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We use a stochastic branching process model, structured by age and level of healthcare access, to look at
the heterogeneous spread of COVID-19 within a population. We examine the effect of control scenarios
targeted at particular groups, such as school closures or social distancing by older people. Although
we currently lack detailed empirical data about contact and infection rates between age groups and
groups with different levels of healthcare access within New Zealand, these scenarios illustrate how such
evidence could be used to inform specific interventions. We find that an increase in the transmission
rates among children from reopening schools is unlikely to significantly increase the number of cases,
unless this is accompanied by a change in adult behaviour. We also find that there is a risk of undetected
outbreaks occurring in communities that have low access to healthcare and that are socially isolated from
more privileged communities. The greater the degree of inequity and extent of social segregation, the
longer it will take before any outbreaks are detected. A well-established evidence for health inequities,
particularly in accessing primary healthcare and testing, indicates that Maori and Pacific peoples are at a
higher risk of undetected outbreaks in Aotearoa New Zealand. This highlights the importance of ensuring
that community needs for access to healthcare, including early proactive testing, rapid contact tracing
and the ability to isolate, are being met equitably. Finally, these scenarios illustrate how information
concerning contact and infection rates across different demographic groups may be useful in informing
specific policy interventions.
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1. Introduction

The COVID-19 outbreak originated in Wuhan, China, in late 2019 (World Health Organisation, 2020a)
before spreading globally to become a pandemic in March 2020 (World Health Organisation, 2020b).
The human population currently lacks immunity to COVID-19, a viral zoonotic disease with reported
fatality rates that are of the order of 1% (Verity er al., 2020). Many countries have experienced
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community transmission after undetected introductions of the disease by travellers exposed in China.
This has led to exponential growth of new infections in many countries, even as China, through the use
of strong controls and rapid testing and tracing, has managed to control the disease.

The effects of the COVID-19 pandemic do not impact people or communities equally. For instance,
there is a strong evidence internationally that the severity of symptoms and the infection fatality rates
(IFR) vary by orders of magnitude across age groups, with estimates of the IFR in children (aged 0—
9 years) as low as 0.0016% compared with 7.8% in adults over 80 years of age (Verity et al., 2020).
Furthermore, overcrowded living conditions (House & Keeling, 2009) and employment in high-contact
service occupations (Koh, 2020) are also likely to be risk factors for infection, potentially increasing the
burden of COVID-19 for socioeconomically disadvantaged communities.

Indeed, in Singapore, structural socioeconomic and healthcare inequities have fuelled a secondary
COVID-19 outbreak. Despite its government’s early claims to have contained the spread of COVID-
19, a large secondary outbreak emerged in Singapore’s migrant worker community in April (Singapore
Ministry of Health, 2020). These communities are housed in crowded dormitory precincts, where self-
isolation is difficult, and report high levels of job insecurity, which creates structural disincentives
to report illness and to enact self-isolation (HOME, 2020). The experiences of migrant workers in
Singapore, which include overcrowded housing and lack of access to primary healthcare or sick leave,
are indicators of the importance of equitable epidemic control measures that account for the lived
experiences of all.

In Aotearoa New Zealand, inequities in health and healthcare (Waitangi Tribunal, 2019) have
been shown to substantially increase relative fatality rates for Maori and Pacific (Steyn et al., 2020).
Furthermore, Maori and Pacific people are more likely to live in crowded conditions than European
New Zealanders (Stats NZ, 2018). Population count data also suggest that the socioeconomic status
in Aotearoa New Zealand is a key indicator for a community’s ability to reduce contacts during
working hours, with wealthier communities able to work more easily from home (Data Ventures,
2020). This combination of structural inequities has the potential to lead to both higher transmissibility
and higher IFRs for COVID-19, resulting in higher risks for Maori and Pacific populations in
New Zealand.

In this paper, we introduce a structured branching process model similar to that of Davies ef al.
(2020a) that allows for heterogeneous contact networks among different age groups and between
communities in the presence of healthcare inequities. Each group has its own parameter set to describe
the average reproduction number, the probability of being asymptomatic and the level of access to
test for individuals within the group. The connections between such groups are described by a contact
matrix, which determines the relative likelihood of an infected individual from group i infecting
someone from group j.

