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Although growth arrest-specific protein 2 (GAS2) promotes the growth of

T-cell acute lymphoblastic leukemia (T-ALL) cells in culture, the effect of

GAS2 on T-cell leukemogenesis has not been studied, and the mechanism

remains unclear. In the present study, xenograft studies showed that GAS2

silencing impaired T-cell leukemogenesis and decreased leukemic cell infiltra-

tion. Mechanistically, GAS2 regulated the protein expression of C-X-C che-

mokine receptor type 4 (CXCR4) rather than its transcript expression.

Immunoprecipitation revealed that GAS2 interacted with CXCR4, and con-

focal analysis showed that GAS2 was partially co-expressed with CXCR4,

which provided a strong molecular basis for GAS2 to regulate CXCR4

expression. Importantly, CXCR4 overexpression alleviated the inhibitory

effect of GAS2 silencing on the growth and migration of T-ALL cells. More-

over, GAS2 or CXCR4 silencing inhibited the expression of NOTCH1 and

c-MYC. Forced expression of c-MYC rescued the growth suppression

induced by GAS2 or CXCR4 silencing. Meanwhile, GAS2 deficiency, specifi-

cally in blood cells, had a mild effect on normal hematopoiesis, including T-

cell development, and GAS2 silencing did not affect the growth of normal

human CD3+ or CD34+ cells. Overall, our data indicate that GAS2 promotes

T-cell leukemogenesis through its interaction with CXCR4 to activate

NOTCH1/c-MYC, whereas impaired GAS2 expression has a mild effect on

normal hematopoiesis. Therefore, our study suggests that targeting the

GAS2/CXCR4 axis is a potential therapeutic strategy for T-ALL.
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1. Introduction

Growth arrest-specific protein 2 (GAS2) is a compo-

nent of microfilaments that plays an important role

in many cellular processes, such as cytoskeletal regu-

lation, cell cycle, apoptosis and senescence [1–5].
Recently, GAS2 mutations in both humans and mice

have been found to lead to hearing loss due to the

destabilization of microtubule bundles in inner ear

supporting cells [6]. In addition, GAS2 is an endo-

genous inhibitor of Clapain2 (a calcium-dependent

protease) [7]; the truncated GAS2 (GAS2DA71–313)
can bind Calpain2 but not to inhibit its protease

activity, and is thus termed the dominant negative

form of GAS2 (GAS2DN). Calpain plays a crucial

role in cancer development. For example, deregulated

expression or activity of Calpain has been reported in

various cancers, and many compounds with proven

anticancer efficacy can modulate Calpain activities [8].

Accumulating evidence has shown that the GAS2/

Calpain2 axis plays a dual role in cancer cells [1]. On

one hand, GAS2/Calpain2 has been shown to stabi-

lize p53 and sensitize cancer cells upon treatment of

etoposide [7], or to prevent the malignant transforma-

tion of normal cells by promoting cellular senescence

[5]. In contrast, GAS2/Calpain2 plays an oncogenic

role in some other malignant cells partially through

its regulation of b-catenin [9–16], including T-cell

acute lymphoblastic leukemia (T-ALL) cells [13].

However, the effect of GAS2 on the in vivo growth

of T-ALL cells has not been studied, and the func-

tional mechanisms of GAS2 have not been fully

defined in these cells.

T-ALL is a fatal hematological malignancy that

accounts for 15% and 25% of pediatric and adult

ALL cases, respectively, and is prone to early relapse

[17,18]. Although the outcome of T-ALL has improved

especially in children, the survival of patients with

relapse remains dismal [17–20]. Many reports have

demonstrated the importance of the NOTCH/c-MYC

pathway and CXCR4 signaling in T-ALL pathogenesis

[21–26]. Importantly, inhibition of either NOTCH or

CXCR4 signaling holds promise for improving the

management of T-ALL [24,27–30]. Nevertheless,

whether the GAS2/Calpain2 axis has any connection

with either NOTCH1/c-MYC or CXCR4 signaling

remains unclear.

Our previous work has shown that the dominant

negative form of GAS2 (GAS2DN) exhibits a stronger

inhibitory effect on chronic myeloid leukemia (CML)

CD34+ cells than on normal CD34+ cells [12]; however,

the effect of Gas2 impairment on normal hematopoi-

etic cells has not been studied yet [31], which is critical

to determine whether targeting GAS2 is a proper

approach to combat hematological malignancies.

