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Abstract: (1) Background: Astrocytes, the most abundant cell type in the central nervous system,
are essential to tune individual-to-network neuronal activity. Senescence in astrocytes has been
discovered as a crucial contributor to several age-related neurological diseases. Here, we aim to
observe if astrocytes demonstrate senescence in the process of brain aging, and whether they bring
adverse factors, especially harm to neuronal cells. (2) Methods: In vivo, mice were housed for four,
18, and 26 months. An in vitro cell model of aged astrocytes was constructed by serial passaging until
passage 20–25, and those within 1–5 were invoked as young astrocytes. Meanwhile, an oxidative
induced astrocyte senescence model was constructed by H2O2 induction. (3) Results: In vitro
aged astrocytes all showed manifest changes in several established markers of cellular senescence,
e.g., P53, P21, and the release of inflammatory cytokine IL-6 and SA-β-gal positive cells. Results
also showed mitochondrial dysfunction in the oxidative stress-induced astrocyte senescence model
and treatment of berberine could ameliorate these alterations. Two types of senescent astrocytes’
conditioned medium could impact on neuron apoptosis in direct or indirect ways. (4) Conclusions:
Senescent astrocyte might affect neurons directly or indirectly acting on the regulation of normal and
pathological brain aging.

Keywords: aging; microglia activation; senescent phenotype of astrocytes; cell-to-cell interaction; neurons

1. Introduction

Aging is a major risk factor of numerous human diseases. As the elderly population
has been expanding rapidly, the growing prevalence of age-related diseases is a major public
concern. Arguably, one of the most devastating is the changes that occur in the central nervous
system (CNS), leading to the loss of cognitive, motor, and emotional function that in essence
make us who we are. During aging, all those brain cells could be undergoing the process of
senescence. Recent studies have demonstrated that the clearance of senescent cells results in
prolonged life span in mice [1]. Studies [2,3] published in Nature simultaneously reported
that aging of organ is an “Asynchronous” process, and various types of cells as the basic
unit of organ composition also follow this “Asynchronous” feature. The mammalian brain is
composed of a multitude of cell types, e.g., astrocytes, microglia, and neurons, leaving the
question: do precedent unfavorable factors occur among this different type of cells and how
do they interact and affect each other?

Astrocytes are the predominant glial cells in the CNS and serve multiple functions in-
cluding maintaining the formation of brain, secreting various extracellular matrix proteins and
neurotrophic factors, also regulating the transmission efficiency at pre- and post-synaptic sites,
and modulating synapse formation and turnover [2,4]. Thus, astrocytes play crucial roles in
maintaining normal brain function and homeostasis [5,6]. Meanwhile, microglia, the resident
macrophages of the CNS, have been widely considered as a homogeneous population of cells
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involved in stable brain patterns. Researchers have found that the activation of microglia has
a great effect on cells in the brain, and the most common behavior of these types of cells is to
release a large number of inflammatory factors, such as IL-1β, IL-6, and TNF-α, and finally
affect other cells in brain. However, whatever the mechanism of astrocytes, microglia, other glia
cells, or endothelial cells in brain, such a process will eventually lead to the functional loss or
death of neurons, and ultimately manifest through a variety of physical behaviors. Questions
arise as to how astrocytes, microglia, and neurons cross talk with each other.

In the present study, we first investigated whether neuronal damage occurs at the same
time as aging and whether cognitive dysfunction happens at the whole animal level. Then,
we explored primary cultures of rat astrocytes with natural senescence and oxidative stress-
induced senescence to detect their interaction with microglia and neurons, and we found that
berberine treatment may be an effective therapeutic approach to protect the mitochondria of
astrocytes from malfunction.

2. Results
2.1. Cognitive Impairment and Neuron Loss Occurred in Aged Mice

The Morris water maze test is a major behavioral testing method for measuring cognitive
impairment of rodents. To further explore whether the changes in cognitive function associated
with age, four-, 18-, 26-month-old male mice were chosen as our research subjects. As the training
progressed, the latency to reach the platform was significantly decreased in the 26-month-old
group at the fourth and fifth day (Figure 1a), indicating that the older mice showed significant
learning deficiency during the sessions. Three typical movement trajectories on the sixth day
are presented (Figure 1b), the time and path length in the target quadrant, the swimming
speed, the tracking pathway and the latency to location were also analyzed (Figure 1c–g). The
four-month-old mice spent the least amount of time to get the location of the original platform
and took much more times swimming through the platform (Figure 1c,d). Compared with the
four -month-old mice, the 18-month-old mice and the 26-month-old mice spent less time in
the target quadrant along with the path length in the target quadrant (Figure 1f,g). In addition,
the average speed was lower in the 18-month-old mice and the 26-month-old mice than in the
four-month-old mice (Figure 1e), but without significant differences from each other. Since the
data show differences in behavioral test, and the hippocampus is a crucial structure in memory
circuits and is firstly and foremostly responsible for memory and learning functions, the HE [7]
and Nissl staining were performed to see whether the structural integrity of the hippocampus
was changed or the neurons start to lose. HE staining of the hippocampal neurons revealed that
neurons in the group of four-month-old mice had rich cytoplasm, slightly round stained nucleus,
and clear formation. On the contrary, in the group of 24-month-old mice, degenerated neurons
showed shrinking cytoplasm and bodies, and most of the degenerated neurons revealed deep
stained nucleus and irregular morphology (Figure 1h). The neuronal loss was evaluated with
age. As shown in Figure 1i, four-month-old mice showed highly dense pyramidal layer neurons
with intact structure. In contrast, the neurons appeared atrophied and pyknotic in 26-month-old
mice. Meanwhile, the numbers were also lower than those in four-month-old mice, especially
in the region of CA1, CA3, and DG, which can be seen intuitively from Figure 1j.

