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Abstract

The lack of adequate toxicity data for the vast majority of chemicals in the environment has 

spurred the development of new approach methodologies (NAMs). This study aimed to develop a 

practical high-throughput in vitro model for rapidly evaluating potential hazards of chemicals 

using a small number of human cells. Forty-two compounds were tested using human induced 

pluripotent stem cell (iPSC)-derived cells (hepatocytes, neurons, cardiomyocytes and endothelial 

cells), and a primary endothelial cell line. Both functional and cytotoxicity endpoints were 

evaluated using high-content imaging. Concentration-response was used to derive points-of-

departure (POD). PODs were integrated with ToxPi and used as surrogate NAM-based PODs for 

risk characterization. We found chemical class-specific similarity among the chemicals tested; 

metal salts exhibited the highest overall bioactivity. We also observed cell type-specific patterns 

among classes of chemicals, indicating the ability of the proposed in vitro model to recognize 

effects on different cell types. Compared to available NAM datasets, such as ToxCast/Tox21 and 

chemical structure-based descriptors, we found that the data from the five-cell-type model was as 

good or even better in assigning compounds to chemical classes. Additionally, the PODs from this 

model performed well as a conservative surrogate for regulatory in vivo PODs and were less likely 

to underestimate in vivo potency and potential risk compared to other NAM-based PODs. In 

summary, we demonstrate the potential of this in vitro screening model to inform rapid risk-based 

decision-making through ranking, clustering, and assessment of both hazard and risks of diverse 

environmental chemicals.
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1 Introduction

Most regulatory frameworks for evaluating the safety of drugs and chemicals include a 

requirement for studies in animals; however, because of the low throughput and high cost of 

these studies, considerable toxicological information gaps exist for most chemicals in 

commerce (Locke and Myers, 2011; Taylor et al., 2014; Kavlock et al., 2018). The 

development of novel non-animal models, both cell-based and computational approaches, to 

replace animals as the default option in chemical safety evaluation was stimulated by ethical 

and political pressures (Taylor, 2018), advances in biomedical research and technology, and 

the need to address the potential hazards from thousands of chemicals in commerce and the 

environment (NRC, 2007). In the United States and in the European Union, recent changes 

to the laws that govern the evaluation of commodity and environmental chemicals include 

provisions that encourage the use of alternative test methods for hazard and risk assessment 

applications, such as read-across, prioritization, and screening (ECHA, 2016; US EPA, 

2018; Taylor et al., 2014). Novel analytical and in vitro data, now commonly referred to as 

new approach methodologies (NAMs), are being used in support of regulatory decisions 

(Kavlock et al., 2018; Paul Friedman et al., 2020); however, concerns about the limitations 

of NAMs in decision-making also have been voiced (Gocht et al., 2015; Berggren et al., 

2015). The US Environmental Protection Agency (EPA) is developing a strategic plan to 

reduce the use of vertebrate animals in testing chemical substances and promote the 

development of alternative test methods; the goal is to eliminate animal testing from 

regulatory requirements for pesticides and industrial chemicals by 2035 (US EPA, 2019).

The efforts to expand the portfolio of NAMs and test their utility in decision-making are 

most prominent in the European Union (Daston et al., 2015; Berggren et al., 2015; Desprez 

et al., 2018; Escher et al., 2019) and the United States (Thomas et al., 2018; Judson et al., 

2010a; Kavlock et al., 2018). Data on thousands of chemicals that have been tested in 

hundreds of lower organism, cell- or molecular-based assays (Kleinstreuer et al., 2014) are 

publicly available (Williams et al., 2017). These data are used to derive quantitative hazard 

predictions (Bell et al., 2018; Wetmore, 2015; Pearce et al., 2017; Wambaugh et al., 2015), 

to address potential data gaps (Chiu et al., 2018; Guyton et al., 2018), and to derive 

estimates of human health risk when combined with human exposure data or estimates 

(Sipes et al., 2017; Sirenko et al., 2017; Rotroff et al., 2010; Paul Friedman et al., 2020).

Notwithstanding recent advances in the development of NAMs and publications of a number 

of case studies on their use for decision-making, many stakeholders, both the industry and 

the regulators, remain unsure as to what assay(s) should be used to gather data on chemicals 

or mixtures not currently in ToxCast/Tox21 programs. A traditional approach to 

development of cell-based models for animal study replacement is to focus on one organ/

tissue of concern to the toxicologists, such as the liver (Soldatow et al., 2013), central 

nervous system (Schmidt et al., 2017), kidney (Su et al., 2016), lung (Lee et al., 2018) or 

heart (Blanchette et al., 2019). Examples of a successful effort to create targeted sets of in 
vitro assays for a particular decision context are proposals to replace rat uterotrophic 

(Browne et al., 2015) and Hershberger (Kleinstreuer et al., 2018) assays. In addition, some 

decision contexts require rapid evaluation of potential chemical hazards in a limited number 

of assays, such as in response to chemical spills (Judson et al., 2010b; NTP, 2016). Still, 
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little consensus exists with respect to which assays are readily accessible, whether they are 

reproducible, and how the data shall be analyzed and interpreted.

It also has been reasoned that the pace of transition from animal data to NAMs will depend 

on the pace at which these new models are optimized to reflect the biology of humans, rather 

than that of animals (Herrmann et al., 2019). Cancer cell lines, primary cells isolated from 

non-transplant grade donor tissues, and induced pluripotent stem cell (iPSC)-derived cells 

are current options for studies of human biology in vitro. Of these choices, iPSC-derived 

organotypic cells are the most physiological and reproducible cell-based model for animal 

replacement (Anson et al., 2011); however, little toxicological data is available in iPSCs as 

they are not yet part of ToxCast/Tox21.

