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Abstract
Background: Long noncoding RNAs have been shown to play crucial roles in cancer biology, while the long noncoding RNA
landscapes of pancreatic ductal adenocarcinoma have not been completely characterized. We aimed to determine whether long
noncoding RNA could serve as early diagnostic biomarkers for pancreatic ductal adenocarcinoma. Method: We conducted a
genome-wide microarray analysis on pancreatic ductal adenocarcinoma and their adjacent noncancerous tissues from 8 Chinese
patients. Results: A total of 3352 significantly differentially expressed long noncoding RNAs were detected. Of total, 1249 long
noncoding RNAs were upregulated and 2103 were downregulated (fold change �2, P < 0.05, FDR <0.05). These differentially
expressed long noncoding RNAs were not evenly distributed among chromosomes in human genome. Hierarchical clustering of
these differentially expressed long noncoding RNAs revealed large variabilities in long noncoding RNA expression among indi-
vidual patient, indicating that certain long noncoding RNAs could play a unique role or be used as a biomarker for specific subtype
of pancreatic ductal adenocarcinoma. Gene Ontology enrichment and pathway analysis identified several remarkably dysregulated
pathways in pancreatic ductal adenocarcinoma tissue, such as interferon-g-mediated signaling pathway, mitotic cell cycle and
proliferation, extracellular matrix receptor interaction, focal adhesion, and regulation of actin cytoskeleton. The co-expression
network analysis detected 393 potential interactions between 80 differentially expressed long noncoding RNAs and 105 mes-
senger RNAs. We experimentally verified 7 most markedly dysregulated long noncoding RNAs from the network. Conclusion:
Our study provided a genome-wide survey of dysregulated long noncoding RNAs and long noncoding RNA/messenger RNA co-
regulation networks in pancreatic ductal adenocarcinoma tissue. These dysregulated long noncoding RNA/messenger RNA
networks could be used as biomarkers to provide early diagnosis of pancreatic ductal adenocarcinoma or its subtype, predict
prognosis, and evaluate treatment efficacy.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC), an aggressive and

fatal malignancy, is one of the most common malignancies and

ranks #4 leading causes of carcinoma-related death. Because it

is very difficult to diagnose, especially at their early stage, the

morbidity and mortality of PDAC remain high. Most patients

have already presented with serious local invasion and/or dis-

tant metastasis when PDAC is first diagnosed and thereby

missing the optimal timing for curative surgical resection.1,2

The overall survival rate was less than 5%.3,4

Long noncoding RNAs (lncRNAs), a subset of noncoding

RNA transcripts that are longer than 200 nucleotides in length,5

are extensively distributed in the genome.6 They have been sug-

gested to participate in various biological processes, such as

epigenetic regulation, chromosome imprinting, cell-cycle con-

trol, transcription, translation, splicing, and cell differentiation,7-

10 and therefore show clinical significance.11 Dysregulation of

lncRNAs contribute to a variety of diseases by altering the

expression of lncRNA target genes.12-18 For instance, HOTAIR,

an oncogenic lncRNA, was associated with the pathogenesis and

progression of breast cancer,19 colorectal cancer,20 and pancrea-

tic cancer.21 With the development of transcriptome-sequencing

technologies, a considerable amount of novel human lncRNAs

have been identified and annotated. However, the molecular

mechanisms and biological functions of the vast majority of

these annotated lncRNAs remain unknown.

With the development of next-generation sequencing,

genome-wide transcriptome profiling has become an effective

approach to detect novel lncRNAs in various diseases status.