In this study, our results demonstrated that GAS2

interacts with CXCR4 to promote T-cell leukemogene-

sis, and the GAS2/CXCR4 axis sustains the growth of

T-ALL cells partially via the activation of NOTCH1/

c-MYC signaling. In contrast, GAS2 impairment had

mild effects on normal hematopoietic cells. In sum-

mary, our study demonstrated that GAS2 plays a criti-

cal role in the growth of T-ALL cells and suggests

that GAS2 is a novel therapeutic target for this dis-

ease.

2. Materials and methods

2.1. Patients and cells

Jurkat cells were obtained from the Cell Bank of the

Chinese Academy of Sciences (Shanghai, China), free

of mycoplasma contamination, and confirmed by

authentication tests. Bone marrow cells of T-ALL

patients and healthy donors were from the Hematolog-

ical Biobank, Jiangsu Biobank of Clinical Resources,

and informed consent forms were approved by the

Ethics Committee of Soochow University (ECSU-

2019000125, Suzhou, China), in accordance with the

Declaration of Helsinki. The experiments were under-

taken with the understanding and written consent of

each subject. The clinical characteristics of T-ALL

patients are summarized (Table S1). Nucleated cells

were obtained using a gradient centrifuge with

Lympholyte-H cell separation media (Cedarlane Labo-

ratories, Burlington, NC, USA), and CD3+ or CD34+

cells were enriched using an EasySep kit (STEMCELL

Technologies, Vancouver, BC, Canada).

2.2. RNA extraction and RT-qPCR

RNA preparation and gene expression analyses were

performed as previously described [12]. The sequences

of gene-specific primers are summarized (Table S2).

For RT-qPCR analysis, the expression of each individ-

ual transcript was normalized to that of b-ACTIN. To

compare the expression of individual transcripts in dif-

ferent samples, the expression in the test group was

normalized to that in the control group and was

shown as relative expression.

2.3. DNA methylation analysis

The DNA methylation content of GAS2 promoter

region was analyzed as previously described [32].
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T-ALL samples or normal CD3+ samples were treated

with bisulfate, and each bisulfate-treated sample was

amplified by PCR using the following primers: for-

ward, 50-AATTTGTGGGGATTAGTATATTTAG-30;
and reverse, 5’-AATATCAAAAACAATTATCTCC

AAC-30. The PCR product of each sample was sub-

cloned into a T-vector, and several clones (typically 4–
6) were sequenced to estimate the DNA methylation

content.

2.4. Western blot and immunoprecipitation

Protein samples were prepared and western blot was

performed as previously described [12]. For the

immunoprecipitation (IP) assay, the protein lysate

(500 lg) was incubated with anti-GAS2 or anti-

CXCR4 antibodies, and same amount of protein lysate

was incubated with the appropriate isotype control

antibody. The mixture was then incubated with protein

G Plus-Agarose (L-00209; GenScript, Piscataway, NJ,

USA). Lastly, the precipitates were analyzed by immu-

noblot. In coimmunoprecipitation (Co-IP) assay, Flag-

GAS2 and/or HA-CXCR4 were overexpressed in 293

T cells, and then the protein lysate were subjected to

immunoblot and IP assays. The antibody information

is listed (Table S3).

2.5. Lentiviral vectors, viral production, and

transduction

Lentiviral vector that overexpresses GAS2DN has

been constructed previously [12]. CXCR4 cDNA was

subcloned into a lentiviral vector using the following

primers: forward, 50-AATCTAGAATGTCCATTCCT

TTGCCTCTTTTGCA-30 (XbaI site is underlined);

and reverse, 50-AACATATGTTAGCTGGAGTGAAA

ACTTGAAGACT-30 (NdeI site is underlined). c-MYC

cDNA was subcloned into a lentiviral vector using the

following primers: forward, 50-AATCTAGACTGGA

TTTTTTTCGGGTAGTGG (XbaI site is underlined);

and reverse, AACATATGTTACGCACAAGAGTT

CCGTAGC-30 (NdeI site is underlined). Lentiviral vec-

tors to silence GAS2, CXCR4, Calpain2, and the

scrambled control were obtained from GenePharma

Co., Ltd. (Shanghai, China), the sequences of these

short hairpin RNAs (shRNAs) are listed (Table S4).

Lentiviral production was performed as previously

described [12].

Normal CD3+ cells and T-ALL cells from patients

were cultured with ImmunoCult-XF T cell expansion

medium (#10981, STEMCELL Technologies) supple-

mented with IL-2 (2 ng�mL�1, #78036, STEMCELL

Technologies), and then activated with CD3/CD28

antibodies (B281555 and B284044, Biolegend, San

Diego, CA, USA). Transduced cells (GFP+) were puri-

fied using fluorescence-activated cell sorting (FACS)

(BD FACSAria III, Becton Dickinson, Franklin

Lakes, NJ, USA). CD34+ cells were transduced as pre-

viously described [12].