In this study, we aimed to conduct an initial test of the performance of a compendium of 

human in vitro models that comprise a small but diverse array of tissues of interest using a 

representative set of chemicals with known regulatory toxicity values that exemplify major 

distinct classes of contaminants found on Superfund sites. Specifically, we hypothesized that 

these cell-based assays can be used for rapid hazard evaluation and thus represent a sensible 

targeted set of alternative methods for NAM-enabled rapid risk assessment where timely 

decisions are needed but regulatory toxicity values are lacking. We show that the data from 

the five-cell-type model was as good or even better in assigning compounds to chemical 

classes, as compared to either data from large-scale chemical screening programs or 

chemical structure-based descriptors. In addition, the quantitative data from this model can 

serve as a conservative surrogate for regulatory decision-making in rapid hazard evaluation 

scenarios.

2 Materials and methods

Chemicals and biologicals

For our in vitro models, we selected four organ/tissue types from which iPSC-derived cells 

are available from a commercial vendor. iCell hepatocytes 2.0 (Catalogue # C1023), neurons 

(Catalogue # C1008), cardiomyocytes (Catalogue # CMC-100-010-001) and endothelial 

cells (Catalogue # C1023), including cell-specific media and supplements, were from 

Fujifilm Cellular Dynamics (Madison, WI). Pooled human umbilical vein endothelial cells 

(HUVECs) in EGM-2 medium (Catalogue # CC-2519A) and the EGM™-2 BulletKits™ 

(Catalogue # CC-3162) were from Lonza (Walkersville, MD). We selected these cell types 

because many of the chemicals have been shown to be associated with hepatotoxicity, 

neurotoxicity, cardiotoxicity, and vascular toxicity. Figure S11 shows the number of 

published reports for each type of toxicity as identified in a literature review (results are 

available through the Health Assessment Workspace Collaborative (Shapiro et al., 2018) 

web portal (see web links in the legend to Fig. S11)). The rationale for cell line selection, 

metabolic competency of the iCell hepatocyte model, and the justification for selected 

phenotypes in each cell type are detailed elsewhere (Grimm et al., 2015; Iwata et al., 2017; 

Sirenko et al., 2014a,b).

1doi:10.14573/altex.2002291s
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Additional reagents used were as follows: CellTiter-Glo® reagent was from Promega 

(Madison, WI, USA). EarlyTox™ Cardiotoxicity Kits (Part# R8211) were from Molecular 

Devices (San Jose, CA, USA). RPMI 1640 medium, B-27 medium supplement, gentamicin 

(50 mg/mL), Calcein AM Green, MitoTracker Orange reagent, Hoechst 33342, human 

fibronectin, and Geltrex™ LDEV-Free Reduced Growth Factor Basement Membrane were 

all from Life Technologies (Grand Island, NY, USA). Recombinant human VEGF was 

provided by R&D Systems (Minneapolis, MN, USA). Fetal bovine serum (FBS) and 

Medium 199 were purchased from Fisher Scientific (Waltham, MA, USA). Laminin 

(Catalogue #L2020-1MG, from Engelbreth-Holm-Swarm murine sarcoma basement 

membrane) was from Sigma-Aldrich (St. Louis, MO). The authors acknowledge that FBS-

free or synthetic FBS-based culture conditions (van der Valk et al., 2018), as well as 

alternative synthetic basement membrane materials (Nguyen et al., 2017) should be utilized 

to replace animal-derived products, where appropriate.

The Agency for Toxic Substances and Disease Registry (ATSDR) maintains a priority list of 

hazardous substances/chemicals2 that are frequently detected at the US National Priority 

List (NPL) sites, also known as “Superfund” sites, and are known human health hazards. 

From the list of over 300 compounds, we selected 42 chemicals (Tab. 1) based on the review 

of available information. These compounds represent several classes of pollutants that are 

ubiquitous in the environment, including polycyclic aromatic hydrocarbons (PAHs, n = 5), 

inorganic substances (n = 7), phthalates (n = 2), pesticides (n = 20), and other industrial 

chemicals (n = 8). ATSDR chemical classes are groupings that relate chemicals by similar 

features based on their structure, uses, physical properties, or other factors. Chemicals were 

selected for testing based on the following criteria: (i) is listed by ATSDR as priority 

chemical, (ii) has been evaluated by one or more government agencies and “safe exposure” 

levels have been established, (iii) was tested in ToxCast/Tox21, and (iv) reverse toxicokinetic 

and exposure data are publicly available through the EPA dashboard (Williams et al., 2017). 

Most chemicals were purchased from Sigma-Aldrich), except for heptachlor, heptachlor 

epoxide, 2,4,5-trichlorophenol, parathion, benzidine and o,p’-DDT, which were from 

ChemService (West Chester, PA).

Cell culture and chemical treatments

All cells were cultured in 384-well plates according to the manufacturer’s (Fujifilm Cellular 

Dynamics or Lonza) recommendations with respect to cell culture media and supplements. 