The main purpose of this study is not to produce detailed forecasts of COVID-19 cases in different
age or other demographic groups. Although estimates of contact rates between groups corresponding
to 5-year age bands exist for New Zealand (Prem et al., 2020), these do not account for the effects of
behavioural changes, social distancing and other interventions in response to COVID-19. In addition,
New Zealand has had a relatively small number of COVID-19 cases (1), which means it is difficult
to estimate contact rates across finely stratified age groups. Stratifying the model at this level would
therefore introduce too many undetermined parameters.

Instead, we aim to develop a coarse-grained model that can compare control interventions that
differentially affect different broad age groups (e.g. school closures) and can help identify potential
risks to particular communities. We estimate the contact rates between broad age classes qualitatively
from available data and test the sensitivity of the model to changes in the structure of the contact rates.
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FiG. 1. Schematic diagram showing the timeline and transmission probability of a typical case. In the early stages, secondary
infections are unlikely. Red arrows show the exposure times of new secondary infections. After isolation, the transmission
probability is reduced by a fixed proportion (green curve). Subclinical infections are not isolated and follow the shape of the
blue curve throughout but with a lower overall infectiousness. Time from infection to isolation is the sum of two random variables
Ty and T, drawn from the distributions shown in Table 1.

The model is formulated in a mathematically general way that allows it to be applied to any number
of population groups. This will be useful when combined with robust New Zealand-specific data on
contact rates between fine-grained groups at varying alert levels and epidemiological properties of
COVID-19 within these groups. In this work, we use this model to explore two scenarios: the first
is an age-structured model that splits the population into three groups based on age, which we use to
investigate the effects of school closures, while the second splits the population into two communities
in the presence of healthcare inequities.

2. Methods

We use a branching process simulated in 1-day time steps to model the number of infections in each
group, with initial seed cases representing overseas arrivals. The number and timing of these seed cases
were chosen to replicate real case data (Section 2.1).

For each scenario, we segment the population into N; mutually exclusive groups. Within each group,
individuals are assumed be homogeneous, with the exception of their individual reproduction number,
which is heterogeneous and randomly distributed with a group-specific mean (see below).

Infected individuals fall into two categories: (i) those who show clinical symptoms at some point
during their infection and (ii) those who are asymptomatic or subclinical for the duration of their
infection. Each new infection is randomly assigned as subclinical with probability pSGub and clinical
with probability 1 — pSGub, independent of who infected them. This categorization applies for the full
duration of the infectious period, i.e. the clinical category includes pre-symptomatic individuals who
later go on to develop clinical symptoms. The probability of being subclinical pSGub may vary between
groups.

Clinical individuals have an initial period during which they are either asymptomatic or have
sufficiently mild symptoms that they have not isolated. During this period, their infectiousness is as
shown by the blue curve in Fig. 1. Once they develop more serious symptoms, they have a probability of
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being detected p$ and thus are isolated. In this case, their infectiousness reduces to c;,, = 65% (Davies
et al., 2020a) of the value it would have without isolation (green curve in Fig. 1). This represents a
control policy of requiring symptomatic individuals to self-isolate. Subclinical individuals are never
isolated.

The average reproduction number Rgb of subclinical individuals in any group G was assumed to
be 50% of the average reproduction number Rgm of clinical individuals that group. This reflects lower
infectiousness of subclinical cases (Davies ef al., 2020a). Individual heterogeneity in transmission rates
was included by setting R, = Rgin Y, for clinical individuals in group G and R;, = RsGub Y, for subclinical
individuals in group G, where Y, is a gamma distributed random variable with mean 1 and variance
2 (Lloyd-Smith er al., 2005). In the absence of case isolation measures (Section 2.2), each infected

individual k causes a randomly generated number N, ~ Poisson (Rk) of new infections.