Throughout the study, transduced cells were all

sorted based on the expression of fluorescent proteins,

and their cellular and molecular properties were ana-

lyzed.

2.6. Animals

Female immunodeficient mice 6–8 weeks of age

(NOD.CB17-PrkdcscidIl2rgtm1/Bcgen, Biocytogen, Bei-

jing, China) were maintained in the specific pathogen

free (SPF) animal facility of Soochow University.

Based on the weight the mice were randomly allocated

to each group (4 mice or less/cage), and leukemic cells

were injected into the mice through tail vein. These

mice were monitored for signs of weight loss or

lethargy, twice a week in the first 3 weeks post injec-

tion and every day afterwards. They were euthanized

in CO2 chamber when manifesting disease symptoms

or becoming moribund. The mice were then dissected,

and cells from the spleen, bone marrow, and periph-

eral blood were analyzed by flow cytometry (Gallios,

Beckman Coulter, Brea, CA, USA).

The exon3 of Gas2 was flanked by flox to generate

Gas2flox/flox mice (Biocytogen). Gas2flox/flox mice were

crossed with Vav-iCre mice to obtain flox/flox;Vav-

iCre mice. Tail genomic DNA was obtained for geno-

typing using specific primers (Table S5). The

hematopoietic cells of Gas2flox/flox mice and flox/flox;

Vav-iCre mice were analyzed by flow cytometry and

the coefficients (ratio of organ weight to body weight)

of various organs of these two groups of mice were

measured and compared.

All studies were conducted following an institutional

protocol approved by the Ethics Committee of Soo-

chow University (ECSU-2019000124, Suzhou, China).

2.7. Flow cytometry analysis

Cells from the bone marrow, spleen, and peripheral

blood of the mice were harvested in 2% (vol/vol) fetal

bovine serum-supplemented Hank’s Balanced Salt

Solution (collectively called HF). The cells were

blocked with 2% HF in addition with CD16/32

(223142, Becton Dickinson), and stained with various

antibodies from eBioscience/Thermo Fisher Scientific,

Waltham, MA, USA, including anti-Ter-119 (17-5921-

82), anti-Gr-1 (45-5931-80), anti-Mac-1 (11-0112-82),
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anti-B220 (25-0452-82), anti-CD4 (11-0041-82), and

anti-CD8 (12-0081-82), for flow cytometry analysis.

Jurkat cells were first blocked with 5% human serum

in 2% HF and then stained with anti-CD184 (555 974,

Becton Dickinson) for flow cytometry analysis.

2.8. Transwell assay

The cells were starved with RPMI-1640 medium sup-

plemented with 0.5% bovine serum albumin (BSA) for

4 h, 10 000 cells were then transferred to the upper

chamber of each well in a transwell plate, and the

lower chamber was supplied with the same medium

plus CXCL12 (101 492, Proteintech, Rosemont, IL,

USA). After incubation at 37 °C for 2 h, the cells in

the lower chamber were counted, the number of cells

in lower chamber of the test group was normalized to

that of the control group to calculate the relative

migration of the test cells.

2.9. Immunofluorescence assay

Jurkat cells were processed for an immunofluorescence

assay as previously described [13]. Briefly, the cells

were first incubated with antibody against GAS2

(ab109762; Abcam, Waltham, MA, USA) or Calpain2

(A4066; ABclonal, Wuhan, China), and they were

incubated with antibody against CXCR4 (60042-1-Ig;

Proteintech). The cells were then incubated with

FITC-conjugated anti-rabbit IgG (GAR001; Multi-

sciences, Hangzhou, China) and PE-conjugated

anti-mouse IgG secondary antibodies (GAM5496;

Multisciences). Finally, the expression of GAS2 and

CXCR4 or the expression of Calpain2 and CXCR4

were analyzed by a confocal microscope

(FV1000MPE-share; Olympus, Tokyo, Japan).

2.10. RNA-seq analysis

Three biological replicates of GAS2 silenced (shGAS2)

and the control (Scrambled) Jurkat cells were har-

vested for RNA-seq analysis (Basepair, Suzhou,

China). Differentially expressed transcripts were deter-

mined based on P values (Student’s t-test, P < 0.05)

and fold changes (> 2). All the differentially

expressed transcripts were clustered using Hierarchical

Clustering.