Cell density and other cell culture conditions have been previously published for each of 

these cell types (Grimm et al., 2015; Iwata et al., 2017; Sirenko et al., 2014a,b) and details 

are included in Text S11. Cells were exposed to test chemicals in descending logarithmic 

order of concentrations (100, 10, 1, 0.1, and 0.01 μM). Serial dilutions were originally 

prepared in 100% cell-culture grade DMSO and then further diluted 100-fold in 

corresponding cell culture medium to yield 4× working solutions in 1% DMSO. The final 

concentration of DMSO in assay wells following addition of test chemicals was 0.25% (v/v), 

an amount that was lower than in previous reports where it had no effects on each cell type-

derived phenotype (Grimm et al., 2015; Iwata et al., 2017; Sirenko et al., 2014a,b).

2http://www.atsdr.cdc.gov/spl
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Cytotoxicity assays

Cytotoxicity-related phenotypes in five tested cell types were assessed by high-content live 

cell imaging after a set exposure time (Tab. 2). Cells were stained with different fluorescent 

dyes (Hoechst 33342 for nuclei, Calcein AM Green for cytoplasm, and MitoTracker Orange 

for mitochondria) as detailed in (Grimm et al., 2015; Iwata et al., 2017; Sirenko et al., 

2014a,b). Images of all cell culture plates were acquired with ImageXpress Micro Confocal 

High-Content Imaging System (Molecular Devices) using the DAPI (Hoechst 3342), FITC 

(Calcein AM Green), and TRITC (MitoTracker Orange) filters at 10× or 20× magnification. 

Acquired images were processed using the Multi-Wave-length Cell Scoring, Neurite 

Outgrowth, or Angiogenesis Tube Formation application modules in MetaXpress (Molecular 

Devices) image processing software, and quantitative data were extracted for concentration-

response modeling (see below). In addition, ATP production of iCell neurons and HUVECs 

was evaluated using CellTiter-Glo assay as described in Text S21.

Physiologically-relevant phenotype assays

Physiologically-relevant phenotypes of each cell type were evaluated as detailed in Table 2 

and reported previously (Grimm et al., 2015; Iwata et al., 2017; Sirenko et al., 2014a,b). 

Effects on the mitochondrial integrity and intensity of iCell hepatocytes, and neurite 

outgrowth of iCell neurons were measured using high-content imaging (ImageXpress Micro 

Confocal High-Content Imaging System, Molecular Devices). Calcium flux reflecting the 

contract beating of iCell cardiomyocytes was determined by a FLIPR tetra (Molecular 

Devices) instrument using EarlyTox™ Cardiotoxicity Kit as described in Text S31. Effects 

on angiogenesis of both iCell endothelial cells and HUVECs were measured by 3D cell 

culture using an extracellular gel matrix and followed by high content imaging as detailed in 

Text S41.

Assay quality controls and concentration-response profiling

The qualitative integrity of the screening assays in this study was evaluated using previously 

established conditions (Grimm et al., 2015). All responses were normalized to the vehicle 

control (0.25% DMSO-treated wells). Overall, quality control criteria were established to 

evaluate each cell-based assay based on five parameters (see Tab. S1, S21): (i) variance in 

replicate wells for two negative controls (vehicle-treated wells and cell medium only), (ii) 

the difference between two negative controls (vehicle vs cell culture media), (iii) intra- and 

(iv) inter-plate replicate correlation, and (v) EC50 of the positive control chemicals/drugs 

that were specific for each cell type.

Vehicle control-scaled data for each treatment were fitted to a curve with a nonlinear logistic 

function to determine point-of-departure (POD) values, defined as the concentrations at 

which the fitted curve exceeds one standard deviation above or below the mean of vehicle-

treated controls, using R software-based script as previously reported (Sirenko et al., 2013). 

The choice of one standard deviation “benchmark response” was based on the US EPA 

guidance for dose-response modeling and determination of the point-of-departure values 

(US EPA, 2012), as well as empirical testing of various thresholds as detailed in (Sirenko et 

al., 2013), which showed that a choice of one standard deviation generates consistently high 

classification accuracy.
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Data integration in ToxPi

For data integration and visualization in Toxicological Priority Index Graphical User 

Interface (ToxPi GUI) (Marvel et al., 2018), we selected 48 phenotypes from all five cell 

types (Tab. 2). Following the standard ToxPi data protocol, POD values for each phenotype 

were inversely scaled on a 0–1 scale, with 0 representing the highest POD value in a given 

data set (i.e., the lowest observed bioactivity) and 1 representing the lowest measured POD 

value (i.e., the highest observed bioactivity). These scaled POD values were then used as 

quantitative inputs for bioactivity profiling in ToxPi.

Clustering and classification analyses

We used two approaches to grouping chemicals based on the biological profiling produced 

in this study, the bioactivity data from ToxCast/Tox21, and chemical structure-based Morgan 

fingerprint data. In an unsupervised analysis, chemicals were grouped based on the 

similarity between the biological/chemical profiling of the chemicals, without prior 

knowledge of chemical categories. To evaluate the outcome of such grouping, we include a 

quantitative metric into the unsupervised analysis workflow to assess the correspondence of 

the outcome to the original categories of each chemical. The details of the unsupervised 

analysis workflow are described elsewhere (Onel et al., 2019). The Fowlkes-Mallows (FM) 

index (Fowlkes and Mallows, 1983), a measure of similarity of two clusters, was calculated 

to enable quantitative comparative assessment between groupings achieved using each 

dataset to the known chemical categories. The higher the FM index, the more similar the 

grouping based on in vitro or chemical descriptor data was to the “perfect” grouping as 

shown in Table 1. The FM index ranges from 0.0 (no correspondence) to 1.0 (perfect 

correspondence). One-sided p-values for the FM index (using the null hypothesis of random 

assignment) were obtained using a standard z-statistic (Fowlkes and Mallows, 1983) that 

compares the observed value to the null expectation.