Dysregulation of lncRNAs has been observed in several human

cancers, such as osteosarcoma,22,23 hepatocellular carcinoma,24

gastric cancer,25 breast cancer,26 and endometrial cancer.27

Recent studies have further revealed that lncRNAs could poten-

tially serve as diagnostic and prognostic biomarkers. For exam-

ple, a set of 6 lncRNAs has been shown to be independent

prognostic factors for glioblastoma after adjust for other clinical

variables.28 Seventeen differentially expressed (DE) lncRNAs,

named “SubSigLnc-17”can not only discriminate 2 subtypes of

diffused large B-cell lymphoma (DLBCL)—germinal center B-

cell-like subtype and activated B-cell-like subtype—but also

predict the prognosis of DLBCL.29 Importantly, lncRNAs have

been suggested to participate in pancreatic cancer development

and progression by promoting cell growth, migration, invasion,

and epithelial–mesenchymal transition.21,30 In a prospective

study, Zhou et al uncovered 7 novel lncRNAs that achieved high

performance in distinguishing patients with PDAC from

nonmalignant pancreas samples in 3 independent cohorts in the

United States.31 However, the genome-wide profiling of

lncRNAs and whether lncRNAs or lncRNA/messenger RNA

(mRNA) co-expression network may serve as diagnostic or

prognostic biomarkers in Chinese patients with PDAC remain

unknown. In the present study, we employed human lncRNA

and mRNA arrays to determine the genome-wide transcriptome

changes in PDAC tissues from a cohort of Chinese patients. Our

results provide an overall review of dysregulated lncRNA and

their co-expression networks with dysregulated mRNAs in

PDAC tissue. We identified several important and experimen-

tally validated DE lncRNAs. These dysregulated lncRNA/

mRNA networks could be used as biomarkers to provide early

diagnosis of PDAC or PDAC subtype, predict prognosis, and

evaluate treatment efficacy in Chinese patients.

Materials and Methods

Patient Recruitment

Eight PDAC patients who did not receive any chemotherapy or

other forms of therapy were recruited from Huashan Hospital,

Fudan University. All participants provided written informed

consent prior to enrollment. All human patient-related proto-

cols were approved by medical ethics committee of Huashan

Hospital affiliated to Fudan University. The PDAC tissue and

their adjacent noncancerous tissue were obtained surgically.

Totally, 16 samples (2 samples/patient) were immediately

frozen down in liquid nitrogen and stored in �80�C freezer.

Surgically removed tissues were pathologically confirmed with

more than 80% viable tumor cells, and clinical data were

obtained retrospectively from electronic clinical records.

RNA Extraction

Total RNAs were extracted from 16 samples above using

RNeasy Mini Kit (Qiagen, Hilden, Germany) following the

manufacturer’s manual. The quantities and integrity were

tested by using NanoDrop ND-1000 spectrophotometer

(Thermo Fisher Scientific, Waltham, Massachusetts) and stan-

dard denaturing agarose gel electrophoresis.

Microarray and Data Analyses

We utilized Human 46180K lncRNA arrays manufactured by

Agilent Technologies (Santa Clara, California) and Sureprint

G3 Human lncRNA Chip (ie, BT1000312) for lncRNA and
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mRNA microarray analysis. These 2 chips have been reported

to represent more than 46 506 lncRNAs and 30 656 mRNAs

from NCBI RefSeq, UCSC, RNAdb, and newly annotated

lncRNAs in the human genome. Each transcript was repre-

sented by up to 5 probes to improve statistical confidence.

Differentially expressed genes were defined as fold change

�2, P < .05, FDR <0.05, in PDAC tissues compared to adjacent

noncancerous tissues.

Total RNA (200 ng) from each sample was reversely tran-

scribed into complementary DNA (cDNA) using an RNA

Spike In Kit with one color (Agilent Technologies) in the pres-

ence of 0.8 mL of random primer mix and 2 mL of Spike mix.

These cDNA samples were then cleaned and labeled in accor-

dance with the one color Agilent Gene Expression Analysis

protocol using Low Input Quick-Amp Labeling Kit (Agilent

Technologies). These labeled cDNA samples were used as

probes to hybridize to microarrays for 17 hours at 65�C using

an Agilent Gene Expression Hybridization Kit in hybridization

chamber gasket slides (Agilent Technologies).

Gene Function Analysis

We used Database for Annotation, Visualization, and Inte-

grated Discovery (http://david.abcc.ncifcrf.gov/) to perform

Gene Ontology (GO) analysis.15We further applied the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (http://

www. genome.ad.jp/kegg/) and BioCarta (http://www.biocarta.

com) to analyze the potential functions of these target genes in

the pathways.16,17. The lower the P value, the more significant

the correlation; the recommended P value cutoff is .05.