2.2. The Emergence of Senescent Astrocytes and Activated Microglia

A variety of cells exist in the brain, mainly including neurons, astrocytes and microglia,
which type of cells play a key role in the initiation of aging remains unclear. The expression
of β-gal and P16INK4a can be used as senescent markers [8]. Here, the four-month-old mice
were defined as young group and the 26-month-old mice were defined as aged group.
With the increasing age of mice, the expressions of β-gal and P16INK4a were significantly
increased (Figure 2a–d). We also found a significant increase in the density of βgal+
astrocyte (GFAP+), localizing in the cytoplasmic compartment and P16+ astrocyte (GFAP+),
localizing in the nuclear compartment (Figure 2e,f). So, to assess whether changes in the
organelle structure of astrocytes occur during the senescent progress, electron microscopy
was used to examine the ultrastructure of the mitochondria in astrocytes. Figure 2g shows
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that the mitochondria may have changed from a strip shape to a rounded one with age and
the cristae were vague and some of them disappeared in aged mice. Data also showed that
a progressive enlargement of microglial size as the activation state and phagocytic capacity
of the cells enhances (Figure 2h-j). Usually, amoeboid microglia was considered as higher
activation state [9].

Figure 1. Age related cognitive impairment and neuron loss in mice. (a) Escape latency. (b) Movement
Trajectory of mice. (c) Frequency through platform. (d) Latency to platform location. (e) The average
swimming speed. (f) The percentage of time in target quadrant. (g) The percentage of path length
in target quadrant. (h) HE staining of mouse brain. Scale bar, 50 µm. (i) Nissl staining in the
hippocampus of each group. Scale bar, 50 µm. (j) The number of living neurons of hippocampus in
mice (n = 6 mice/group). All experiments were expressed as the mean ± S.D, analyzed by ANOVA
followed by Tukey’s test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 2. Cont.
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Figure 2. Senescent astrocytes occurred and accompanied with microglia activation. (a) Repre-
sentative brain sections co-immunostained for GFAP (red) and β-gal (green) in young and aged
mice (hippocampus). ×200 magnification. (b) Representative brain sections co-immunostained
for GFAP (red) and P16INK4a (green) in young and aged mice (hippocampus). ×200 magnification.
(c,d) Quantification of data from (a,b) (n = 7 mice/group). (e,f) Analysis of the positive number
of GFAP+βgal+ or GFAP+P16+ cells. (g)Transmission electron microphotographs of mitochondria
in astrocytes from hippocampus of young and aged mice. Scale bar, 500 nm. (h) Brain sections
immunostained for iba1. Scale bar, 50 µm. (i,j) Quantification of the average soma size and numbers
of microglia in the CA3 hippocampal region (n = 6 mice/group) All experiments were expressed as
the mean ±S.D, analyzed by ANOVA followed by Tukey’s test, **** p < 0.0001.
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2.3. Serial Passaged Astrocytes Show Phenotypes of Aged Cells and Affected Neuronal Viability

To deeply investigate the changes in a range of physiological functions of astrocytes
during senescence in vitro, astrocytes were isolated from Wistar rat pups and made identi-
fication by the marker of GFAP (Figure 3a), the data showed highly purity of astrocytes.
Natural senescent induction showed that SA-β-gal positive astrocytes were increased com-
pared with those young astrocytes (Figure 3a). To systematically explore the altered phe-
notype of young and aged astrocytes, senescent markers of P53, P16, and P21 were tested,
and, IL-6, which was collectively known as the senescence-associated secretory phenotype
(SASP) [10] was also assessed. As is shown in Figure 3b,c, in aged astrocytes, the expression
of P53, P21, and P16 was gradually increased, and the concentration of IL-6 in supernatant
of aged astrocytes was elevated either (Figure 3d). Mitochondrial membrane potential
was selected to detect whether the mitochondrial function remained normally, notably, the
MMP showed significantly decreased in those aged astrocytes (Figure 3e). ROS produc-
tion is the most common product upon cells facing oxidative stress, and compared with
young astrocytes, the aged astrocytes showed increased intracellular ROS accumulation
(Figure 3g). To assess whether these changes of astrocytes would have deleterious effects
on microglia or neurons, we then examined the neurotoxicity of Neuro-2a cells treated with
different conditioned medium (CM) (Figure 3f). The results showed that aged astrocytes
derived CM or BV2 supernatants which were treated with those aged-astrocytes-derived
CM significantly decreased Neuro-2a cell viability (Figure 3h,k), aged astrocytes-derived
CM promoted a negative contribution to the survival of BV2 cells (Figure 3i), and the level
of IL-6 in BV 2 supernatant was increased (Figure 3j), suggesting that substances released
from aged-astrocytes may cause damage along with activating the BV2 cells and prompting
cells to release inflammatory mediators to damage neurons.