In the supervised analysis, assignments of chemicals to classes (Tab. 1) were used to build 

classification models, which were then used to predict the class for an unknown chemical. 

The term “supervised” is a statistical term (Kotsiantis, 2007) referring to models that are 

trained to perform automatic classification based on the available features, and using the 

classes as pre-defined groupings. In a supervised analysis, the intent is to identify the 

features that are best able to distinguish among the classes. For this purpose, the 

randomForest package in R v3.5 was used for class prediction, with 5-fold cross validation 

implemented in 50 random training/test data splits. The overall prediction accuracy from 

each database was calculated from cross-validation confusion matrices and the important 

distinguishing descriptors were further identified. A primary difference between 

unsupervised and supervised analysis is that the latter focuses on features that best 

distinguish among existing chemical categorizations.

Comparison to in vivo POD data and margin of exposure estimates

In vivo data are still the most commonly used PODs for use in regulatory decision-making, 

but recent analyses have suggested that NAM-based PODs may be useful as conservative 

surrogates for in vivo values (Paul Friedman et al., 2020). Thus, for the 42 chemicals in this 

study, we used the in vivo PODs from which the regulatory reference doses (RfDs) were 
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derived (PODRfD values) as a benchmark. Specifically, we first compared the PODRfD 

values to various NAM-based PODs, including the in vitro POD derived from this study 

using iPSC-derived cells and HUVECs, as well as two other in vitro data sets: the minimum 

of the distribution of 50% maximal activity concentration (AC50) of high throughput in vitro 
assays in ToxCast database (i.e., most sensitive assay) and conservative PODNAM values 

reported in (Paul Friedman et al., 2020). In addition, using ExpoCast exposure estimates, we 

compared margin of exposure (MoE) estimates based on PODRfD values with those based on 

NAM data. Oral dose-based PODs or exposures were converted to Css (concentration at 

steady-state)-based values (or vice versa) using the high throughput toxicokinetic (httk) 

(Pearce et al., 2017) R package (v 1.10.1) at the upper 95th percentile for toxicokinetic 

variability. Due to the limitation of the availability of each data stream, only the chemicals 

shared in all the databases were taken into consideration for comparison (see details in Tab. 

S31).

3 Results

3.1 Screening assays and concentration-response profiling

In vitro effects of the test chemicals were evaluated for a wide range of functional and 

cytotoxicity phenotypes in five human cell types that represent four tissues (Tab. 2). POD 

values were derived from the concentration-response relationships for a total of 48 

phenotypes (see quality control data for each phenotype in Tab. S1 and S21) and plotted 

(Fig. 1) separately for each cell type. Chemicals are grouped by their chemical class and 

ranked within each class from least to most bioactive based on the median response in iCell 

hepatocytes. Both for the individual chemicals and within a chemical class, there was a wide 

range of potency across all phenotypes. Each chemical had an effect in at least one cell type 

and no correlation in PODs was evident among cell types (Fig. S21), indicating that the 

chemicals elicited cell type-specific effects.

When the PODs were grouped by cell type (Fig. 2), the iCell cardiomyocytes clearly were, 

on average, the most sensitive to these chemicals. Across the 48 phenotypes included in the 

analysis, there was a wide range of effects for most of the evaluated chemicals. Not only 

were there chemicals that had effects at low concentrations, but there was a pronounced shift 

in the median and inter-quartile range, and for most of the phenotypes that were evaluated 

(Fig. 2, right panel). In other cell types, few chemicals had pronounced effects while most 

exhibited effects only at nominal test concentrations above 10 μM. It is noteworthy that 

fewer effects were observed in metabolically-active iCell hepatocytes (Sirenko et al., 2014b) 

compared to other cell types. iCell endothelial cells were most resistant to the effects of 

chemicals tested in this study. In addition, functional effects had significantly lower PODs 

compared to cytotoxicity phenotypes, indicating higher sensitivity, in all in vitro data 

combined, and in data from iCell hepatocytes, cardiomyocytes and HUVECs (Fig. S31).

3.2 Ranking and clustering using ToxPi scores

To facilitate interpretation of the data from these experiments that involved five cell types 

and 48 phenotypes, we aggregated the concentration-response data and PODs derived from 

in vitro screening assays using the Toxicological Priority Index (ToxPi) (Marvel et al., 
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2018). Each cell type was assigned an individual ToxPi “slice” (Fig. 3A). Specifically, PODs 

were converted into ToxPi scores as detailed in Section 2 and in Marvel et al. (2018). For 

each slice, the distance that the arc extends from the origin is proportional to its relative 

evidence of concern (e.g., longer = greater hazard because of lower POD), and the radial 

angle (width) indicates its weight in the overall model (in this analysis, data from each cell 

type were weighed equally). ToxPi scores were further combined into one pie chart to 

indicate the overall effect of each chemical on all five human cell types. ToxPi for three of 

the 42 tested chemicals are shown as examples in Figure 3B. Cadmium chloride showed the 

highest bioactivity (lowest PODs) in iCell hepatocytes compared to the other cell types, 

resulting in a large green slice in the ToxPi. Mercuric chloride and methoxychlor showed 

highest effects on iCell neurons and iCell cardiomyocytes, respectively.