Long noncoding RNA/mRNA Co-Expression Network

To construct lncRNA/mRNA co-expression network, we cal-

culated the Pearson correlation coefficient and R value to eval-

uate lncRNA/mRNA correlation. The co-expression network

was constructed as follows: (1) data preprocessing: use median

value of different transcripts for mRNA but keep the original

lncRNA value; (2) data screen: select differential expression of

lncRNA and mRNA; (3) calculate the Pearson correlation coef-

ficient and use R value to calculate the correlation coefficient

between lncRNAs and mRNAs; and (4) selected genes whose

correlation R value was greater than 0.99 and drew correlation

network using the cystoscope program.

Real-Time PCR

Real-time polymerase chain reaction (PCR) was performed

using the ABI Prism 7300 sequence detection system (Applied

Biosystems, Foster City, California). The reaction mixture (20

mL) contained 10 ng cDNA template, sense and antisense pri-

mers (200 nM each), and 10 mL 2 � SYBR-Green PCR Mix

(TaKaRa, TaKaRa Biomedical Technology, Beijing, China).

Real-time PCR was performed in triplicates for each sample,

and the specificity of PCR product was tested by dissociation

curve. Housekeeping gene b-actin was used as the internal

control. 2�DDCt method was used to quantify the relative

expressions of each lncRNA and mRNAs. Data were presented

as fold changes of transcripts in PDAC tissue compared to

noncancerous tissue. A 2-tailed P value <.05 was considered

as statistically significant.

Results

DE lncRNAs and mRNA in PDAC Tissues Compared
With Adjacent Noncancerous Tissues

A genome-wide investigation of lncRNA and mRNA expres-

sions in 8 pathologically confirmed PDAC tissues and their

adjacent noncancerous tissues was performed using Agilent

Human 46180K lncRNA arrays and Sureprint G3 Human

lncRNA Chip. Clinical characteristics of these 8 patients are

shown in Table 1, and none of these patients had metastasis to

other part of the body (M0). A total of 63 431 lncRNAs were

detected by microarray and were presented in volcano plot for

visualization (Figure 1A) and whiskers plots for quantification

(Supplemental Figure 1A). We found that the median number

of lncRNA detected were similar between PDAC and noncan-

cerous tissue among individuals (Supplemental Figure 1A). A

total of 3352 of these lncRNAs were differentially expressed in

PDAC tissues (fold change �2, P < .05, and FDR <0.05) com-

pared with their adjacent noncancerous tissues (denoted in col-

orful dots in Figure 1A). Among these DE lncRNAs, 1249

(37.3%) were significantly upregulated with fold changes rang-

ing from 2 to 54.5. The top 5 unregulated genes are: antisense

RNA-1(LEMD1-AS1), SH3 and PX domain-containing pro-

tein 2A antisense RNA-1 (SH3PXD2A-AS1), AK130538

(lncRNA located in the intronic region of KMT2Cwhich

encodes lysine methyltransferase 2C), CTD-2021H9.2, and

homeobox A11 antisense RNA-1 (HOXA11-AS1; Supplemen-

tal Table 1). A total of 2103 (62.7%) lncRNAs were down-

regulated with the fold change ranging from 2 to 21.7. The

top 5 annotated decreased lncRNAs were GPR50 antisense

RNA-1 (GPR50-AS1), linc00458 (intergenic lncRNA),

TCONS_00001278 (LYPLAL is the nearest gene), LYPLAL

antisense RNA-1 (LYPLAL1-AS1), and RP11-103C3.1. To

Table 1. Clinical Characteristics of Enrolled Patients (n ¼ 8).a

Sample No. Gender Age (year) TNM Stage

223 M 65 T3N1M0

224 F 58 T2N1M0

225 M 49 T2N1M0

226 M 65 T3N1M0

229 F 71 T3N0M0

281 F 70 T2N1M0

283 M 67 T2N0M0

284 F 52 T4N1M0

a Clinical characteristics of patients enrolled in the present study. American

Joint Committee on Cancer (AJCC) TNM system: T: whether the primary

tumor has grown outside the pancreas and into nearby organs size; N: tumor

spreads to regional lymph nodes. M: cancer has metastasized to other organs of

the body. n ¼ 8 patients.
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our knowledge, none of the top 5 up-/downregulated lncRNAs

has been functionally uncharacterized.

