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Introduction: Our aim was to evaluate the performance in clinical research and in

clinical routine of a research prototype, called positron emission tomography (PET)

Assisted Reporting System (PARS) (Siemens Healthineers) and based on a convolutional

neural network (CNN), which is designed to detect suspected cancer sites in fluorine-18

fluorodeoxyglucose (18F-FDG) PET/computed tomography (CT).

Method: We retrospectively studied two cohorts of patients. The first cohort consisted of

research-based patients who underwent PET scans as part of the initial workup for diffuse

large B-cell lymphoma (DLBCL). The second cohort consisted of patients who underwent

PET scans as part of the evaluation of miscellaneous cancers in clinical routine. In both

cohorts, we assessed the correlation between manually and automatically segmented

total metabolic tumor volumes (TMTVs), and the overlap between both segmentations

(Dice score). For the research cohort, we also compared the prognostic value for

progression-free survival (PFS) and overall survival (OS) of manually and automatically

obtained TMTVs.

Results: For the first cohort (research cohort), data from 119 patients were

retrospectively analyzed. The median Dice score between automatic and manual

segmentations was 0.65. The intraclass correlation coefficient between automatically and

manually obtained TMTVs was 0.68. Both TMTV results were predictive of PFS (hazard

ratio: 2.1 and 3.3 for automatically based and manually based TMTVs, respectively)

and OS (hazard ratio: 2.4 and 3.1 for automatically based and manually based

TMTVs, respectively). For the second cohort (routine cohort), data from 430 patients

were retrospectively analyzed. The median Dice score between automatic and manual

segmentations was 0.48. The intraclass correlation coefficient between automatically and

manually obtained TMTVs was 0.61.
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Conclusion: The TMTVs determined for the research cohort remain predictive of total

and PFS for DLBCL. However, the segmentations and TMTVs determined automatically

by the algorithm need to be verified and, sometimes, corrected to be similar to the

manual segmentation.

Keywords: positron emission tomography, convolutional neural network, diffuse large B cell lymphoma (DLBCL),

artificial intelligence-AI, fluorodeoxyglucose (18F-FDG)

INTRODUCTION

Positron emission tomography (PET) with fluorine-18 (18F)
fluorodeoxyglucose (FDG) has an important contribution in the
diagnosis and the management of oncological pathologies by
highlighting regions with a high glucidic metabolism (1).

PET can establish an initial staging of tumor lesions (2), enable
treatment optimization, and evaluate treatment effectiveness or
possible relapse (3–8). It also provides prognostic parameters in
certain types of cancer, in particular in onco-hematology, such as
the Deauville score, which evaluates the therapeutic response and
is used in clinical routine, or the total metabolic tumor volume
(TMTV) (9).

TMTV represents, generally on FDG PET, the volume of
the entire cancerous disease. It is obtained by segmenting each
diagnosed lesion. TMTV has been shown to be an independent
prognostic factor in lymphoma (10). Recently, Albano et al. have
shown its predictive nature on progression-free survival (PFS)
in elderly Hodgkin’s lymphoma (11) and mantle cell lymphoma
(12), but also on total and PFS in Burkitt lymphoma (13) and
cerebral lymphoma (14). However, this parameter has some
limitations. The first is that the measurement is time-consuming
to make, explained by the fact that each lesionmust be segmented
individually, a task that cannot be performed manually in clinical
practice. The second is the absence of a standard method for
the segmentation of hypermetabolic lesions, which is responsible
for some variability in the determination of TMTV. Thus, a
fixed threshold of SUVmax (for example 41% for lymphomas) for
each lesion is frequently used (15). However, this may not be
appropriate for all pathological foci, particularly in the case of
heterogeneous tumor fixation and adjacent physiological volume
with high uptake (16).

A problem frequently encountered during the interpretation
and segmentation of the images is differentiating between benign
physiological (e.g., brain, heart, liver, kidney, and bladder) or
inflammatory foci, and pathological foci suspicious for cancerous
lesions. This is particularly true for malignant tumors with a
low avidity for glucose, unusual location, or small size or in the
presence of attenuation and/or motion artifacts (17). Moreover,
inflammatory or infectious foci, or even foci with a high
physiological consumption of glucose may have a sufficiently
high FDG uptake to make it not possible to eliminate a cancerous
origin (18, 19).

Intra- and interobserver interpretation of FDG
PET/computed tomography (CT) findings has a high level
of agreement in studies involving single site and experienced
readers for lymphoma, lung, and head and neck cancers (20–22).

Widespread adoption of TMTV would be facilitated by tools to
assist image interpretation and standardize results. Automatic
segmentation has also proven to be a prerequisite for certain
studies, particularly in the field of radiomics.

In recent years, several automatic segmentation methods have
been developed. They can be divided into two main groups.
The first is based on an ROI placed manually by the physician
within which a threshold relative to SUVmax is applied (23–25).
The resulting segmentation depends on the defined ROI and is
generally not optimal. A second approach, which is less time-
consuming and observer-independent, uses supervised machine
learning to analyze PET/CT images (26). A research software
prototype called PET Assisted Reporting System (PARS), based
on convolutional neural networks (CNNs), has recently been
developed by Siemens Healthineers to classify hypermetabolic
foci into benign and malignant and to provide parameters
such as TMTV, total lesion glycolysis (TLG), and Deauville
score (27). With this algorithm, PET volumes of interest are
first segmented by using a fixed thresholding algorithm. Each
volume of interest is then evaluated independently by using a
combination of PET and CT multiplanar reconstructions, PET
maximum intensity projections (MIPs), and atlas positions to
predict the anatomic localization of FDG foci. These are input
to a CNN that determines whether a focus is suspicious for
malignancy. The training and validation sets were carried out
on cohorts of patients with either lung cancer or lymphoma.
A first, internal evaluation of this tool showed good accuracy
of the automatic segmentation of FDG positive foci, and also
good sensitivity and specificity of the classification in staging
patients with lung cancer and lymphoma compared with manual
segmentation (27).