2.11. Colony-forming cell (CFC) assay

Human hematopoietic cells were plated in methylcellu-

lose medium (MethoCult H4230, STEMCELL Tech-

nologies) supplemented with a cocktail of cytokines

[SCF (50 ng�mL�1), IL-3 (20 ng�mL�1), IL-6

(20 ng�mL�1), GM-CSF (20 ng�mL�1), G-CSF

(20 ng�mL�1), and EPO (3 IU�mL�1)]. Similarly,

mouse bone marrow cells were isolated with Histopa-

que (Sigma) and then plated in methylcellulose med-

ium (MethoCult M3231, STEMCELL Technologies)

supplemented with a cocktail of cytokines [mSCF

(100 ng�mL�1), mIL-3 (6 ng�mL�1), and IL-6

(10 ng�mL�1)]. Colonies were enumerated 12–14 days

later.

2.12. Statistical analysis

All values were represented as the mean � SEM from

more than three biological replicates, and statistical

analysis was performed with Student’s t-test, in which

a P value < 0.05 was considered significant. Kaplan–
Meier method was used to study the survival tendency,

and the P value was estimated using the log-rank test.

3. Results

3.1. Aberrantly expressed GAS2 promotes the

growth of T-ALL cells

To explore the functional role of GAS2 in human

T-ALL cells, the expression of GAS2 was analyzed

using RT-qPCR. The results showed that the expres-

sion of GAS2 in bone marrow cells from T-ALL

patients was significantly higher than that in CD3+

cells from the normal bone marrow (NBM) of healthy

donors (Fig. 1A). To explore the possible mechanism

of deregulated GAS2 expression in T-ALL cells, the

DNA methylation content in GAS2 promoter region

was analyzed, as a previous report showed that the

aberrant expression of GAS2 in CML cells was associ-

ated with DNA hypomethylation [33]. The data

showed that the methylation content of GAS2 pro-

moter region in primary T-ALL cells was significantly

lower than that in normal CD3+ cells (Fig. 1B).

Importantly, the transcript expression of GAS2 corre-

lated well with the DNA methylation content in GAS2

promoter region (P = 0.02, R = 0.5), suggesting that

hypomethylation in the promoter region of GAS2

plays a role in the aberrant expression of GAS2 in T-

ALL cells (Fig. 1C).

To investigate the effect of GAS2 silencing on pri-

mary T-ALL cells, validated shGAS2 from a previous

report was delivered into these cells [13], and the effect

of GAS2 silencing on normal CD3+ cells was evaluated

as a control. The results showed that GAS2 silencing

significantly suppressed the growth of T-ALL cells
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from newly diagnosed patients (n = 5) and relapsed

patients (n = 3) (Fig. 1D); however, this action did not

perturb the growth of normal CD3+ cells (n = 5).

Moreover, GAS2 silencing did not alter the colony-

forming cell (CFC) production of normal CD34+ cells

(Fig. S1). Previously, we showed that GAS2 silencing

inhibits the growth of Jurkat cells [13]. In the present

study, the effects of GAS2 silencing on cell cycle and

apoptosis of Jurkat cells were analyzed. The data

showed that GAS2 silencing significantly increased the

fraction of G0/G1 cells and slightly promoted apopto-

sis (Figs S2 and S3).

To address the effect of GAS2 silencing on T-cell

leukemogenesis, GAS2 silenced and control Jurkat

cells were injected into immunodeficient mice intra-

venously. Kaplan–Meier analysis indicated that

GAS2 silencing significantly delayed leukemia genera-

tion (Fig. 1E), and western blot confirmed that

GAS2 expression in leukemic cells (hCD45+GFP+)

was lower from the GAS2 silenced group than that

from the control group (Fig. S4B). The weight of

the spleen in the GAS2 silenced group was signifi-

cantly lower than that in the control group

(Fig. S4C). In addition, flow cytometry analysis

showed that infiltration of leukemic cells in both the

bone marrow and spleen was significantly lower in

the GAS2 silenced group than in the control group

(Fig. 1F, Fig. S4D).
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Fig. 1. Deregulated GAS2 promotes the in vitro and in vivo growth of T-ALL cells. (A) The bone marrow cells from T-ALL patients (n = 26)

and the CD3+ cells from Normal bone marrow (NBM) of healthy donors (n = 13) were collected. The expression of GAS2 was then mea-

sured by RT-qPCR in each sample and normalized to that of b-Actin. (B) The bisulfite modified DNA samples from bone marrow cells of