The time between an individual becoming infected and infecting another individual, the generation
time T, is Weibull distributed with mean 5.0 days and standard deviation of 1.9 days (Ferretti ez al.,
2020). The infection times of all N; secondary infections from individual i are independent, identically
distributed random variables from this distribution (Fig. 1). An alternative log normal distribution and
a gamma distribution were investigated (Nishiura et al., 2020). While they each required small changes
in control levels to achieve a good fit with case data, they did not change the results significantly. For
computational convenience, all individuals are assumed to be no longer infectious 30 days after being
infected. In practice, individuals have very low infectiousness after about 12 days because of the shape
of the generation time distribution (Fig. 1).

The time between infection and isolation are the sum of two random variables 7 and T,. The random
variable T represents the time from infection to onset of symptoms and has a gamma distribution
with mean 5.5 days and shape parameter 5.8 (Lauer et al., 2020). The random variable 75, is the time
from symptom onset to isolation and is assumed to be exponentially distributed. There is an additional
delay 75 from isolation to reporting, which is modelled as a gamma distribution. Parameters for the
distributions of T, and T; were estimated from New Zealand case data (Section 2.1). The model does
not explicitly include a latent period; however, the shape of the Weibull generation time distribution
(Fig. 1) captures this effect, giving a low probability of a short generation time between infections.

The model is simulated using a time step of 6z = 1 day. In the time step [¢,7 + §7], infectious
individual &k produces a Poisson-distributed number of secondary infections with mean

t+4t
h(0) = ReCOODF (1 — t1,) /I W (T — tingy) dr, (D
where R, is the mean number of secondary infections from individual k; W is the probability density
function of the Weibull distributed generation time (Table 1); #;¢, and 7;, , are the infection time and
isolation time, respectively, for individual k; CY90 (1) is the control effectivity at time ¢ (Section 2.2)
for the group G(k) to which individual k belongs; and F(f) is a function describing the reduction in
infectiousness due to isolation.

1 s<0

Ciso §>0

F(s) = [ @

A contact matrix A gives the probability A ;g that a secondary infection originating from group G
will be in group H, with " Ay = 1. New cases infected by an individual in group G are distributed
across groups according to these probabilities. All individuals infected during time step [zt + &¢] are
assigned infection time ;¢ = 1 + 8t



A STRUCTURED MODEL FOR COVID-19 SPREAD

X9} 99§

(BOTOT) T8 19 sataeq

(B0T0T) T8 19 sataeq

¥0°90°L0T=0
TOC0LOT=0
660 100 _
100 6670
S0°0°sL0=d
€co‘cco="d
ce="ry

dnoi3 sse00r a1BOYI[BAY JOMO] ‘4—] S[QAT JB SI)BI UOISSIWUSURI],
dnoiS sseoor a1eOYI[EaY POOS ‘p—] S[PAT I S9JeI UOISSTWSURI],

$—1 S[eA9T [0nuo)) 1e sdnoid usamieq senifiqeqoid joeiuo)

P9103939p sased Jo uoniodoid

SUOIOAJUI [BOIUI[OQNS JO uontodord

(Tonuods 10

UONIB[OST 9SBD OU) SUOIIOQUI [BITUI[D J0J Joquinu uornonpoidoy

QIBOYI[BAY 0) SSAVOE AQ PAINJONIIS OLIBUIDS JOJ SISJoUIRIE]

1X91 99§

X391 99§

020¢ 1P 12 9d
q0TOT v 12 sataeq
(810T v 12 177) sael
1081U0D pajsnlpe-o3e
WoIJ parewnIsy

(BOTOT) T8 19 satae(
(BOTOT) ‘T8 19 satae(
BJep WOIJ pajewnsy
BJEp WO pajewnsy

(0207) e 19 1one]

TOSEOL0T =0
90 €0 SO0
SLO0 ST80 10 =V
SLO'O STEO 90
S90 €0 SO0
S00 S90 €0 =V
S0'0 SLY'0 SLYO
SLS0 STEO 10
SLO0 STSO 10 =V
SLO'0 STE0 90

SL0SL0sL0=1d

To‘ccogo=1"d

creoy ="y

%S9 = o

%05 = "/ oy

(G'€ = 9[eas ‘g’ = adeys) | ~ £
(81Q)dxg ~ ¢

(S6°0 = 9reos ‘g'g = adeys) 1 ~ 'L,

$—1 S[OAQT I S9JeI UOISSIWSURI],
(uonoesdur reyuared pasearour pue uado S[ooyos)
¥ pue ¢ S[oA9 [onuo)) Je sdnoiS usamieq sanriqeqoid 1oeIu0)