2.4. Astrocytes Activate a Senescence Program in Response to Oxidative Stress and Showed
Mitochondrial Dysfunction

Another in vitro mitochondrion damaged model of astrocytes induced with oxidative
stress was conducted. During model construction, we found that the cell viability showed
significant decrease when the concentration reached 160 µM (Figure 4a). In order to cause
mitochondrial damage rather than apoptosis, 80 µM of H2O2 was used as modeling con-
centration. Next, senescence markers were also detected to find out if the cells reached the
senescence phenotype. As the data show in Figure 4b,c, the proteins expression of P53, P21,
and P16 was significantly elevated after treating with H2O2. The cell viability of astrocytes
treated with different concentration of berberine showed significant decrease when the
concentration reached 160 µM (Figure S1), and administration of berberine showed a certain
degree of decrease in these indicators, although the expression of P16 decreased but showed
no significance, and the concentration of IL-6 in supernatant of astrocytes treated with
H2O2 was elevated compared with those that didn’t (Figure 4d). Mitochondrial membrane
potential also showed that exogenous H2O2 treatment caused MMP decrease and adminis-
tration of berberine would do recovery of the damaged MMP (Figure 4e). ATP production
is the most common product produced by mitochondria, compared with control cells,
H2O2 treatment markedly lowered cellular ATP levels (Figure 4g). The ROS level was also
significantly increased after treatment of H2O2 (Figure 4f). What is more, H2O2 treatment
might have an effect on mitochondrial fission by elevating the expression of mitochondrial
fission protein drp1 and decreasing the expression of mitochondrial fusion proteins Mfn2
and opa-1, although the mitochondrial fusion protein showed no significant decrease. The
treatment of berberine could have an ameliorating effect on the mitochondrial function
caused by oxidative stress (Figure 4h,i).
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Figure 3. Astrocytes acquired senescent phenotype through serial passaging and SASP secretion
may cause direct or indirect neuronal damage. (a) Immunofluorescent staining using GFAP antibody
as astrocytes’ marker, and cell senescence staining of β-gal. (b) Representative immunoblots and
(c) quantitation of P53, P21, P16 in young and aged astrocytes. Data are expressed relative to young,
n = 3. (d) Cytokine ELISA of IL-6 in culture medium released from young and aged astrocyte, n = 4.
(e) JC-1 staining. The red and green fluorescence reflects changes in the mitochondrial membrane
potential of young and aged astrocytes. (f) Scheme of conditioned media (CM) and cell viability
assays. (g) Intracellular ROS levels were measured using flow cytometry. (h) Cell viability assay
of N2a cells treated with young and aged astrocytes’ supernatant, n = 20. (i) Cell viability assay
of BV2 cells treated with young and aged astrocytes’ supernatant. (j) Cytokine ELISA of IL-6 in
culture medium of BV2 treated with young/aged-astrocytes’ supernatant, n = 20. (k) Cell viability
assay of N2a cells treated with supernatant of BV2 cells (treated with supernatant of young and
aged astrocytes), n = 20. All experiments were expressed as the mean ± S.D, analyzed by ANOVA
followed by Tukey’s test, * p < 0.05, ** p < 0.01, *** p < 0.001, ns represents p > 0.05.
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Figure 4. Mitochondrial functions in aged astrocytes were found declined and berberine may have
relieved effect. (a) Cell viability assay of astrocytes treated with different concentration of H2O2,
n = 8. (b) Representative immunoblots and (c) Quantitation of P53, P21, P16 and β-actin, in astrocytes
treated with H2O2 and berberine. β-actin was a loading control and data are expressed relative to
control, n = 3. (d) Cytokine ELISA of IL-6 in culture medium of astrocytes treated with or without
H2O2, n = 4. (e) JC-1 staining. The red and green fluorescence reflects changes in the mitochondrial
membrane potential of astrocytes treated with or without H2O2 and berberine, the group of CCCP
was used as a positive control. n = 3. ×200 magnification. (f) Intracellular ROS levels were measured
using flow cytometry. (g) ATP content was detected by the ATP Assess Kit, n = 4. (h) Representative
immunoblots and (i) Quantitation of Drp1, Mfn2, Opa-1 and β-actin, in astrocytes treated with H2O2

and berberine. β-actin was a loading control and data are expressed relative to control, n = 3. All
experiments were expressed as the mean ± S.D, analyzed by ANOVA followed by Tukey’s test,
* p < 0.05, *** p < 0.001, ns represents p > 0.05.
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2.5. Direct Interactions between Senescent Astrocytes and Neurons

To confirm that mitochondrial dysfunction of H2O2-treated astrocytes is responsible for
neuronal viability, the neurotoxicity of Neuro-2a cells cultured with conditioned medium
isolated from H2O2-stimulated astrocytes (Figure 5a) was examined. Data showed that
H2O2-treated astrocyte-derived CM significantly decreased the viability of Neuro-2a cells
(Figure 5b). However, CM from astrocytes treated without H2O2 did not affect the viability
of Neuro-2a cells. To confirm that apoptosis happens after treating with conditioned
medium for 24 h, we also detected caspase-3 activity of Neuro-2a cells and found that
Neuro-2a cells treated with H2O2-treated astrocyte supernatant presented a significant
increase of caspase-3 activity at 24 h (Figure 5c). What is more, this effect was ameliorated
by the administration of berberine.