In parallel, we analyzed the expressions of coding genes in

PDAC versus normal tissues. A total of 39 887 genes were

detected by microarray in PDAC tissues, and the median

number of mRNA detected was comparable between samples

(Supplemental Figure 1B). A total of 2717 mRNAs were sig-

nificantly changed (fold change �2, P < .05, and FDR <0.05).

In contrast to lncRNA, the majority of DE mRNA (total 2004,

74%) was upregulated with fold changes ranging from 2 to

114.3 (Supplemental Table 2). Top 5 genes with highest fold

changes were claudin-18 (CLDN18), carcinoembryonic

antigen-related cell adhesion molecule 5 (CEACAM5), tripar-

tite motif containing 31 (TRIM31), paired-like homeodomain 1

(PITX1), and melanoma inhibitory activity (Table 2). Seven

hundred and thirteen (26%) DE mRNAs were downregulated

with fold changes ranging from 2.3 to 36.5. Top 5 genes with

were ATPase Hþ/Kþ transporting alpha subunit (ATP4A),

glycine N-methyltransferase (GNMT), syntrophin g 2 (SNTG2),

G protein–coupled receptor 50 (GPR50), and aquaporin 8

(AQP8; Table 3).

Chromosome Distribution of DE lncRNAs and mRNA

Most lncRNAs are likely to carry out their function in nearby

coding genes. We therefore investigated the chromosome distri-

bution of those DE lncRNAs and mRNA in human genome. We

found that these DE lncRNAs and mRNA were not evenly dis-

tributed among chromosomes (Figure 2A left pie chart and 2B).

The proportion of DE lncRNA among all annotated lncRNAs on

each chromosome (DE lncRNA density) varies among each

chromosome, ranging from 8% on chromosome Y to 25.4%

on chromosome 16 (Figure 2C). Differentially expressed

lncRNA density does not correlate with DE mRNA density on

each chromosome (Pearson correlation P ¼ .2, Supplemental

Figure 1). Interestingly, we observed that the number of DE

lncRNA and DE lncRNA density was significantly higher in

chromosome X than in chromosome Y, pointing to the relative

enrichment of dysregulated lncRNA in chromosome X.

Hierarchical Clustering of DE lncRNAs and mRNAs
in Pancreatic Adenocarcinoma

To visualize the general expression pattern of DE lncRNA and

mRNAs from each patient, we performed hierarchical cluster-

ing analysis based on their average expression levels. All DE

lncRNAs were grouped into 14 clusters (Figure 3A). Within

clusters 1 to 10, DE lncRNAs were generally upregulated in

PDAC tissues compared to their adjacent noncancerous tissues

except for subject 224 (s224T). This was mainly because these

lncRNAs were highly expressed in the noncancerous tissues

and did not further increase in PDAC tissue in subject224.

Besides, there was a large variability in the expressions of

certain lncRNAs among individual PDAC samples. For exam-

ple, the expression of lnc-MMP3-1 (matrix metalloproteinases

(MMPs)) was decreased in PDAC tissue from subject 224, but

was increased in PDAC from the other patients (Supplemental

Figure 1). Lnc-NFYB-1:1 level was only reduced in PDAC

from subject 223 but was increased in the PDAC from the other

patients. Differentially expressed lncRNAs in clusters11 to 14

were generally downregulated in PDAC tissues with 2 excep-

tions, subjects 224 and 225. Although these PDAC samples

were pathologically confirmed PDAC cases, the variability of

DE lncRNAs among individual PDAC case suggested that

Figure 1. DE lncRNAs and mRNAs in PDAC tissues versus adjacent noncancerous tissue. Shown are the volcano plots of DE lncRNA (A) and

mRNA (B). Upregulated and downregulated DE transcripts in PDAC with fold change �2, P < .05 and FDR <0.05 are shown in red and green

dots, respectively. DE indicates differentially expressed; lncRNAs, long noncoding RNAs; mRNA, messenger RNA; PDAC, pancreatic ductal

adenocarcinoma.
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these DE lncRNAs could be used as a molecular marker for

specific subtype of PDAC.