The overall ToxPi scores for each chemical, reflecting the average of the normalized input 

scores for each slice of the respective bioactivity profile, were then used as a score to rank 

and cluster chemicals according to their overall bioactivity (Fig. 4A). ToxPi ranking using 

quantitative bioactivity data can be used for chemical prioritization (Reif et al., 2010). The 

42 tested chemicals were ranked based on the summed effects in the five human cell lines. 

The three inorganic substances (mercuric chloride, cadmium chloride and potassium 

chromate) had the highest overall bioactivity score (Fig. 4B). When bioactivity profiles of 

the individual chemicals were combined into their respective classes, inorganic substances 

were on average most bioactive, followed by pesticides, phthalates, other industrial 

chemicals, and PAHs (Fig. 4C, Tab. 3). Furthermore, specific effects of different classes of 

chemicals on certain cell types were identified. While inorganic substances were bioactive in 

most cell types, pesticides had the highest bioactivity in iCell cardiomyocytes (Tab. 3, Fig. 

S41).

Chemicals were also clustered using ToxPi scores and bioactivity profiles (Fig. 4D). This 

visualization shows that while some compounds are clustered because of their relatively 

high potency (mercuric chloride, cadmium chloride and potassium chromate), other 

compounds have similar ToxPi profiles, indicating similarity in their effects on different cell 

types. For example, DDT-like organochlorine pesticides are clustered closely because of the 

similarity in both potency and effects across all five cell types. Similarly, other 

organochlorine pesticides cluster together because they showed the highest relative 

bioactivity in iCell cardiomyocytes. In addition, phenotype-specific effects of each chemical 

on each cell type were further identified by clustering chemicals using data on each cell type 

(Fig. S51). Cadmium chloride exhibited the most pronounced effects on iCell hepatocytes by 

affecting all phenotypes. Mercuric chloride dominated effects on iCell neurons. Pesticide 

methoxychlor was the most bioactive in iCell cardiomyocytes. iCell endothelial cells and 

HUVECs were most affected by potassium chromate.

3.3 Bioactivity-based class unsupervised grouping

Next, we tested how well the bioactivity data on the individual cell type, or in combination, 

can be used for grouping of tested chemicals into classes. A quantitative comparison of the 

unsupervised analysis was conducted using the Fowlkes-Mallows (FM) index (Fowlkes and 

Mallows, 1983; Onel et al., 2019). The results of the clustering were compared to the known 
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chemical groupings (Tab. 1) that were used as a reference. Figure 5A shows that clustering 

using the bioactivity profiles of the combination of all five cell types resulted in the highest 

FM index (FM = 0.56) and was highly significant compared to that expected under random 

permutation (p < 0.001). Among the individual cell types, iCell hepatocytes showed the 

highest FM index (FM = 0.41), albeit it was not significant. Data from HUVECs was least 

informative in this analysis. Because of the pronounced heterogeneity in the “value” of 

information from different cell types, we also evaluated whether even smaller sets of cell 

types may have clustering accuracy approaching the data on all five cell types. We found that 

a combination of the data from iCell cardiomyocytes and iCell neurons yielded an FM index 

that was as high as when the data from all five cell types was used (FM = 0.53, Fig. S61).

We also compared the ability of the targeted dataset obtained in this study to group 

chemicals into classes to that of a larger ToxCast/Tox21 in vitro dataset, or chemical 

structure-based descriptors (Morgan chemical fingerprints). Figure 5B shows that in vitro 
data on 48 phenotypes from five cell types obtained in this study has a higher FM index for 

grouping of 42 chemicals into five classes compared to other information that is available on 

these compounds. Figures 5C–E show the individual dendrograms for each of the 

comparisons in Figure 5B.

3.4 Bioactivity-based class supervised grouping

A different type of question that is often asked when using NAM data in decision-making is 

whether one can use the data obtained in the same set of assays as those for the compounds 

in a database to classify a new compound into a class. We conducted supervised analyses 

using a cross-validated random forest algorithm where every test compound was predicted 

using a classification model. In contrast to the unsupervised analysis, the supervised analysis 

attempts to train a model to identify the features that are most predictive of existing 

classification. Figure 6 shows the outcomes of the cross-validated classifications for each 

data type. Numbers on the top left to bottom right diagonals show correct class prediction, 

and the numbers off the diagonal show misclassifications and which class the compounds 

were misclassified into. Overall, the Morgan fingerprints-based classification was superior 

(81% accurate prediction) when compared to classifications based on either data from this 

study or ToxCast/Tox21 data (60% and 69%, respectively). It is also noteworthy that the in 
vitro data generated in this study can accurately classify most pesticides into the correct 

chemical class, whereas ToxCast/Tox21 data classified all inorganic substances correctly. 

The combination of the in vitro data and Morgan fingerprints, or combination of two in vitro 
datasets (Fig. S7A1) did not improve prediction accuracy. The accuracy of classification 

with each type of data was significantly better than random assignment into classes (Fig. 

S7B1). We emphasize that our prediction by supervised analysis was performed using cross-

validation, which avoids overfitting inherent in fitting complex prediction models. If the 

chemical classes used had been truly meaningless, in the sense of “random,” then our 

reasonably high prediction accuracy values would not have been achieved. The prediction 

accuracy results suggest that the a priori classification is meaningful, and, in contrast to 

unsupervised analysis, highlight the specific measured biological features that are best able 

to discriminate among classes, as described below.
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The supervised classification analysis, where every test compound was predicted using a 

classification model, can also be examined for information on the “most informative” 

features (i.e., features that are most predictive of existing classification) on which the models 

were developed. The top 10 most informative features from each dataset, i.e., phenotypes 

that contributed the most to the accuracy of the classification, are shown in Figure 7. 