Figure 5. The direct effect of aged astrocytes in communicating with neurons. (a) A schematic
diagram of the interaction of cell supernatants. (b) Cell viability assay of Neuro-2a cells treated with
astrocyte-CM for 24 h, n = 20. (c) Caspase-3 activity in Neuro-2a cells (treated with astrocyte-CM
for 24 h). Green fluorescence indicates the activity of caspase-3. Blue indicates nuclear stained by
Hoechst33342. Merge is the overlapped green and blue. ×200 magnification, n = 4. All experiments
were expressed as the mean ± S.D., analyzed by ANOVA followed by Tukey’s test, *** p < 0.001, ns
represents p > 0.05.
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2.6. Indirect Effects of Senescent Astrocytes to Neurons

In this part, we checked if astrocytes could have indirect toxic effects on Neuro-2a cells
by activating microglia cells, which act as immune cells in the brain, making them secrete
neuronal inflammation cytokines, thus causing harm to neuronal cells. As in hypothetical
diagram shown in Figure 6a, we first examined the viability of BV2 cells treated with
supernatant of H2O2-stimulated astrocytes and found that after culturing with condition
medium for 24 h, the viability of BV2 cells was significantly decreased (Figure 6b). IL-6 also
seemed to be a neuronal toxic cytokine, and SASP was significantly elevated compared to
those treated without H2O2 (Figure 6c). After treating with H2O2-treated astrocyte-derived
CM for 24 h, the supernatant of BV2 cells was collected and cultured with Neuro-2a cells.
Data showed that after incubation with the conditioned medium of BV2 cells, the viability
of Neuro-2a cells decreased significantly compared to other groups (Figure 6d). Moreover,
the activity of caspase-3 of these Neuro-2a cells showed that the supernatant of BV2 cells
(treated with supernatant of astrocyte with or without H2O2 for 24 h) was also capable of
increasing caspase-3 activity of Neuro-2a cells, and administration of berberine would have
an ameliorating effects (Figure 6e).

Figure 6. The indirect effect of aged astrocytes in communicating with microglia and neurons.
(a) A schematic diagram of the interaction of cell supernatants. (b) Cell viability assay of BV2 cells
by using astrocytes treated with or without H2O2 supernatant, n = 20. (c) Cytokine ELISA of IL-6
in culture medium of BV2 treated with astrocyte supernatant (treated with or without H2O2), n = 4.
(d) Cell viability assay of N2a cells by using BV2 treated with astrocyte supernatant, n = 20. (e) The
caspase-3 activity was measured with a caspase-3 assay kit, n = 6. All experiments were expressed as
the mean ± S.D., analyzed by ANOVA followed by Tukey’s test, ** p < 0.01, *** p < 0.001, ns represents
p > 0.05.
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3. Discussion

Astrocytes play curial physical and molecular roles in the mammalian brain. Any
interference of their normal physiological function may lead to the pathology of central
nervous system diseases. Hence, the aging of astrocytes may have an immense impact on
the function and micro-environment of the brain. Several researches demonstrated that
aging [11] and diseases [12] cause loss of normal functions in astrocytes, which reduces
their ability to properly maintain a healthy CNS environment. As a potential candidate of
aging, cellular senescence was regarded as the inducing factor of aged-related neurodegen-
erative diseases. However, knowledge of the impact of senescent astrocytes in the brain is
fragmented, and what’s more troubling is that it remains unclear how these senescent astro-
cytes may interact with microglia or neurons or any other types of cells in the mammalian
brain. In our in vivo aging model of mice, we found that aged mice required more time
to learn how to reach the platform than those young mice. Moreover, the hippocampus
of old mice showed thinning and loosening of pyramidal cells, as well as pyknotic and
atrophied neurons, while the relative neuron loss of young mice was less than that of old
mice. Additionally, the activation of microglia is more severe than those in young mice,
which consistent with findings in other studies [13,14]. Through the co-immunostaining
of β-gal/P16INK4a and astrocyte marker GFAP, it could be found that this cell senescent
marker appears in astrocytes, and transmission electron microphotographs show that the
mitochondria in aged mice may undergo malfunctioning, which suggests that astrocytes
senescence may have occurred in the process of brain aging due to the mitochondrial
dysfunction. Researchers have found that dysfunction of astrocytic mitochondria can cause
deleterious actions on neurons [15,16] and may bring adverse factors to other types of cells
in brain [17]. Therefore, we made attempts to establish astrocyte models of aging in vitro
to assist in the study of brain aging.