T-ALL patients and normal CD3+ cells from healthy donors were amplified with methylation-specific PCR to analyze the promoter region of

GAS2, and the PCR products were subjected to sequencing. The methylation contents of bone marrow cells from T-ALL patients (n = 22)

and normal CD3+ cells (n = 4) were compared. (C) The correlation between DNA methylation content and the expression of GAS2 [repre-

sented as DCt (Ct (GAS2)-Ct (b-Actin)] was estimated. (D) Bone marrow cells from T-ALL patients at diagnosis (n = 5, left panel) and those

in relapse (n = 3, right panel) were activated with CD3/CD28 and cultured with a T cell expansion medium supplemented with IL-2 for

2 days. Normal CD3+ cells from healthy donors (n = 4) were treated similarly as a control. These cells were transduced with lentiviral vec-

tors for the delivery of the control (Scrambled) and shRNA against GAS2 (shGAS2). Three days later, GFP+ cells were isolated by FACS, and

their growth analyzed. (E) GAS2 silenced cells and Scrambled Jurkat cells (8 9 106 cells per mouse, eight mice in each group) were injected

through tail vein into immunodeficient mice. These mice were observed closely and the survival of each group was analyzed by the Kaplan–

Meier method (log-rank test, P < 0.001). (F) The diseased mice from both the Scrambled and shGAS2 groups were dissected, and the leu-

kemic cells (hCD45+GFP+) from the bone marrow (BM), spleen and peripheral blood (PB) were analyzed with flow cytometry and summa-

rized statistically. Data were represented as the mean � SEM, and the statistical significance was estimated with Student’s t-test

(*P < 0.05; **P < 0.01).
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3.2. GAS2 regulates the expression of CXCR4

To delineate the functional mechanism of GAS2 in

T-cell leukemogenesis beyond proliferation, we observed

that GAS2 positively regulated the infiltration of leuke-

mic cells in vivo, which allowed us to speculate that

GAS2 regulates the migration of T-ALL cells. There-

fore, transwell experiments were performed and the

results indicated that GAS2 silencing significantly inhib-

ited the migration of Jurkat cells (Fig. 2A). Since the

CXCL12/CXCR4 axis plays a crucial role in cell migra-

tion [34,35], the expression of CXCR4 was analyzed.

RT-qPCR data showed that the transcript expression of

CXCR4 was not significantly changed upon GAS2

silencing (Fig. 2B), whereas western blot indicated that

GAS2 silencing decreased the protein expression of

CXCR4 (Fig. 2C). Moreover, cell surface expression of

CXCR4 was significantly inhibited by GAS2 silencing,

as measured by flow cytometry (Fig. 2D). Since ERK

phosphorylation is a critical event in CXCR4 signaling

[34–36], the expression of ERK and p-ERK was ana-

lyzed. The data showed that CXCR4 silencing severely

decreased the phosphorylation of ERK, whereas GAS2

silencing inhibited ERK phosphorylation to a lesser

extent (Fig. 2E, Fig. S5).

We then explored the possible role of the GAS2/

Calpain2 axis in the regulation of CXCR4 expression.

The first question we addressed was whether Calpain2

regulated the endogenous expression of CXCR4 in

Jurkat cells. The results showed that Calpain2 silenc-

ing (shCPN2) increased CXCR4 expression in Jurkat

cells (Fig. 3A). Two aliquots of protein extraction of

Jurkat cells plus Ca++ supplements were incubated at

37 °C for 8 h with and without a Calpain inhibitor

(Z-LLY-FMK). Ponceau S staining was performed to

confirm equal loading of these samples. Western blot

showed that the expression of CXCR4, but not that of

GAPDH was altered upon Ca++ addition (Fig. 3B).

These results strongly indicated that Calpain was able

to degrade CXCR4. A previous study showed that

GAS2DN and GAS2 silencing had similar inhibitory

effect on the growth of Jurkat cells, and the inhibitory

effect of GAS2DN was partially rescued by Calpain2

silencing [13]. Herein, it was found that GAS2DN

decreased CXCR4 expression as GAS2 silencing did

(Fig. 3C), and Calpain2 silencing reversed the
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Fig. 2. GAS2 modulates the expression of CXCR4. (A) Transwell experiment was performed to analyze the migration abilities of GAS2

silenced (shGAS2) Jurkat cells versus control (Scrambled) cells (n = 3). (B, C) The expression of CXCR4 in GAS2 silenced Jurkat cells versus

the control cells was analyzed by RT-qPCR (n = 3) and western blot, respectively. (D) The expression of CXCR4 on the cell surface was ana-

lyzed with a flow cytometer, and a representative graph was shown. The relative expression of CXCR4 (measured by mean of fluorescence,