(uado sjooyos)
¥ pue ¢ S[9A9] [o1uo)) Je sdnoi3 usamiaq senifiqeqoid 10eIU0D)

7 PUe [ S[oA9T [onuo)) e sdnois usamioq senifiqeqod 10e300D)

Pa1093ap sased jo uoniodoig
SUOTJOQJUI [BTUI[oqNs Jo uorodoid

(Tonuod 10

UOIIR[OSI ASBD OU) SUONIJUI [BITUI[D JOJ Joquinu uononporday
OLIBUQDS PaInionns-o3e 10j slojowered

UONE[OSI Id)JE SSAUSNONIYUT JATR[IY

SASBO [BIIUI[OQNS JO SSAUSNONIYUI JATR[IY

Sunaodar 03 uone[ost woij uonnqrysI(q

(e3ep WOIJ) (SAep) UONE[OSI 0] JASUO JO UONNQLISI

(sAep) 19su0 01 a1sodxa Jo uonnqISIq

(L9°g
(0207) 'Te 10 IO = 9[eos ‘g8 7 = odeys);nqiam sow) uoneIauad Jo uonnqrusIq
90IN0S anjeA REENNAE

"DIPP 2SI pUDIPIZ MIN

wWoLf pagpuisa a1am S42Jounivd moy fo uondiiosap v 40f [z U0NIIS 29§ “dOUNOS A1Y] PUD (PO Y] Ul pasn sidjounivd oy | 414V,



6 A.JAMES ET AL.

2.1. Case data

Model simulations were seeded with the N;,, = 501 New Zealand cases that had a history of
international travel and a known international arrival date prior to 10 April 2020. After 10 April 2020, all
international arrivals to New Zealand were required to spend 14 days in government-managed quarantine
(Jefferies et al., 2020). For the N,,, international seed cases, the infection date was estimated backwards
from the date of onset of symptoms (distribution shown in Table 1). For cases that did not include an
onset date, the infection date was backdated from the arrival date. Cases missing an isolation date were
assumed to remain fully infectious for the whole infectious period. Secondary infections that occurred
before arrival in New Zealand were ignored (i.e. the right-hand side of (1) was set to zero for values
of ¢ preceding date of arrival). Cases that were flagged as having an international travel history but
missing an arrival date were assumed to have arrived on the same date at becoming infected, so all their
secondary infections were included. To allow for the fact that the case data only include clinical cases,
an additional number N ., ~ Poisson(N,p.,,/(1 — pg,;)) of subclinical seed cases were added. The
arrival, onset and isolation dates for these subclinical seed cases were approximated by random sampling
with replacement from the clinical seed cases.

The times from symptom onset to isolation and from isolation to reporting were calculated for
the N,,,, = 713 domestically acquired cases of COVID-19 reported in New Zealand up to 7 April
2020 (Table 1). The mean of the distribution of 7, was set to be the mean of the observed times
from symptom onset to isolation. The parameters of the gamma distribution for 75 were set to be the
maximum likelihood estimates using the observed times from isolation to reporting. The international
cases were assigned the actual reporting date as recorded in the data.

2.2.  Control sub-model

Population-wide control interventions were modelled via the function C%(r), which represents the trans-
mission rate for infected individuals in group G relative to no population-wide control. Population-wide
control interventions include closure of schools, universities or non-essential businesses; restrictions
on large gatherings and domestic travels; social distancing measures; and stay-at-home orders. New
Zealand’s control measures are based on a scale of alert levels ranging from 1 to 4. Level 1 controls
are largely focussed on border measures, while Level 4 is a strong lockdown of most activities except
for ‘essential services’. Alert Level 2 was announced on 21 March and this was raised to Alert Level 3
on 23 March and Alert Level 4 on 25 March. We do not attempt to model the short periods of time at
Alert Levels 2 and 3; instead, we assume that Level 2 was in place up to 25 March, with an effective
reproduction number consistent with the data up to this point. After 25 March, transmission rates are
reduced to represent Alert Level 4, which continues until the end of 27 April.