Several reports have shown that late passage of primary or mesenchymal stem cells
could appear the sign of senescence. Cultured primary MEF cells aged through later
passage, which causes the cells to swell and eventually stop proliferating [18,19]. The
replicative senescence of astrocytes has also been confirmed in primary cultures derived
from normal or post-AD brain tissue [20,21] During our experiments on astrocytes and
adipocyte-derived mesenchymal stem cells, it was found that higher passage number
cells have indeed reduced proliferative and differentiation capabilities (data not shown).
Therefore, we here constructed a replicated aging model and oxidative stress model of
astrocytes to imitate senescent cells during aging. Actually, previous articles have reported
astrocytes that underwent serial passage cultivation or oxidative stress showed aged phe-
notypes like nuclear enlargement [21,22], elevated expression of P53 and P21 and P16 [23].
Senescence-associated beta-galactosidase, which is overexpressed and accumulated in the
lysosome specifically in senescent cells [24], was also widely used as a cellular senescence
marker. In vitro models in our study also found these similar changes of indicators. What’s
more is that the mitochondrial function of senescent astrocytes may decline with increased
passaging [25], especially the level of proton leak and ATP, but we found that increased
passaging did not affect the level of ATP (Figure S2), which is different from previous
research, speculating that this discrepancy may be caused by the difference of length of
culturing time and self-regulation of astrocyte itself, but the ATP level of the model of ox-
idative stress of astrocyte indeed changed. We also examined the mitochondrial membrane
potential (MMP) and molecular changes in senescent astrocytes, finding that no matter the
serial passing model or the oxidative model of senescent astrocytes model, MMP decline
appeared, which suggests that mitochondrial function is negatively affected. However,
indeed, a drop in mitochondrial membrane potential does not necessarily lead to the loss
of mitochondrial functions, as research has reported that in Huntington’s disease occurred
imbalanced mitochondrial fusion-fission [26]. Our results showed that oxidative stress
induced astrocyte senescence occurred with elevated expression of DRP1, suggesting that
fission in mitochondria of this type of senescent astrocytes was enhanced. Administration
of berberine could ameliorate these mitochondrial dysfunctions caused by H2O2. Thus,
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the question remains concerning how mitochondrial dysfunction of senescent astrocytes
impact on the process of brain aging.

It has been proposed that astrocytes can establish communications with microglia,
neurons and other astrocytes [27], and may involve in synapse formation and elimination
to different degrees in a wide range of disease conditions [28]. Astrocyte-microglia are
deemed to have immune-related functions in the mammalian brain. Initially, all the inflam-
matory responses or regulatory process are activated with the disruption of steady-state
brain homeostasis. This rapid response induces the process of brain repair mostly by those
activated glia cells. However, sustained secretion of inflammatory mediators of astrocyte
or microglia may induce chronic inflammation, which usually happens in brain aging
and finally may contribute to neurodegeneration and cognitive decline [29,30]. Recently,
research has found that a subset of microglia, named disease-associated microglia, are
associated with the genes found in the human genome that is linked to Alzheimer’s disease
(AD) and other neurodegenerative conditions [31–33]. This type of microglia will sustained
secrete IL-6 and impact on neurons and finally lead to neuroinflammation. However, re-
garding how the microglia be activated, numerous explanations are aroused. Some research
suggests that microglial may be activated by a repertoire of pattern recognition receptors
(PRRs) which allow microglia to detect “harmful signals”, such as substances containing
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs), including ATP or DNA, or different types of interleukins released from
astrocyte or other types of cells in brain [34,35]. Upon detecting these messages, microglia
migrate to those damaged positions and engulf those materials with an amoeboid-like “re-
active” morphology [36,37]. Our study found that in the brain of aged mice, the microglial
morphology was significantly altered, and in vitro data also found that serial passaging or
oxidative stress induced senescent astrocytes secreted higher IL-6 compared to those young-
astrocytes, so these mitochondrial dysfunction or interleukin release by astrocyte may be a
cause of microglia activation and finally lead to neurons death due to the sustained secrete
of neuroinflammatory cytokines. Our cell viability assay of astrocyte-microglia-neuron also
proved this cell-to-cell interaction would eventually lead to neuronal death.

Except for the astrocyte-microglia-neuron interaction referred above, our data also
suggest that different types of senescent astrocytes could do damage to neurons directly.
Although astrocytes were initially considered as nonfunctional fillers of the neuronal net-
work. However, with time and technology advances, the significance of this type of cell for
many complicated biological processes has been elucidated. In vivo, they interact closer
with neurons and participate in the “tri-partite synapse”, which couples neurotransmission
between pre- and postsynaptic materials [38]. Further contributions include, e.g., against
trauma, infection, and neurodegeneration to maintain neuronal health. However, many
studies have reported that astrocyte senescence may directly influence neuronal health
through multiple processes, e.g., SASP, P16, and P21 [23,39], which were referred to above,
and DNA damage induced by ionizing radiation [40]. What’s more, research also reported
that ROS-induced senescence in human astrocytes showed downregulated genes of neu-
ronal development and differentiation and upregulated genes of proinflammation [41].
These may be partially responsible for the neuronal damage or death. In our study, we
found that after neurons were incubated with the supernatant of senescent astrocytes,
the viability was dramatically decreased, combined with elevated caspase-3 expression
compared to those astrocytes treated without H2O2. These adverse effects were ameliorated
by pre-treating with berberine when inducing oxidative stress with H2O2. These results
suggest that senescent astrocytes could do impact on neuronal survive in a direct way.