MFI) on the surface of GAS2 silenced Jurkat cells versus control cells (n = 3) were statistically summarized. (E) Western blots were con-

ducted to analyze the expression of ERK and p-ERK in Jurkat cells upon CXCR4 or GAS2 silencing. The representative results of three repli-

cates were shown. Data were represented as the mean � SEM, and the statistical significance was estimated with Student’s t-test

(*P < 0.05).
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decreased expression of CXCR4 by GAS2DN

(Fig. 3D). Importantly, co-immunoprecipitation analy-

sis showed that GAS2 and CXCR4 interacted when

overexpressed in 293 T cells (Fig. 3E). Next, immuno-

precipitation analysis revealed a specific interaction

between endogenous CXCR4 and GAS2 in Jurkat cells

(Fig. 3F, Fig. S6). Consistent with a previous report

[13], Calpain2 was present in a complex containing

CXCR4 and GAS2. Finally, confocal microscopy

showed that GAS2 and CXCR4 were partially co-

expressed (Fig. 3G), as were Calpain2 and CXCR4

(Fig. 3H). Overall, these results indicate that endoge-

nous GAS2 and CXCR4 interact in T-ALL cells, pro-

viding a strong molecular basis for the regulation of

CXCR4 expression by GAS2.

3.3. GAS2/CXCR4 axis regulates the growth of

T-ALL cells

To explore the role of CXCR4 in the growth and

migration regulated by GAS2, a lentiviral vector was

constructed to overexpress CXCR4. Both western blot

and flow cytometry confirmed that this vector elevated

the expression of CXCR4 in the control (Scrambled)

and GAS2 silenced (shGAS2) Jurkat cells (Fig. 4A,

Fig. S7). The growth, CFC production, and migratory

ability of Jurkat cells were measured to evaluate the

effects of CXCR4 overexpression on Jurkat cells. The

results showed that CXCR4 overexpression tended to

promote the growth and migration of Jurkat cells, and

significantly increased CFC production of these cells.

Importantly, CXCR4 overexpression significantly

enhanced the properties of GAS2 silenced Jurkat cells,

particularly CFC production (Fig. 4B–D). In a xeno-

graft model, various transduced Jurkat cells were

injected into immunodeficient mice. The results showed

that CXCR4 overexpression promoted T-cell leukemo-

genesis, although this was not statistically significant,

while CXCR4 overexpression significantly enhanced

the leukemogenesis ability of GAS2 silenced Jurkat

cells (Fig. 4E). Mice in the CXCR4 overexpression

plus GAS2 silencing group (shGAS2 + CXCR4) had
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significantly more leukemic cells in the bone marrow

and peripheral blood than the GAS2 silencing

(shGAS2) alone group (Fig. 4F). The expression of

GAS2 and CXCR4 in leukemic cells from 4 groups of

mice was analyzed using western blot (Fig. S8). Over-

all, our data suggest that CXCR4 is partially required

for GAS2 to promote T-cell leukemogenesis, whereas

overexpression of CXCR alone does not necessarily

promote T-cell leukemogenesis.

3.4. GAS2/CXCR4 axis regulates the expression

of NOTCH1 and c-MYC in T-ALL cells

To elucidate the molecular mechanism by which the

GAS2/CXCR4 axis modulates the growth of T-ALL

cells, RNA-seq data were generated to compare GAS2

silenced Jurkat cells with the control cells (Fig. 5A,

Table S6). Kyoto Encyclopedia of Genes and Gen-

omes (KEGG) enrichment analysis suggested that

Notch signaling was perturbed by GAS2 silencing

(Fig. S9). Several components of Notch signaling,

including NOTCH1, HES1, JAG1, and RHOU

[37,38], were chosen for validation. c-MYC was also

selected for validation, as NOTCH/c-MYC signaling

plays a crucial role in T-ALL pathology, although the

differential expression of c-MYC was not suggested by

RNA-seq data. RT-qPCR validated that GAS2 silenc-

ing inhibited the expression of NOTCH1 and c-MYC

in both Jurkat cells and primary T-ALL cells

(Fig. 5B). Western blot showed that GAS2 silencing

suppressed NOTCH and c-MYC expression in Jurkat

cells (Fig. 5C). Interestingly, CXCR4 silencing signifi-

cantly suppressed the growth of primary T-ALL cells

(Fig. S10), which agreed with previous reports
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highlighting the critical role of CXCR4 in T-ALL [24–
26]. RT-qPCR showed that CXCR4 silencing inhibited