Reductions in the transmission rates at alert levels are based on modelling literature (Jarvis et al.,
2020; Kissler et al., 2020; Moss et al., 2020) and empirical estimates of the effective reproduction
number in international data (Binny ez al., 2020; Flaxman et al., 2020; Hsiang et al., 2020) and provide a
reasonable fit with the New Zealand data. Estimates for Level 3 transmission reduction should be treated
with caution at this stage and estimates used here may not be representative. The control level C can
also be varied across the different population groups. This can capture a range of effects specific to a
particular group, e.g. the practicalities of implementing social distancing in a school or early childhood
setting, the difficulties in isolating older people in multi-generational households or maintaining an
isolated household bubble in overcrowded housing.
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2.3. Contact sub-model and effective reproductive number

For individuals in group G, the average reproduction number without case isolation is where C¢ < 1 is
the transmission rate in group G relative to transmission with no control measures. The average number
of secondary infections in group H caused by a randomly chosen index case in group G is ReGﬁ,AGH.
The overall population effective reproduction number R, is the dominant eigenvalue of the 2N x 2N;
block matrix, where each of the four blocks is a N; x N matrix over all combinations of G and H. The
contact probability matrix A is chosen to model particular scenarios to compare the relative efficacy of
different control interventions or to help identify potential high-risk groups. This is described in detail
for each scenario below and the associated values chosen for A are shown in Table 1.

2.4. Sensitivity analysis

We have made a number of simplifying assumptions in developing and parameterizing the model.
We have tested the sensitivity of model results to variations in some of the model parameters whose
values are uncertain or context dependent. These include the proportion and relative infectiousness
of subclinical cases, the heterogeneity in individual reproduction numbers, the mean generation time
and the values in the contact matrix. Any change in parameters that results in a change in the overall
population reproduction number R, causes a corresponding change in the trajectory of case numbers.
However, if the value of R, is fixed, the model is robust to these parameters and the qualitative
results described in the scenarios above are not affected. Increasing heterogeneity in individual
reproduction numbers increases the variation between independent stochastic realizations and increases
the probability of ultimate extinction (Lloyd-Smith ez al., 2005). This is important in scenarios that
consider elimination of the virus as a potential outcome, but this was not the primary focus of our
work here. Increasing mean generation times slows the spread of the virus and, if the model were then
calibrated against empirical case data, this would require a larger value of R, (and by implication greater
relative reduction in R, at each alert level). However, the distinction between short generation time
and low R, versus longer generation time and higher R, is not crucial in scenarios where there is no
significant herd immunity. Model results are insensitive to moderate changes in the contact matrix but
will change slightly if very extreme values are used.

3. Scenarios
3.1. Age-structured scenario

In these scenarios, we consider the effect of school closure on disease spread. Detailed data about the
effects of lockdown and other COVID-19 response measures on age-structured contact rates are not yet
reliably available. Although this may partially emerge from a combination of data sources including
employment data and telecommunications data, calibrating this with New Zealand household size data
and case and contact tracing data is beyond the scope of this paper. In the absence of such data, we have
made a number of assumptions including the values in the age-structured contact matrix. Nonetheless,
the opening and closing of schools is an important policy choice, so we want to explore the possibility
of answering this question using an age-structured model.

As such, we consider a population split into three age groups: younger than 19 years, 19—65 years
and older than 65 years. Data show that these three age groups have very different rates of clinical
severity to COVID-19 (Verity et al., 2020), and we assume that the probability of being subclinical is
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80%, 33% and 20%, respectively, based on estimates by Davies ef al. (2020b). We assume that all age
groups have the same level of healthcare access and clinical cases are detected equally in all groups.
Seed cases are assigned to an age group according to the NZ data.