Meanwhile, we used berberine as a positive control to deal with the dysfunction of
mitochondria induced by oxidative stress, since it had long been reported to have the ability
to maintain the normal function of mitochondria and previous studies also proved that
it could possess several pharmacological properties [42–45], including anti-inflammatory,
antifibrotic, and correcting the fission of mitochondria. Our data show that berberine may
have the favorable potency of astrocytes from escaping the process of senescence.



Molecules 2022, 27, 5925 13 of 19

4. Materials and Methods
4.1. Animals

Male C57bl6/J mice (8-week-old) were purchased from Vital River Laboratory Animals
Technology Co, Ltd. [SCXK(Jing)2016-0006], housed in a temperature and climate condition-
controlled barrier system (23 ± 2 ◦C and 45~60% relative humidity, 12 h light-dark cycle)
and fed regular rodent chow (Laboratory Animal Center of Jilin University). Animal
welfare and experimental procedures complied with the Provisions and General Recom-
mendations of the Chinese Experimental Animals Administration Legislation. All animal
experimental procedures were approved by the Ethics Committee for the Use of Experimen-
tal Animals of College of Basic Medical Sciences, Jilin University (SCXK(Jing)2014-0004).
The animals were divided into 3 groups for analysis: 4-month-old mice (young group;
n = 10), 18-month-old mice (middle-age group; n = 10), 26-month-old mice (aged group;
n = 10). All animal experimental procedures were approved by the Ethics Committee for
the Use of Experimental Animals of College of Basic Medical Sciences, Jilin University
(SCXK(Jing)2014-0004). Mice were sacrificed under isoflurane inhalation anesthesia until
indicated months of age, and then the brains were removed.

4.2. Tissue Processing

Fresh brain tissues were dissected and soaked overnight in 4% paraformaldehyde,
dehydrated in an ascending ethanol series, and equilibrated with xylene, followed by
embedding in paraffin and sectioning into 6µm slices. Then, samples were dewaxed with
xylene and a descending ethanol series.

4.3. Reagents

Berberine dilutions were obtained from a 10 mM berberine chloride stock solution
prepared in Dimethyl sulfoxide.

4.4. The Morris Water Maze (MWM) Test

The Morris Water Maze (MWM) test includes two main parts: the place navigation
test and the spatial probe test. The study was conducted in a quadrant of a 1.8-m-diameter
pool with an 8.5-cm-diameter platform submerged in opaque water. Water remained at
temperature (22◦ ± 1 ◦C) through all trails. Distinct visual cues were present in all trials.
The place navigation test was performed by giving four trials a day with 20- to 30-min
intervals between trials for 5 days. The spatial probe test took place 24 h after the last
place navigation test. The spatial probe was performed on the sixth day with the escape
platform removed, and the probe trials were conducted for 60 s. The training and probe
trials were recorded by a video camera mounted on the ceiling, and data were analyzed
by using SMART v.3.0.06 (a product of Panlab Harvard Apparatus®, RWD Company,
Shenzhen, China).

4.5. Cell Culture and Primary Astrocytes Culture

Mouse BV2 and Neuro-2a(N2a) cell lines were purchased from the National Collection
of Authenticated Cell Cultures (Shanghai, China) and were maintained in DMEM/F12
supplemented with 10% fetal bovine serum (FBS), 2 mM l-glutamine, 100 IU·mL−1 peni-
cillin, 100µg·mL−1 streptomycin and reseeded at a 1:7 dilution every 3 days. Primary rat
astrocytes were isolated from 1–2-day-old Wistar rat pups as described previously [46]. In
brief, cortices were removed from the rat pups; the meninges were stripped and homog-
enized. After incubation with trypsin (0.05%) for 30 min in a 37 ◦C thermostatic shaker,
the homogenate was resuspended in a trypsin inhibitor/DNase solution, triturated, and
dissociated cortical cells were suspended in DMEM/F12 (Life Technology, MA, USA) con-
taining 25 mM glucose, 4 mM glutamine, 1 mM sodium pyruvate, 100 IU·mL−1 penicillin,
100µg·mL−1 streptomycin, and 10% FBS and plated on poly-L-lysine coated 10 cm dishes
at a density of 1 × 105 cells cm2 at 37 ◦C with 5% CO2 in air. After 24 h, the culture medium
was changed to fresh medium. Monolayers of type 1 astrocytes were obtained 7 days after
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plating. Non-astrocytic cells, such as microglia and neurons, were detached from the flasks
by shaking and removed by changing the medium. Cells were trypsinised and reseeded at
a 1:3 dilution every 3 days on poly-L-lysine coated 10 cm dishes.

4.6. Senescence Induction

Induction of astrocyte senescence by oxidative stress was performed as previously
described [47]. In brief, early-passage (no more than five passages) astrocytes were incu-
bated for 24 h, then the medium was removed and 80 µM H2O2 in complete astrocyte
culture medium was added for 2 h. Then, the medium was removed and washed with
PBS, before cells were cultured in medium without serum for 24 h. Induction of natural
senescent astrocytes was performed by trypsinizing astrocytes. When cells reached 80–90%
confluency, primary rat astrocytes isolated from 1–2-day-old Wistar rat pups were defined
as passage 0. The number of passages increases when cells are trypsinized once. Cells
within passage 20–25 were used as aged-astrocytes and within passage 1–5 were used as
young-astrocytes.