the expression NOTCH1 and c-MYC in both Jurkat

cells and primary T-ALL cells (Fig. 5D). Western blot

showed that CXCR4 silencing decreased NOTCH and

c-MYC expression in Jurkat cells (Fig. 5E). The

expression of NOTCH1 and c-MYC in bone marrow

cells from T-ALL patients compared with normal

CD3+ cells was assessed, and the results showed that

both had significantly higher expression in T-ALL

patients than in healthy donors (Fig. S11).

As the expression of c-MYC was consistently sup-

pressed by either GAS2 silencing or CXCR4 silencing,

a rescue experiment was performed with c-MYC over-

expression. The results showed that c-MYC overex-

pression partially rescued the inhibitory effects of

either GAS2 silencing or CXCR4 silencing (Fig. 6),

which indicated that the GAS2/CXCR4 axis partially

modulated the growth of T-ALL cells through

NOTCH/c-MYC signaling.

3.5. GAS2 deficiency has mild effects on normal

hematopoietic cells

To determine whether GAS2 is a suitable therapeutic

target for T-ALL, floxed and Vav-iCre mice were

crossed to study the effect of Gas2 loss on normal

murine hematopoiesis (Fig. 7A). The phenotypes of

flox/flox;Vav-iCre (conditional knockout, CKO) mice

were compared with those of flox/flox mice. As

expected, Gas2 transcript expression was significantly

decreased in both bone marrow and peripheral blood

cells but not in kidney cells (Fig. 7B). The bone mar-

row samples of eight-week old mice were analyzed by

flow cytometry, and the percentage and absolute num-

ber of Mac-1+, Gr-1+, B220+, and Ter-119+ cells were

similar between the CKO and flox/flox groups

(Fig. 7C,D). CFC assays showed that bone marrow

cells from CKO and flox/flox mice had similar prolifer-

ation and differentiation capacities (Fig. S12). T-cells

from the peripheral blood and thymus were analyzed
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by flow cytometry, and there was no evident difference

between CKO and flox/flox mice (Fig. 7E–G). The

major organs of these two groups of mice were ana-

lyzed, and the coefficients (ratio of organ weight to

body weight) of these organs were not significantly dif-

ferent (Fig. S13).

In summary, GAS2 interacts with CXCR4 and regu-

lates the expression of CXCR4, and the GAS2/

CXCR4 axis promotes T-cell leukemogenesis. Upon

GAS2 or CXCR4 silencing, T-cell leukemogenesis was

partially inhibited through NOTCH/c-MYC signaling

(Fig. 7H).

4. Discussion

GAS2 plays a dual role in cancer cells [5,7,9–16]; how-
ever, most studies have not provided in vivo evidence.

In this study, a xenograft experiment was performed,

which showed that GAS2 silencing delayed leukemia

generation in immunodeficient mice. In addition,
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GAS2 silencing significantly decreased the infiltration

of leukemic cells. At the same time, we provided evi-

dence that GAS2 silencing inhibited the growth of

bone marrow cells from T-ALL patients both at diag-

nosis and in relapse. Taken together, these results

highlight the importance of GAS2 in T-ALL patho-

genesis.

To identify the target of GAS2/Calpain2 axis is the

key to delineating the role GAS2 plays in cancer cells

and how it acts. To date, only p53 and b-catenin have

been identified as targets of the GAS2/Calpain2 axis in

cancer cells [7,9]. In the present study, we found GAS2

promotes the expression of CXCR4 post-

transcriptionally. We also showed that Calpain2

decreased the endogenous expression of CXCR4.

Immunoprecipitation and confocal analyses confirmed

that GAS2 interacts with CXCR4. Importantly,

CXCR4 overexpression alleviated the inhibitory effects

of GAS2 silencing on T-ALL cell migration and

growth. Therefore, CXCR4 was identified as a novel

target of the GAS2/Calpain2 axis, which deepened our

understanding of this protease machinery. Neverthe-

less, the underlying mechanism of the direct interaction

between GAS2 and CXCR4 and its biological signifi-

cance remain largely unknown. It is not clear whether

the interaction protects CXCR4 from degradation by

limiting the access of Calpain2 to CXCR4 or whether

GAS2 bound to CXCR4 simply inhibits the enzymatic

activity of Calpain2.