Interestingly, for the in vitro data generated in this study, 5 of the top 10 most informative 

descriptors were functional phenotypes from iCell cardiomyocytes, followed by phenotypes 

from iCell neurons (Fig. 7A). For ToxCast/Tox21 data, the descriptors in the top 10 included 

largely disparate data from a wide range of models, i.e., from zebrafish, to cytotoxicity, to 

reporter assays (Fig. 7B). While Morgan fingerprints are difficult to interpret directly (Fig. 

7C), a combination of bioactivity and chemical structure data showed that chemical 

descriptors do not dominate the list of informative features, and that in vitro data may be 

equally informative (Fig. 7D).

3.5 Comparison to in vivo POD data and margin of exposure estimates

It has recently been proposed that NAM-based PODs can serve as conservative surrogates 

for traditional in vivo PODs (Paul Friedman et al., 2020). Thus, we first compared various 

NAM-based PODs, including those based on our five cell types, to the regulatory PODs used 

as the basis for RfD toxicity values (PODRfD). For our in vitro-based PODs, we used either 

the most sensitive POD for each cell type or the most sensitive POD across all cell types 

combined (Fig. 8). As shown in Figure 8A, only when all cell types are combined do our in 
vitro PODs represent a conservative surrogate for the PODRfD, with only 25% of our in vitro 
PODs being higher than the corresponding PODRfD, and those remaining 25% being within 

10-fold of the in vivo value. In contrast, as shown in Figure 8C, only the approach of using 

the minimum (most sensitive) ToxCast AC50 has similarly conservative results, whereas 

cardiomyocytes alone and the PODNAM from (Paul Friedman et al., 2020), which is a lower 

5th percentile, had a substantial number of “unconservative” results. Note that these results 

appear to contrast with those reported by (Paul Friedman et al., 2020) because they used in 
vivo PODs from ToxRefDB, whereas we used the in vivo PODs that supported regulatory 

RfD toxicity values (Wignall et al., 2014).

A related comparison was with respect to the resulting screening-level risk characterization 

using a Margin of Exposure (MoE) approach. Specifically, we used a MoE benchmark of < 

100 as an indication of “potential concern.” As shown in Figure 8B, more than half of the 

chemicals have implied MoEs less than a benchmark of 100 when using all cell types 

combined, with similar results for cardiomyocytes, but far fewer chemicals are suggested to 

be of “potential concern” when using other cell types. In Figure 8D, when restricting to 

chemicals common across different NAM-based approaches, we find that the PODRfD-based 

“ground truth” suggests that only 2/16 chemicals are of “potential concern.” Using only 

iCell cardiomyocytes, or using all cell types, results in a more conservative estimate of 4 to 

5/16 chemicals, with the median MoE being slightly more conservative than the in vivo-

based MoE. In contrast, using the PODNAM from (Paul Friedman et al., 2020) results in an 

“unconservative” estimate of only 1/16 chemicals of potential concern, with the median 

MoE being much higher (implying “safer”) than the in vivo-based MoE.
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Overall, for this limited dataset, our PODs derived from high throughput in vitro data from 

five human cell types performed well as a conservative surrogate for regulatory in vivo 
PODs and were less likely to underestimate in vivo potency and potential risk compared to 

other NAM-based PODs.

4 Discussion

It is widely recognized that the future of regulatory toxicology lies in high-throughput in 
vitro assays and computational models based on human biology, rather than in continued 

testing in laboratory animals (NRC, 2007; National Academies of Sciences Engineering and 

Medicine, 2017). A wide array of both biological and computational tools is available to 

probe human function and disease at the molecular level through the transcriptome, 

epigenome, proteome and metabolome (Nielsen, 2017). Many thousands of immortalized 

cell lines collected from various tissues and individuals are now used in toxicological 

research (Chiu and Rusyn, 2018). There are large databases of publicly available biological 

data that can be explored to develop hypotheses about how chemicals, genes, and diseases 

may be connected (Miller, 2016; Davis et al., 2019; Williams et al., 2017). There are 

genetically diverse mammalian and non-mammalian models, in vivo and in vitro, that are 

used for toxicological research (Zeise et al., 2013). Complex human biology is being 

replicated in multicellular perfused microphysiological systems that mimic certain tissue 

functions (Marx et al., 2020). It appears that the field of regulatory science has finally 

overcome the long-lamented challenge of shortage of information for decisions on chemical 

safety (Lutter et al., 2013).

Alas, the quantity of the information now available is yet to be translated into actual 

examples of using these data in various decision contexts beyond now well-accepted 

screening-level, risk-based chemical prioritization (Harrill et al., 2019; Paul Friedman et al., 

2020), or filling data gaps (Guyton et al., 2018). For new chemicals, complex substances, or 

mixtures, what is a sensible compendium of in vitro and in silico models that may satisfy the 

data requirements for a particular decision context? A number of examples have been 

published recently to address this question, especially in the context of grouping and read-

across (De Abrew et al., 2019; Zhu et al., 2016; Escher et al., 2019). Indeed, it is critically 

important to establish both the strengths and limitations of cell-based in vitro screening 

methods, so that promising NAMs can be generated and used for decision-making in human 

and environmental health.