4.7. Senescence-Associated-B-Galactosidase (Sa-β-Gal) Staining

β-galactosidase activity was measured using the Senescence β-Galactosidase Staining
Kit (Beyotime, Shanghai, China). Briefly, cells were washed with PBS and fixed with
1× fixative solution for 15 min. Then, β-galactosidase staining solution with a final pH
between 5.9 and 6.1 was prepared and added to the fixed cells. Samples were sealed with
parafilm to prevent evaporation and placed in a 37 ◦C incubator without CO2 overnight.
Imaging was performed using an inverted microscope.

4.8. Preparation of Astrocyte-Conditioned Medium and Microglia-Conditioned Medium

Astrocytes were grown in 96-well plates, when reaching 80% confluency, cells were
treated with 80 µM H2O2 or normal culture medium for 2 h, then the medium was removed
and washed with PBS for 1 time and DMEM/F12 without serum was added for 24 h, finally
the supernatant was collected for downstream experiments. Conditioned medium from
microglia was collected after treating with astrocyte conditioned medium for 24 h.

4.9. MTT Assay

Cell viability was determined using a modified MTT assay [48] Briefly, 5000 cells per
well were plated in 96-well plates and incubated overnight. Cells were then treated with
conditioned medium for 24 h. At the end of the follow-up period, MTT was added,
and the cultures were incubated for 2 h at 37 ◦C in an incubator. After discarding the
supernatant, the formazan was dissolved in DMSO. Then, the optical density (OD) values
were determined at 492 nm. The cell viability was calculated by taking the cell viability in
the non-treatment group as 100%.

4.10. ATP Measurement

Intracellular ATP level was determined by ATP assay kit (Beyotime, Shanghai, China),
which can perform cell lysis and generate a luminescent signal proportional to the amount
of ATP present. The preparation of samples was conducted according to the manual of
the product. The supernatants of each sample (20µL) were added to the ATP detection
solution (100µL) attached to the kit. Then, Infinite 200 Pro (Tecan, Mannedorf, Swiss) was
utilized to record the RLU values. The protraction of the standard curve was conducted on
the basis of the RLU values of ATP with the concentration of 0, 0.01, 0.05, 0.1, 0.5, 1, 5, and
10 nmol/L. Finally, the protein concentration was used to standardize the results, which
were presented as ATP/protein (nmol/mg).

4.11. Mitochondrial Membrane Potential

Mitochondrial membrane potential (∆Ψm) loss was assessed by a Mitochondrial Mem-
brane Potential Assay Kit with JC-1. After treatment for 24 h, cells were incubated with JC-1
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for 20 min, washed and visualized under BX53 fluorescence microscope (Olympus, Tokyo,
Japan). Red fluorescence indicates normal ∆Ψm with JC-1 aggregates in mitochondria, and
green reflects cytosolic JC-1 monomer indicating ∆Ψm loss.

4.12. Western Blot Analysis

The harvested cells were digested by RIPA, followed by sonication. Samples were cen-
trifuged for 15 min at 12,000× g at 4 ◦C. BCA Protein Assay Kit (Thermo Fisher, MA, USA)
was applied to determine the total protein concentration. After separating the proteins on
SDS-PAGE, the proteins were transferred onto the PVDF membrane (Millipore, MA, USA).
In all, 5% non-fat milk was utilized for the sealing of membranes in Tris-buffered saline
(pH 7.5). The membranes were then incubated with the primary antibodies and second
antibodies. The protein bands were revealed by an ECL kit (Thermo Fisher, MA, USA).
The expression levels of proteins were evaluated by Image J (National Institutes of Health,
MD, USA). The primary antibodies were: anti-P53 (Proteintech, Wuhan, China), anti-P21
(Proteintech, Wuhan, China), anti-P16 (Abcam, Cambridge, UK), anti-OPA-1 (Proteintech,
Wuhan, China), anti-Mfn2 (Abcam Cambridge, UK), anti-DRP-1 (Proteintech, Wuhan,
China), anti-β-actin (Proteintech, Wuhan, China).

4.13. HE Staining

Fixed, paraffin-embedded brain tissue was sectioned and underwent hematoxylin
eosin (HE) staining according to the following procedure. Sections were deparaffinized,
washed in distilled water, and incubated in hematoxylin solution for 5 min; excess hema-
toxylin solution was washed off with running tap water. To remove background staining,
sections underwent a differentiation step in hydrochloric acid alcohol with fully washed in
running tap water. Sections were then counterstained in eosin solution for 2–3 min, washed
in running tap water, dehydrated through graded alcohol, and mounted with neutral resin.
Pathological changes in neurons were observed under a light microscope CX31 (Olympus,
Tokyo, Japan), brain sections were acquired with 100× magnification.