At Alert Levels 1 and 2, we assume that 50% of contacts between groups occur according to the
relative size of each group in the population (here, younger than 19 years = 20%, 19-65 years = 65%
and older than 65 years = 15%). The remaining 50% of contacts are within group. This is similar
to the age-structured contact model of Prem er al. (2020) although with a coarser age stratification.
It is also consistent with projections for age-stratified contact rates for New Zealand (Prem er al.,
2017) aggregated into coarser age groups. We assume that older people have fewer contacts with
other groups: only 5% of secondary cases originating from children are in older people, with the
remaining secondary cases from children split evenly between other children and adults. This models
an average child’s isolation bubble as containing a similar number of adults and other children. The
majority (65%) of secondary infections originating from adults are still in other adults, with only 5%
in older people and the remainder (30%) with children. Finally, secondary cases originating from older
people occur predominantly (65%) in other older people, only 5% in children and the remainder (30%)
in adults.

The mean reproduction number, in the absence of control measures, for clinical cases, Rgm, is
assumed to be 3 (Davies et al., 2020a). For the children and older people groups, it is scaled according to
the expected number of face-to-face contacts given in the 2017 International Social Survey Programme
for New Zealand (Li et al., 2018). This results in clinical cases among children having a much
higher average reproduction number and among older people a much lower one. We assume that
control measures at Alert Levels 3 and 4 produce the same relative in transmission from all three
age groups.

This model fits well with data on the number of cases in NZ in each age group over time (Fig. 2,
red lines). The model results are most dependent on the proportion of subclinical and undetected cases
in each group (as described above, these were sourced from literature not tuned to fit the model to
data). Notwithstanding extreme choices, the results are relatively insensitive to changes in the contact
matrices. This is in part due to the large number of international seed cases in the model but also suggests
that age-specific epidemiological parameters play a more important role than the details of contact rates
between age groups. This suggests that the results seen here might remain robust once further data is
available to inform actual contact and/or transmission rates.

We now consider hypothetical school closures as a test of the model. Different countries have
implemented very different policies for schools. As very little is known about overall transmission
rates at Alert Level 3, we consider a counterfactual scenario in which schools remained open during
Alert Level 4. The blue line in Fig. 2 shows the model output if the average reproduction number for
the younger than 19 years of age group during Levels 4 was at the much higher level associated with
Level 3. We also keep the first row of the contact matrix the same as at Levels 1 and 2 (Table 2). This
means that a higher proportion of secondary infections originating from children are in other children.
We see that relaxation of control for children has only a small effect on the total number of cases
and the overall population effective reproduction number is still less than 1 (Table 1). However, the
light blue line shows the effect of opening schools with an associated increase in adult, i.e. parental,
interaction. Here, the average reproduction number for adults is also set to the higher level under Alert
Level 3 (Table 1) and the adult row of the contact matrix reverts back to the Level 1-2 values (Table
1). This has a much greater effect on the overall case numbers than the increased transmission rates
of children alone. The overall population effective reproduction number is above 1 in this scenario
(Table 2).
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FiG. 2. Results of the age-structured model. Red lines show the daily number of reported cases; pink lines show the number of
newly infected cases each day. These reflect the actual situation where schools were closed from 25 March. The blue line shows the
reported daily cases if schools had remained open, while the light blue line shows the reported cases if school openings increased
parental contacts. Results are averaged over 500 independent, identically initialized realizations of the stochastic process.

3.2.  Scenario structured by inequity in access to healthcare

Singapore has seen a second outbreak of infections after appearing to contain an initial outbreak
(Singapore Ministry of Health, 2020). This second wave emerged in a migrant worker community
with low socioeconomic indicators, overcrowded housing and less access to healthcare and testing.
The community also faces strong economic disincentives to seek healthcare (HOME, 2020). In these
circumstances, the outbreak has been difficult to contain and was likely detected late. In this section, we
want to explore scenarios that capture aspects of this situation.

We do not attempt to model the multitude of relevant socioeconomic and demographic variables in
detail but instead explore the effect of different transmission and case detection rates in a simplified
scenario that captures certain aspects of these. We split the population into two groups, each with a
different level of access to healthcare and COVID-19 testing and diagnosis. To simplify the model, we
assume that each group has the same proportion of subclinical cases; although we note that COVID-19
severity and access to healthcare are likely to have common covariates, e.g. derivation index and
ethnicity (Steyn et al., 2020). We assume that in the group with good access to healthcare, 75% of
clinical cases are detected. Individuals in this group are less likely to be in overcrowded housing and
more likely to have jobs that are compatible with social distancing or working from home. For these
reasons, we assume that transmission rates in this group drop significantly under Levels 3 and 4 controls.
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TABLE 2 Summary of transmission coefficients (i.e. control level) by group and effective reproduction
numbers in the two scenarios.

