure is an important parameter for
judging the electromechanical coupling performance and vibration characteristics of the
flexoelectric harvesters [31,32,37]. In the present paper, the effective frequency shift of the
flexoelectric cantilever beam structure is defined as Fsh = foz/ fsz. Figure 6a is presented
to investigate the effective frequency shift of the flexoelectric beam with and without
the linear elastic substrate as a function of beam thickness for two different flexoelectric
coefficients (0.1 µC/m, 0.01 µC/m). The results show that the effective frequency shift
of the flexoelectric beam based on the linear elastic substrate is higher than that of the
beam without the substrate. The effective frequency shift saturation value is the same
for the identical flexoelectric beam structure with different flexoelectric coefficients. The
critical thickness corresponding to the saturation of the effective frequency shift decreases
gradually when the flexoelectric coefficient decreases. Figure 6b gives the curves of the
effective frequency shift with the thickness of flexoelectric beam structures based on a
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linear elastic substrate under different magnetic fields. It can be seen from the Figure 6b
that the effective frequency shift of the cantilever beam structure increases as the applied
magnetic field strength increases. The result indicates that the addition of the magnetic
field improves the ability of the beam to resist bending deformation and significantly affects
the natural frequency of the flexoelectric beam structure under the OCI condition, which in
turn changes the effective frequency shift of the structure.

Figure 5. The variation of natural frequency of flexoelectric cantilever beams as beam thickness under
the OCI condition: (a) with different linear parameters, Kp = 0, H̃x = 0; (b) with different shear
parameters, Kw = 0, H̃x = 0; (c) with different magnetic field, Kp = 5, Kw = 5.

Figure 6. The effective frequency shift of flexoelectric cantilever beams under the OCI condition:
(a) with and without linear elastic substrates, H̃x = 0, µ3113 = 0.1 µC/m, µ3113 = 0.01 µC/m;
(b) with different magnetic fields, Kp = 5, Kw = 5, µ3113 = 0.1 µC/m.
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5. Conclusions

In this paper, the static bending behavior and vibration characteristics of flexoelectric
cantilever beams attached on linear elastic substrates are studied and analyzed. Based
on the electrical Gibbs free energy function, the dynamic governing equation and the
corresponding electromechanical boundary conditions are obtained using the Hamilton’s
variational principle. For the static problem, the deflection and the induced electric potential
have been solved and expressed analytically. Further, the characteristic equations of the
natural frequency of beam structures are derived, and thus the dynamic characteristics of
the structures are analyzed. The numerical results show that both the applied magnetic
field and the linear elastic substrate significantly improve the resistance of flexoelectric
beams to bending deformation. The beam can achieve an optimal mechanical performance
as Kw = 8 or Kp = 4. The peak induced electric potential of the flexoelectric beam based
on the linear elastic substrate will be lower than that of the beam without the substrate.
The increase of the flexoelectric coefficient, linear elastic parameters and the magnetic
field strength will increase the natural frequency of the beam structure. As the thickness
of the flexoelectric beam decreases, the effective frequency shift gradually increases to a
saturation value, which is related to the end mass block, the linear elastic parameters, and
the magnetic field strength. The critical beam thickness for reaching the saturation value is
related to the flexoelectric coefficient only.
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