4.14. Nissl Staining

Paraffin-embedded, fixed brain tissue was deparaffinized, washed 1–2 min in distilled
water, dipped in 1% thionin lysol at 37 ◦C for 30 min, and washed again for 1–2 min in
distilled water. To moderately differentiate the nucleus, sections were incubated in 0.5%
hydrochloric acid alcohol, washed back to blue, and differentiated using 95% alcohol until
the Nissl substance was visualized. Sections were then dehydrated (twice for 5 min each)
in 100% anhydrous alcohol, permeabilized with xylene twice (5 min each), and mounted
with neutral gum. Changes observed in neurons and Nissl bodies of the hippocampal CA1,
CA2, CA3, and DG regions were detected under a light microscope CX31 (Olympus), brain
sections were acquired with 100× magnification. The number of neurons was measured
and quantified using ImageJ software.

4.15. Immunofluorescence and Immunohistochemistry

Total cells on the slides went through permeabilization in 0.3% Triton X-100 after the
fixation in 4% paraformaldehyde. After that, goat serum was utilized for blocking. Cells or
tissues were later cultivated overnight with anti-GFAP (Abcam, Cambridge, UK). Then,
the slide was subjected to 1-h incubation with the Fluorescein (PE)-conjugated Affinipure
Goat Anti-Mouse IgG(H+L) (Proteintech, Wuhan, China) at room temperature. Again, cells
or tissues were cultivated overnight with anti-beta-Galactosidase (Proteintech, Wuhan,
China) or P16INK4a (Abcam, Cambridge, UK) at 4 ◦C and then subjected to 1 h incubation
with the FITC-conjugated Goat Anti-Rabbit IgG(H+L) (Proteintech, Wuhan, China). The
counterstaining of the nucleus was accomplished by using DAPI. For immunohistochem-
istry (IHC), slides were incubated in 0.9% H2O2 for 30 min. Afterwards, the slides were
placed in blocking buffer (goat serum 1:20 in PBST/BSA) for 30 min at room temperature.
Then, anti-iba1 (Abcam Cambridge, UK) antibody was used, and tissues were further
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blocked with Biotin for 10 min each. Antibodies were detected using a rabbit peroxidase
ABC Kit (MXB Biotechnologies, Guangzhou, China). Each sample was viewed with BX53
Fluorescence microscope (Olympus, Tokyo, Japan).

4.16. Iba1+ Cell Density and Soma Size Quantifications

Scans of the hippocampus were imaged using BX53 Fluorescence microscope (Olym-
pus, Tokyo, Japan) in bright field on IHC sections stained for Iba1. The number of Iba1+ cells
and the area were recorded. Cell numbers were expressed as number of Iba1+ cells
per mm [49] in a 6 µm thick section. The area of the soma of Iba1+ cells was manually
traced and measured in ImageJ.

4.17. Elisa Assays

Rat IL-6 Elisa kit (Thermo Fisher, MA, USA), Mouse IL-1 beta Elisa kit (Dakewe
Biotech, Shenzhen, China), Rat IL-1 beta Elisa kit (Proteintech, Wuhan, China), Mouse IL-6
Elisa kit (Proteintech, Wuhan, China). Young/aged astrocytes were plated on 12-well plates.
After reaching confluency, the medium was removed and DMEM/F12 without serum
was added for 24 h. Rat IL-6 and IL-1 beta were detected by collecting the supernatant.
Similarly, after culturing with H2O2 treated astrocytes conditioned medium for 24 h, the
supernatant of BV2 was collected for detecting Mouse IL-6 and Mouse IL-1 beta.

4.18. Caspase-3 Activity Determination

Caspase 3 Activity Assay Kit and GreenNuc™ Caspase-3 Assay Kit for Live Cells was
purchased from Beyotime (Nanjing, China) and was used to calculate caspase-3 activity in
cells according to the manufacturer’s introductions.

4.19. Transmission Electron Microscopy

Fresh Brain tissue was cut into 1 × 1 × 2 mm3 samples, fixed in 2.5% glutaraldehyde
solution, embedded, and sliced into ultrathin sections. The ultrastructural changes were
observed under a HT-7800 transmission electron microscope (Hitachi, Tokyo, Japan).

4.20. Statistical Analysis

Data computation was accomplished using SPSS software 16.0 (SPSS Inc., Chicago,
IL, USA). For determining the significance of differences between two groups or among
multiple groups, Student’s t-test or one-way ANOVA was applied. Each experiment was
conducted for three times at minimum. The statistical significance in differences was
confirmed when p < 0.05.

5. Conclusions

In summary, we have shown that, in vivo, astrocytes may represent the earliest sign
of aging in numerous types of brain cells, and senescent astrocytes could trigger neurons’
death in both direct and indirect ways. However, future investigation of cell-to-cell interac-
tions and their mechanisms is needed. Astrocytes senescence is a brand-new field of study,
and more research needs to be designed and implemented so that the autonomous and non-
autonomous mechanisms of senescent astrocytes and their relationship with age-related
neurodegenerative diseases can eventually be uncovered.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27185925/s1, Figure S1: The viability of astro-
cytes treated with different concentration of Berberine. Figure S2: The intracellular ATP level of
young and aged astrocytes.
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