Rpy and associated reduction in transmission rates from Level 1

Level 2 Level 3 Level 4 Level 4 Level 4
(schools open) (schools open,

parental
interaction)

Age-structured model

Children 1.97 (70%) 1.27 (45%) 0.56 (20%) 1.27 (45%) 1.27 (45%)

Adults 1.75 (70%) 1.13 (45%) 0.5 (20%) 0.5 (20%) 1.13 (45%)

Elderly 0.83 (70%) 0.53 (45%) 0.24 (20%) 0.24 (20%) 0.24 (20%)

Ry 1.66 1.07 0.47 0.86 1.06

Model structured by access to healthcare

High detection 1.75 (70%) 0.75 (30%) 0.5 (20%) — —

(pr =0.75)

Low detection 1.75 (70%) 1.5 (60%) 1 (40%) — —

(pr = 0.05)

R4 1.75 1.49 0.99 — —

We assume that the group with poorer access to healthcare is smaller in size and has a much lower
clinical case detection rate of 5%. This should be interpreted as meaning that only the most clinically
severe cases are detected (although variation in severity of clinical cases in not explicitly modelled).
We also investigate the scenario where transmission rates in this group do not decrease as much as in
the first group during Alert Levels 3 and 4 due to, e.g. overcrowded housing and job security issues
precluding self-isolation during illness. These parameter choices represent a simple model of inequities
in the healthcare system and socioeconomic correlates, rather than actual estimates of case detection
and transmission rates for particular groups. The motivation for this is to identify potential factors and
regions of parameter space where large outbreaks could go undetected for a long period, e.g. as occurred
in Singapore.

For simplicity, all seed cases are in the larger group with high levels of healthcare access. In the
first scenario, we assume that both groups have the same reduction in transmission rates at any given
alert levels (Fig. 3, red lines). This models a desired outcome of a policy intervention, whereby an
effective control strategy takes into account the differing contexts for different sectors of society in
order to achieve equitable outcomes. In this scenario, the epidemic is successfully controlled. In the
second scenario (Fig. 3, blue lines), we assume that control measures are less effective in the group
with poor healthcare access. Throughout the Level 4 period, reported case numbers are almost identical
but, due to low access to testing, there is a rapidly growing number of undiagnosed infections in the
group with poor healthcare access. As a result, once overall control is relaxed at the end of Level 4, case
numbers start to rise rapidly in both groups.

One of the key risk factors driving this result is the low contact rate between the two groups. If this
contact rate is large, a growth in the number of cases in one group will quickly lead to cases in the
other group and outbreaks will be promptly detected through the higher testing rate of the group with a
better healthcare access. This suggests that the highest-risk groups are those that have both low levels
of access to healthcare and limited contact rates with other groups. Although Auckland, New Zealand,
can be considered a diverse city in aggregate, there is segregation by ethnicity, particularly for Pacific
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FiG. 3. The results of a model structured by access to healthcare, where cases are less likely to be detected in one group because
of poor access to testing and diagnosis. The red line illustrates a scenario where control measures are equally effective for both
groups. The blue line shows a scenario where control measures do not reduce transmission rates for the group with poor access
to healthcare, eventually leading to an outbreak in both populations. Pale lines show the corresponding daily number of new
exposures. Results are averaged over 500 independent, identically initialized realizations of the stochastic process.

peoples (Manley et al., 2015; Salesa, 2017). Pacific peoples in Auckland also experience higher rates
of overcrowding (Schluter et al., 2007) and high rates of unmet healthcare needs (Ryan et al., 2019).
This study suggests that Pacific communities in Auckland are at risk of large secondary outbreaks if
structural inequities in healthcare are not addressed.