Cluster of DE mRNAs revealed that the majority of DE

mRNAs were downregulated, which was opposite to DE

lncRNA (Figure 3B; Supplemental Figure 2). Moreover, these

mRNAs generally demonstrated no, mild, or moderate differ-

ence between PDAC and adjacent cancerous tissue in subject

224 and 225 but displayed more profound difference in the

other patients. Variabilities between individuals were also

observed. For example, the expressions of HBA2, BTG2,

C2orf141, JPH3, and PLCE1 were strikingly higher in PDAC

tissue from subject 229 compared to those in the others. The

expression of PLIN4, MYRIP, DPT, FGFR1, NTRK2, and

NR4A2 was low in almost all PDAC tissues but highly

expressed in PDAC from subject 223. These findings further

indicated that those genes might play unique and essential role

in the pathogenesis of specific subtype of PDAC.

GO Enrichment and Pathway Analysis of DE mRNAs
in PDAC

To further explore potential targets of these DE lncRNA in

PDAC progression, we performed GO enrichment and pathway

analysis on DE mRNAs (Figure 4). Two hundred and eighteen

GO terms, including biological processes (127), molecular

functions (53), and cellular components (38), were detected

and targeted by 9649 nearest coding mRNAs. The target genes

and detailed information are represented in Supplemental

Table 3. Thirty-one GO terms, including 20 biological pro-

cesses, 4 molecular functions, and 7 cellular components, were

determined to be significant with the threshold lg (P value) >

4.3 (top 25%) and FDR <0.01 (Figure 4A). The most remark-

able GO terms were as follows: interferon-g-mediated

Table 3. List of Top 5 Downregulated Coding Genes in PDAC.

Gene Symbol Functions Roles in Cancer

ATP4A ATPase Hþ/Kþ transporting

a-subunit (ATP4B) is a

component of ATPase Hþ/

Kþ proton pump that

catalyzes the hydrolysis of

ATP coupled with the

exchange of H(þ) and K(þ)

ions across the plasma

membrane and is

responsible for gastric acid

secretion

� ATP4A is

upregulated in

some human

pancreatic

adenocarcinoma37

GNMT Glycine N-methyltransferase

(GNMT) acts an enzyme to

regulate the ratio of

S-adenosylmethionine

(SAM) to

S-adenosylhomocysteine

(SAH) and participates in

the detoxification pathway

in liver cells

� GNMP is

frequently

repressed in human

hepatocellular

carcinoma38

SNTG2 Syntrophin g 2 (SNTG2)

belongs to syntrophin

family, which links various

receptors to the actin

cytoskeleton and the

dystrophin glycoprotein

complex

� SNTG2 is one of

26 stromal genes

signatures which

predicts clinical

outcome in breast

cancer39,40

GPR50 G protein-coupled receptor

50 (GPR50) is most closely

related to the melatonin

receptor

� GPR50

overexpression

enhances breast

cancer cell

migration and

inhibits

proliferation

AQP8 Aquaporin-8 (AQP8)

facilitates water transport

across cell plasma

membrane

� Decreased AQP8

expression is

related to

oncogenesis of

colorectal

carcinoma41

Abbreviation: PDAC, pancreatic ductal adenocarcinoma.

Table 2. List of Top 5 Upregulated Coding Genes in PDAC.