CXCR4 overexpression has been reported in more

than 20 human cancers [30,34,35], including T-ALL.

The development of small-molecule inhibitors, antago-

nist peptides, and antibodies against CXCR4 has pro-

vided new opportunities to combat various cancers

[24,29,36,39–42]. Therefore, understanding the regula-

tory mechanisms of CXCR4 in cancer cells is of great

importance. Several regulatory modes of CXCR4 have

been reported [25,43–46]. For instance, Calcineurin, a

serine-threonine protein phosphatase and a biomarker

of T-ALL leukemia-initiating cells [47,48], regulates

the cell surface expression of CXCR4 in a cortactin-

dependent manner [25]. Recently, nuclear phospho-

fructokinase, platelet (PFKP) was reported to

stimulate CXCR4 expression through c-MYC activity

in T-ALL and lymphoma cells [26]. Therefore, the

regulatory mode revealed in this study adds a new

layer of complexity to CXCR4 regulation. Our study

supports the notion that CXCR4 antibodies or inhibi-

tors provide new revenue to combat T-ALL. Our data

also suggest that targeting GAS2 is a promising strat-

egy against T-ALL. First, the blood-specific knockout

mouse experiments demonstrated that targeting GAS2

was relatively safe. In addition, the fact that neither

CXCR4 nor c-MYC overexpression was able to fully

rescue the growth inhibition induced by GAS2 silenc-

ing suggests a broad spectrum of inhibitory effects

triggered by targeting GAS2 beyond CXCR4 and

NOTCH/c-MYC signaling.

Previous studies have indicated that the interplay of

NOTCH and CXCR4 signaling regulates T-ALL cells

[24,49,50]. For example, both activated Notch1 and

Notch3 promote cell surface expression of Cxcr4 in mur-

ine T-cells [24,49], and increased Cxcr4 expression is

associated with an increased propagation of Notch3-

induced T-ALL cells [49]. Although Cxcr4 loss in

Notch1 induced T-ALL cells led to cell death and

impaired c-Myc signaling, decreased expression of

Notch1 and Myc was not observed yet [24]. In the pre-

sent study, our data clearly showed that GAS2 or

CXCR4 silencing inhibited the expression of both

NOTCH1 and c-MYC, and that overexpression of c-

MYC rescued the growth inhibition induced by GAS2

or CXCR4 silencing. It is worth noting that the signal-

ing controlled by CXCR4 to regulate NOTCH/c-MYC

signaling remains elusive. For example, the question of

whether ERK signaling regulated by CXCR4 partici-

pates in c-MYC modulation is an interesting direction.

Overall, our study provides new evidence of the inter-

play between NOTCH1/c-MYC and CXCR4 signaling.

Our study showed that NOTCH/c-MYC signaling

was impaired upon GAS2 silencing in T-ALL cells.

However, previous reports have shown that Gas2 loss

leads to female infertility by activating Notch signaling

[31,51]. This discrepancy is likely due to cell context-

dependent effects and requires further investigations.

To date, little is known about the role of GAS2 in

hematopoiesis under physiological or stressed condi-

tions. A previous report has shown that interferon

consensus sequence binding protein (Icsbp/Irf8) con-

trols the termination of emergency granulopoiesis in

response to infectious or inflammatory challenges, by

repressing the transcription of both Fas-associated

phosphatase (Fap1) and Gas2 [52]. The present study

showed that Gas2 loss, specifically in the hematopoi-

etic lineage, had a mild effect on murine hematopoiesis

including T-cell development. In addition, GAS2

silencing did not disturb the growth of normal CD3+

or CD34+ cells, which supports GAS2 as a suitable

therapeutic target to eradicate T-ALL cells or other

hematological malignancies with aberrant GAS2

expression, such as CML and myeloproliferative neo-

plasm [12,15,53].

Taken together, our data show that the interaction

between GAS2 and CXCR4 promotes T-cell leukemo-

genesis partially through NOTCH1/c-MYC activity,

whereas GAS2 impairment does not perturb the
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growth of normal hematopoietic cells, which demon-

strates the critical role of GAS2 in T-ALL pathology

and potentiates GAS2 as a novel therapeutic target for

this disease.

5. Conclusions

CXCR4 has been identified as a new target of GAS2/

Calpain2 in human T-ALL cells. The GAS2/CXCR4

axis partially promotes T-cell leukemogenesis via c-

MYC activity, whereas GAS2 impairment does not

perturb normal hematopoiesis, including T-cell devel-

opment, suggesting that GAS2 is a novel therapeutic

target for this disease.
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