This study, even though primarily focused on an in vitro model that can be used for rapid 

hazard assessment, adds to the overall body of recent evidence on the topic of the utility of 

NAMs. We aimed to test performance of a small set of human in vitro models that represent 

a diverse array of tissues of interest to regulatory toxicologists. We took advantage of 

recently developed reproducible and physiologically-relevant human in vitro models derived 

from iPSCs (Li and Xia, 2019; Anson et al., 2011), models that are excellent replacements 

for animal tests and for which detailed methods and metrics of reproducibility have been 

established (Sirenko et al., 2013, 2014a,b; Grimm et al., 2018; Iwata et al., 2017; Klaren and 

Rusyn, 2018). We posited that commercially-available iPSC-derived cells are poised for 

wider use, replacement of animal studies, and inter-comparison of the outcomes in a 
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rigorous and reproducible manner (Anson et al., 2011). Presence of advanced cellular 

functions and absence of genetic drift because of repeated passaging, both problems of 

cancer cell lines, are advantages of iPSC-derived differentiated cells in toxicity testing (Kim 

et al., 2019). Our hypothesis was that these cell-based models, when probed for both 

physiological and toxicological effects of chemicals, can be used for rapid hazard evaluation 

and thus represent a sensible targeted set of alternative methods for NAM-enabled decisions, 

especially under conditions of rapid evaluations such as emergency response (Judson et al., 

2010b).

Even though this study is not the first to attempt to probe the ability of a small dataset to 

group and classify diverse environmental chemicals, a number of important learnings have 

emerged. First, our comparison of cells representing various tissue types showed that iPSC-

derived cardiomyocytes may be among the cell types that are most sensitive to effects across 

various chemical classes. This is noteworthy because iCell cardiomyocytes can be used as a 

highly reproducible in vitro model that faithfully replicates many in vivo cardiotoxic 

phenotypes (Grimm et al., 2018). Our previous studies showed that environmental chemicals 

have adverse effects on cardiomyocytes, similar to many known cardiotoxic drugs (Sirenko 

et al., 2017; Burnett et al., 2019; Blanchette et al., 2019); however, it is noteworthy that this 

metabolism-limited cell type was most affected by the diverse set of Superfund priority 

chemicals from different classes.

Second, the fact that the chemicals tested in this study showed very divergent effects across 

multiple cell types, leading to distinct class-specific bioactivity profiles that can be used to 

group substances, also strongly supports the need for tissue diversity of in vitro models. 

Moreover, when used for NAM-based risk characterization, multiple cell types together 

performed better than any individual cell type for ensuring that the risk is not 

underestimated. These findings suggest that when testing is not meant to be mechanism- or 

effect-based, inclusion of cells from multiple tissues should be a design principle for in vitro 
test batteries that are to be used as NAMs. Such tissue-diverse data should also increase 

confidence in the “biological coverage” of in vitro NAMs.

Third, we observed that in vitro bioactivity data may be as good as or, in some cases better 

than, chemical descriptors for grouping of chemical substances into classes. In addition, 

important synergies are realized when biological and chemical descriptors are combined. 

These findings are in line with previous observations that chemical-biological data are most 

powerful for grouping (Low et al., 2011, 2013, 2014), as well as that they are most 

interpretable by the decision-makers (Zhu et al., 2016).

Finally, we found that a limited set of in vitro data may be equally or even more informative 

that the much larger datasets from large-scale chemical screening programs (Thomas et al., 

2018). Overabundance of NAM data is not necessarily a recipe for more accurate prediction, 

as has been shown for various types of biological (Kreutz et al., 2013) and chemical 

(Fourches et al., 2015) data. One approach to dealing with such “big data” problems is to 

apply variable selection (Knudsen et al., 2013) or deep learning (Grapov et al., 2018) 

algorithms to uncover meaningful “signals” in large datasets. Regretfully, these exercises 

seldom have resulted in selection of a reasonably small set of assays/endpoints that are 

Chen et al. Page 12

ALTEX. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reasonably accurate for prediction and do not require extensive and lengthy experimentation. 

Only recently, influential examples have emerged of how a small set of assays can be used to 

replace a specific animal test (Kleinstreuer et al., 2018; Browne et al., 2015). On the other 

hand, the data from our study performed at least as well, if not better, than larger NAM 

datasets, not only for grouping of chemicals into classes, but also in serving as surrogate 

NAM-based PODs for rapid risk characterization. Additional confidence in these results 

could be obtained by evaluating a larger set of ToxCast/Tox21 chemicals.

Notwithstanding the need for diverse high-throughput in vitro data streams to rapidly inform 

hazard identification and to fill the knowledge gap for chemicals with minimum toxicity 

data, challenges remain about their use in prioritization and screening level assessment 

strategies as well as tradeoffs between speed and uncertainty (Paul Friedman et al., 2020). 