Gene Symbol Functions Roles in Cancer

CLDN18 CLDN18 belongs to the

large claudin family of

proteins, which form

tight junction strands in

epithelial cells

� Claudin 18 isoform 2

is abundant in gastric

tumors

� Claudin 18 antibody

IMAB362 leads to

longer remission and

better survival in

patients with gastric

cancer32

CEACAM5 Carcinoembryonic

antigen–related cell

adhesion molecule 5

(CEACAM5) is a cell

surface glycoprotein

that plays a role in cell

adhesion and in

intracellular signaling

� CEACAM is one of

the biomarkers in

pancreatic cancer33

TRIM31 Tripartite motif

containing 31

(TRIM31) is a member

of the tripartite motif

(TRIM) family

� TRIM31 is

upregulated in

stomach cancer34 and

has been shown to

interact with TRIM23

PITX1 Paired-like homeodomain

1 (PITX) acts as a

transcriptional

regulator involved in

basal and hormone-

regulated activity of

prolactin

� PITX1 is a novel

predictor of the

response to

chemotherapy in head

and neck squamous

cell carcinoma35

MIA Melanoma inhibitory

activity (MIA) is

protein secreted by

malignant melanoma

� MIA is protein

secreted by malignant

melanoma and acted

as a potent tumor

growth inhibitor.36

� MIA is clinically

valuable marker in

patients with

malignant melanoma

Abbreviations: CLDN18, claudin-18; PDAC, pancreatic ductal adenocarcinoma.
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signaling pathway, regulation of transcription, mitotic cell

cycle, and integral to plasma membrane. The KEGG pathway

analysis revealed that 26 of total 271 KEGG pathways analyzed

were shown to be significant with the threshold lg (P value) >

3.08 (top 25%) and FDR <0.01 (Figure 4B). Outstanding

KEGG pathways include extracellular matrix receptor interac-

tion, focal adhesion, phagosome, regulation of actin cytoskele-

ton, and several immune responses. These pathways have been

reported to be involved in tumor formation and progression.42

Construction of the Co-Expression Network Reveals
the Potential Targets (mRNA) of DE lncRNA in PDAC

To further gain insights into the biological functions of lncRNA

in the complex biological processes and cellular regulation, DE

lncRNA/mRNA co-expression network was constructed to

investigate the potential interaction between mRNAs and

lncRNAs. As shown in Figure 4A, we detected 393 significant

connections (co-expression events) in the network, which was

composed of 80 DE lncRNAs and 105 mRNAs (r value >0.99

or <�0.99). Of 80 lncRNAs (nodes) included in the networks,

the most outstanding co-expression networks are highlighted

by stars with red outlines in Figure 5, such as SH3PXD2A-AS1

(11 edges), lnc-BHLHE23-1 (9 edges), lnc-RP11-204N11.1.1-

3:9 (8 edges), and RP11-680F8.3 (9 edges). The most remark-

able mRNAs (nodes) in the networks were highlighted by stars

with blue outlines in Figure 4, such as ATP10B (10 edges),

adenylate cyclase activating polypeptide 1 pituitary receptor

type I, 9.6-fold downregulated (ADCYAP1R1; 9), ankyrin

repeat domain 30B pseudogene 2, 11.5-fold upregulated

(ANKRD30BP2; 9 edges), cytochrome P450 2S1, 10.6-fold

upregulated (CYP2S1; 9 edges), GPR133 (9 edges), KLK6

(9 edges), MMP1 (9 edges), and UNC5A (9 edges). Those

lncRNAs and mRNAs were highly connected and thus to be

Figure 2. Chromosome distribution of DE lncRNA and mRNA in PDAC versus noncancerous tissue. A, Distribution of DE lncRNA and mRNA

on each chromosome. B, Number of DE lncRNA or mRNA on each chromosome. C, Number of DE transcripts (lncRNA or mRNA) normalized

to total number of annotated transcript (lncRNA or mRNA) on each chromosome. DE indicates differentially expressed; lncRNA, long

noncoding RNA; mRNA, messenger RNA; PDAC, pancreatic ductal adenocarcinoma.
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considered as the hubs of the network, suggesting their impor-

tant potential roles of lncRNA in regulating these target genes.