4. Discussion

We have introduced a stochastic model of COVID-19 that can account for age structure and inequities
in healthcare access. Although we lack detailed data on contact and transmission rates between some
groups at varying alert levels, we have made a number of assumptions that allow us to explore the
potential effects of omitting these in the original model. In particular, we have looked at two sets of
scenarios where age and healthcare access are likely to be important and which would not be well
described by a homogeneous population model. Firstly, we considered school closures, where it is
important to capture differences in infection and contact rates in adults and school pupils. Secondly, we
looked at a scenario where socioeconomic and healthcare inequities lead to a large secondary outbreak
in a high-risk community, much like that which occurred in migrant worker communities in Singapore.
The effective reproduction numbers R, for these scenarios are shown in Table 2. The table shows that
specific interventions can have a significant effect on the effectiveness of control under Alert Levels 3
and 4.

There are some important caveats to this work. While we have endeavoured to consider scenarios
that are consistent with existing evidence, for the most part, the current evidence base is currently too
thin to draw firm conclusions, particularly around school closures. Nonetheless, it is anticipated that
better information on contact rates for various groups in New Zealand will be available soon. This
study illustrates how such information will allow us to better understand the risk factors for specific
communities in New Zealand and how specific control measures might reduce the impact on these
communities.
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The age-structured model used very coarse age classes. This allows investigation of school closures
or other policy interventions that differentially affect transmission in different age groups. However,
these coarse age classes are likely to contain significant heterogeneity in variables such as occupation,
as well as masking finer-scale contact structures. The model framework allows finer age classes once
sufficient data is available to parameterize contact rates under different control interventions and
epidemiological parameters (e.g. proportion of subclinical cases) for these groups. We examined age
structure and inequities in access to healthcare as two separate scenarios. These could be combined
by stratifying the population by age and level of healthcare access simultaneously. Again, this would
require more detailed data to parameterize the contact structure for the increased number of groups this
will require.

Nonetheless, structuring the model by levels of inequity in healthcare, which itself may be a
consequence of differing levels of socioeconomic deprivation and/or racial discrimination, is important
in guiding New Zealand’s COVID-19 response. The New Zealand government has an obligation under
Te Tiriti o Waitangi to deliver equitable health outcomes for Maori and other population groups
(Waitangi Tribunal, 2019). Maori and Pacific peoples and communities experience inequities in health
and healthcare access that increase the risks of infection with COVID-19 and magnify the impacts of the
disease (McLeod et al., 2020). For example, Maori and Pacific peoples are disproportionately affected
by crowded housing (Schluter er al., 2007; Stats NZ, 2018), have shorter life expectancy (Stats NZ,
2021) higher prevalence of comorbid health conditions (Coppell et al., 2013; Telfar-Barnard & Zhang,
2018; Ministry of Health, 2019a; Chan et al., 2008) and are expected to suffer a higher infection fatality
ratio (Steyn et al., 2020). Particularly relevant to this study, Maori and Pacific peoples have poorer
access to healthcare services and higher unmet health needs (Ministry of Health, 2019a, 2019b). Our
model results show that communities with poor access to healthcare and low contact rates with other
population groups are at a high risk of suffering a large outbreak, which could remain undetected for a
long time. This could include urban Pacific communities, as well as remote communities, including rural
Maori communities. The government has a responsibility to work with these communities to ensure that
their healthcare needs are being met by its COVID-19 response.

There is a growing body of the international evidence that socioeconomic disparities do indeed
magnify the impacts of the COVID-19. In the USA, for instance, predominantly African American
communities have faced infection rates three times those of European American communities and death
rates six times as high (Yancy, 2020). A report from the UK suggests that ethnic minority groups are at a
significantly higher risk from COVID-19 (ICNARC, 2020). We have not modelled potential differences
in clinical severity (e.g. hospitalization rates) or transmission rates across groups with different levels
of access to healthcare. This will be important to do, especially given these variables are likely to
be correlated (Steyn et al., 2020), amplifying the impact of COVID-19 in high-risk groups. This is
therefore a crucial future objective to inform healthcare planning, prioritize high-risk groups and address
inequities in the healthcare system.
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