For instance, while high throughput screening data could play key roles in decision-making 

for emergency response, there are many limitations with respect to predicting chemical fate 

and effects in the environment, challenges that might lead to potentially missed hazards 

(Ginsberg et al., 2019). Furthermore, there is also uncertainty in the extrapolation from in 
vitro bioactivity to in vivo toxicity (Bell et al., 2018), and gaps exist in the cell-based in vitro 
screening and potential effects on human health since most cell assay endpoints are still 

related to cytotoxicity and non-specific effects (Judson et al., 2016). Overall, however, our 

findings support the notion that the field of in vitro toxicology and NAM implementation 

would be well served by agreeing on a reasonably small subset of differentiated, human cell-

based models with both cytotoxicity-based and functional readouts that can be used in 

different decision contexts.
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Fig. 1: Quantitative analysis of chemical-specific effects in five cell types
Box (inter-quartile range and median) and whiskers (min to max) plots show the range of 

PODs (one standard deviation of vehicle-treated wells) across 48 phenotypes in five cell 

types (Tab. 2) for each of the 42 Superfund priority list chemicals (Tab. 1). Chemicals were 

grouped into classes (Tab. 1) and then sorted within a class based on the mean POD values 

of the phenotypes in iCell hepatocytes.

Chen et al. Page 18

ALTEX. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: Quantitative analysis of cell-specific effects of the 42 Superfund priority list chemicals
The left panel shows box (inter-quartile range and median) and whiskers (min to max) plots 

of PODs (one standard deviation of vehicle-treated wells) for all 42 tested chemicals (Tab. 1) 

in each cell type. The size of each box and whiskers plot is proportional to the number of 

phenotypes evaluated in each cell type (Tab. 2). The right panel shows box (inter-quartile 

range and median) and whiskers (Tukey) plots of PODs (one standard deviation of vehicle-

treated wells) for all 42 tested chemicals (Tab. 1) in each phenotype. Phenotypes are grouped 

based on the cell type (Tab. 2). Outlier chemicals are shown as circles.
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Fig. 3: Data integration from concentration-response modeling for each chemical and phenotype 
using Toxicological Prioritization Index (ToxPi) approach
(A) Representative examples of concentration-response fits (lines) to the data (dots) are 

shown for three chemicals (rows) and five cell-specific phenotypes (columns). Pie chart 

slices are colored to distinguish effects in each cell type. (B) Examples of ToxPi images for 

three selected chemicals.
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Fig. 4: ToxPi analysis-based ranking and clustering of 42 Superfund priority list chemicals based 
on the effects in five cell types
(A) Legend to the ToxPi visualization of the effects on five cell types. (B) Ranking of the 

tested chemicals based on the overall ToxPi scores. Chemicals are colored based on 

chemical class. Table S51 contains the data from the ToxPi analysis. (C) Box (inter-quartile 

range and median) and whiskers (min to max) plots show the range of ToxPi scores for each 

chemical (dots) for each class. Chemical classes (Tab. 1) were ranked based on the median 

value. (D) Clustering (Ward’s D method) of 42 Superfund priority list chemicals using ToxPi 

scores. Chemical names are colored based on chemical class as in panel C.

Chen et al. Page 21

ALTEX. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: Quantitative analysis of the grouping of 42 Superfund priority list chemicals with various 
data streams
(A) Fowlkes-Mallows (FM) index for clustering of chemicals into five classes (Tab. 1) using 

in vitro data from each cell type, or all data combined. (B) FM index for clustering of 

chemicals using data in this study (black bar), or other publicly available in vitro or chemical 

descriptors (e.g., Morgan fingerprints [FP]), or a combination thereof. Asterisks (*) indicate 

that one-sided p-values were < 0.05 for the observed FM index value compared to the null 

expectation. (C-F) Clustering dendrograms (average Pearson correlation method) for each 

data stream shown in (B). FM index and the number of variables included in each 

comparison are shown below each plot. (C) In vitro data from this study, all endpoints 

combined. (D) ToxCast/Tox21 data (as of November 2019). (E) Morgan fingerprints. (F) 
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Morgan fingerprints combined with in vitro data from this study. Identity of each chemical 

in each clustering diagram is listed in Table S61.
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Fig. 6: Confusion matrices for chemical classification into five classes using in vitro and/or 
chemical descriptors
Known (columns) chemical assignment into each of five classes (Tab. 1) is compared to 

predicted (rows) class assignment using random forest algorithm with 5-fold cross validation 

as detailed in Section 2. Classification outcomes for the analyses using data from all 

phenotypes in this study (top left), ToxCast/Tox21 data (top right), Morgan fingerprints [FP] 

(bottom left), or data from this study and Morgan FP combined (bottom right) are shown. 

Accuracy of classification for each dataset is shown in the top left corner of each matrix. 

Numbers in the cells filled with green (on diagonal) and light pink (off diagonal) indicate the 

number of chemicals that were classified correctly or misclassified, respectively.
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Fig. 7: Classification accuracy-contributing phenotypes
Importance of the in vitro or chemical structure descriptors contributing to the classification 

accuracy from different data streams (Fig. 6) was analyzed as detailed in Section 2. Top 10 

features are listed. (A) In vitro data from this study. (B) ToxCast/Tox21 data. (C) Morgan 

fingerprints. (D) Morgan fingerprint combined with in vitro data from this study.
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Fig. 8: POD data comparison across different in vitro and in vivo datasets and margin of 
exposure estimates
Minimum of in vitro PODs generated from each cell type and all cell types combined in this 

study were compared to in vivo POD derived from Reference dose (A). Margins of exposure 

were calculated based on in vitro PODs from this study and the estimated exposure levels 

(B). The ratio between in vivo and in vitro (C), and the margins of exposure (D) were further 

compared across different datasets. All of the ratio outputs were log transformed for 

comparison; n represents the number of chemicals from 42 Superfund priority list chemicals 

covered by different datasets for comparison and detailed in Table S31.
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