As an example, the most remarkably and reliably dysregu-

lated lncRNA in all 8 patients was SH3PXD2A-AS1. This

downregulated lncRNA hub was correlated with 11 edges, 8

of which were also significantly and reliably dysregulated in

PDAC tissue, including coding UNC-5 netrin receptor A,

13-fold downregulated (UNC5A), CYP2S1, ANKRD30BP2,

ADCYAP1R, lnc-RP11-204N11.1.1-3:9 (10-fold downregu-

lated), DLX2-AS1 (13.6-fold downregulated), lnc00458 (20-

fold downregulated), and TCONS_00001278 (19.5-fold down-

regulated). We thus regarded SH3PXD2A-AS1 as a crucial

molecule that involved in pancreatic cancer tumorigenesis

through regulating these target genes.

Experimental Validation of DE lncRNAs by qRT-PCR

Finally, we selected7DE lncRNAs that were of highest

fold changes and were reliably dysregulated across all

8 patients, including SH3PXD2A-AS1 (highlighted by start),

AC006372.4, lnc-BHLHE23-1:1, LYPLAL1-AS1, lnc-RP11-

204N11.1.1-3:9, distal-less homeobox 2 antisense RNA-1

(DLX2-AS1), and RP11-680F8.3. We performed experimental

validation by reverse transcription quantitative PCR (RT-

qPCR; Figure 6). We found that 5 of 7 lncRNAs expression

patterns were consistent with microarray data (Figure 6 and

yellow stars with red outline in Figure 5). However, changes

in LYPLAL1-AS1 and RP11-680F8.3 expressions revealed in

qPCR analysis were opposite to microarray analysis (Figure 6

and white stars with red outline in Figure 5).

Discussion

The functional significance of lncRNAs has been widely recog-

nized,42 and recent studies have demonstrated that lncRNAs

play important roles in carcinogenesis.43,44 Dysregulated

lncRNAs could be a major cause of oncogenesis or a molecular

markers for cancer diagnosis, risk stratification, and monitor of

therapeutics.45,46,21,30 Genome-wide microarray survey of

lncRNA may also facilitate our overall understanding of

carcinogenesis mechanisms when combined with mRNAs pro-

filing. However, lncRNA landscapes and lncRNA/mRNA

co-regulation networks have not been investigated in PDAC

from Chinese patients. In the present study, we detected 3352

significantly dysregulated lncRNAs, *60% of which were

downregulated. In contrast to lncRNAs, >60% DE mRNAs

were upregulated in PDAC tissue. Correlation analysis further

revealed that the majority of lncRNA and mRNAs were nega-

tively correlated, suggesting that lncRNAs were likely to serve

as negative regulators of their targeting coding genes. Gene

Ontology and KEGG pathway analysis identified essential

pathways that underlie the mechanisms of PDAC tumorigen-

esis. Dysregulated mRNAs were enriched in pathways such as

extracellular matrix receptor interaction, focal adhesion, pha-

gosome, and regulation of actin cytoskeleton (Figure 4), all of

which has been reported to be involved in tumor formation

and progression.42

We further found that these DE lncRNAs and mRNAs were

unevenly distributed in human genomes. Morbidity of PDAC

was indicated to be different in gender, and the incidence of

PDAC was more common in women than in men.47 We showed

that the total number or the density of DE transcripts was

significantly greater on chromosome X than chromosome Y,

suggesting that dysregulated lncRNAs and mRNAs on sex

chromosome X could be responsible for increased disease mor-

bidity in women. Hierarchical clustering analysis revealed high

variability of dysregulated lncRNAs in each patient. This indi-

cates that the lncRNA molecular signatures may facilitate dis-

ease subtype classification, disease risk stratification, and

prognosis prediction in pathologically confirmed PDAC cases.

One of the top and most reliably upregulated DE lncRNA in

PDAC was SH3PXD2A antisense RNA-1 (SH3PXD2A-AS1;

*40 fold upregulated). Its opposite strand encodes a protein

coding gene named SH3PXD2A. SH3PXD2A mRNA was also

significantly and reliably upregulated in all 8 PDAC tissues

(fold change ¼ 2.22, P ¼ .007). SH3PXD2A mRNA can be

translated into tyrosine kinase substrate 5 (Tks5), a scaffold

protein with 5 SH3 domains and 1 PX domain. The Tks5 is a

Figure 3. Hierarchical cluster of DE lncRNA (A) and mRNA (B) in

human PDAC versus adjacent noncancerous tissue. Clustering was

performed based on the average expression levels of transcript from 8

patients. Red: upregulated gene; green: downregulated gene. DE

indicates differentially expressed; lncRNA, long noncoding RNA;

mRNA, messenger RNA; PDAC, pancreatic ductal adenocarcinoma.
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Figure 4. GO terms and KEGG pathways significantly enriched in human PDAC. Shown are significantly enriched GO terms (A) and KEGG

pathways (B) of DE mRNAs in human PDAC versus adjacent noncancerous tissue. DE indicates differentially expressed; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; mRNA, messenger RNA; PDAC, pancreatic ductal adenocarcinoma.

Figure 5. DE lncRNA and mRNA co-expression networks in human PDAC versus noncancerous tissue. Each arrow represents correlation R

value greater than 0.99 or smaller than �0.99. Remarkable DE lncRNAs were depicted by stars with red outline, and remarkable DE mRNAs

were depicted by stars with blue outline. Yellow stars highlighted DE lncRNAs that were experimentally validated by qRT-PCR. DE indicates

differentially expressed; lncRNA, long noncoding RNA; mRNA, messenger RNA; PDAC, pancreatic ductal adenocarcinoma; qRT-PCR,

quantitative real-time polymerase chain reaction.
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substrate of the tyrosine kinase Src and is required for the

organization of podosome and invadopodia formation, thus

implicated in invasion of tumor cells.48 We therefore predicted

that the enhanced expression of SH3PXD2A might contribute

to pancreatic tumorigenesis by promoting tumor cell invasion.

Because the fold changes in SH3PXD2A-AS1 (*40 folds)

were much greater than SH3PXD2A mRNA (*2 folds),

SH3PXD2A-AS1 may serve as a more sensitive biomarker for

pancreatic cancer invasiveness.

LncRNAs/mRNAs co-expression network analysis revealed

that SH3PXD2A-AS1, the most significantly upregulated

lncRNA, is the most remarkable hub with 11 correlated edges.

The correlated coding mRNAs included several genes that

were implicated in cancer tumorigenesis. For example, UNC5A

encoded a protein named UNC-5 netrin receptor A, and it was

reported to be a P53-induced tumor suppressor in bladder can-

cer.49 ANKRD30BP2, which encoded ankyrin repeat domain

30B pseudogene 2 or CTSP-1, was expressed in 58% of pros-

tate tumors and was capable of eliciting a humoral immune

response in about 20% of patients with prostate cancer.50 The

strong expression of CYP2S1, a cytochromes P450 family

member, was associated with poor prognosis of colorectal can-

cer.51 Moreover, SH3PXD2A-AS1-correlated lncRNAs,

including lnc-RP11-204N11.1.1-3:9, DLX2-AS1, and

lnc00458, were also significantly dysregulated (Supplemental

Table 1) in the microarray analysis. These genes were further

experimentally validated using qRT-PCR, suggesting the relia-

bility and reproducibility of our microarray analysis pipeline.

Functional studies to test the true causality between lncRNA

SH3PXD2A-AS and the abovementioned candidate target

genes and to elucidate the molecular actions of these molecules

were warranted for a more comprehensive understanding in the

mechanisms of human PDAC disease progression.

There are several limitations in the present study: (1) Lim-

ited sample size in the present study does not allow us to test

the values of DE lncRNAs as the biomarker for early PDAC

diagnosis or risk stratification. Further observational or pro-

spective population studies with larger sample size is needed;

(2) Future molecular characterization of important DE

lncRNAs in PDAC tumorigenesis is warranted.

Conclusion

Our genome-wide survey of dysregulated lncRNAs and

lncRNA/mRNA co-expression networks in Chinese PDAC tis-

sue revealed hundreds of dysregulated lncRNA and mRNA.

These could be used as biomarkers to guide the diagnosis of

subtypes of PDAC, predict prognosis, and evaluate treatment

efficacy in patients with PDAC.
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