The aim of this study was to verify the performance of PARS in
order to determine its usefulness in research and clinical routine.

METHOD

Study Design
This retrospective monocentric study included patients treated at
the Henri Becquerel Cancer Center, Rouen, France. Two patient
cohorts were analyzed: a first clinical research cohort composed
of patients with diffuse large B-cell lymphoma (DLBCL), as
TMTV is a well-known prognostic factor for this disease (10), and
a second clinical routine cohort composed of patients selected at
random and followed up for miscellaneous cancers to evaluate
if an automatic measurement of TMTV can be performed in
routine. All patients were over 18 years of age. The baseline
PET/CT was analyzed for the DLBCL clinical research cohort.
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For the routine clinical cohort, including patients with suspected
or confirmed cancer, a baseline or a follow-up PET/CT was
analyzed. The study was approved by the institutional review
board (no. 1901B). Patients were informed about the use of
anonymized data for research and their right to oppose this
use. Fully anonymized data were used, and explicit consent
was waived.

Research Cohort
Concerning the research cohort, 119 patients followed up for
DLBCL were included between November 2004 and September
2014, and their initial FDG PET/CT was analyzed.

PET/CT scans were acquired on a Biograph 16 (Siemens
Healthineers, Knoxville, TN, USA). Patients fasted for at least
4 h and were injected with FDG at an activity of 3.5 MBq/kg
of body weight. Images were acquired 60min after injection at
2.5min per bed position. Themanual segmentation of lesions was
performed using semiautomatic software (Planet Onco, version
2.0, DOSIsoft R©, Cachan, France). A volume of interest was set
around each lesion on the PET images. Then a fixed threshold
value of 41% of SUVmax was applied to define the volume for
each segmented lesion. The volumes of all suspicious lesions
in a particular patient were added to compute the TMTV. The
manual segmentation was performed by two nuclear physicians
for each patient (MT and FE). One of the manual segmentations
(MT), chosen arbitrarily, was used for the calculation of the
Dice scores. The average of the two TMTVs was used for all
other calculations.

Five-year follow-up, including PFS and overall survival (OS),
was available for this cohort.

Routine Cohort
Concerning the routine cohort, 430 patients referred for
cancer assessment underwent routine thoraco-abdomino-pelvic
or whole body PET/CT (according to the indication), and with
at least one tumoral uptake, were included between August 2018
and February 2020.

PET/CT scans were acquired on GE 710 (General Electric,
Milwaukee, WI, USA) or Biograph Vision 600 (Siemens
Healthineers, Knoxville, TN, USA). Patients fasted for at least
4 h and were injected with FDG at a dose of 3.0 MBq/kg of
body weight. Images were acquired 60min after injection at
2min per bed position (GE 710) or by continuous bed motion
(Biograph Vision).

The manual segmentation of lesions was performed using
another semiautomatic software (PETVCAR, General Electric R©)
during routine clinical activity by two different nuclear medicine
physicians (PD and PP). A volume of interest was set around each
lesion on the PET images according to an adaptive thresholding
(28), manually adapted if necessary according to medical advice.
After the database was gathered, a second reading was done
in order to check and confirm the suspicious character of the
different segmented foci. These values were added to compute
the TMTV.

Data of the two cohorts of patients are summarized in Table 1.

Convolutional Neural Network Use
PET/CT images were analyzed using a software prototype called
PARS (Siemens Healthineers, Knoxville, TN, USA). A cylindrical
reference region was automatically placed in the center of
descending thoracic aorta to measure the mean blood pool
uptake (SUVBP). Regions on PET images with SUVpeak greater
than SUVBP + 2 stdSUVBP were identified and segmented using
42% of local SUVmax. Only segmentations with volumes over 2ml
(research cohort) or 1ml (routine cohort) were selected to be
processed by the CNN, which specifies location and physiological
or suspicious character of the different foci.

Statistical Analysis
For both cohorts, agreement between automatic and manual
segmentations was characterized using the Dice score.
Differences between TMTVs from PARS and manual
segmentation were determined using intraclass correlation
coefficient (ICC), notably for subgroups of more than 30 patients.
Comparisons were also made by way of Bland–Altman plots.

The prognostic value for PFS and OS for both automatic
and manual TMTVs was analyzed in the research cohort.
Hazard ratios were calculated on continuous data. Receiver
operating characteristic (ROC) curves were used to determine
TMTV cutoff thresholds by Youden’s index. Survival functions
were computed by Kaplan–Meier analyses and used to estimate
survival time statistics for low and high TMTV groups with
log-rank tests.

RESULTS

Research Cohort
Concerning the research cohort, 119 patients were included
in the analysis. The median age was 65.8 years. Ninety-three
patients had stage 3 or 4 DLBCL according to the Ann
Arbor classification. Thirty received first-line treatment with R-
ACVBP (doxorubicin, cyclophosphamide, vindesine, bleomycin,
prednisone regimen) and 89 with R-CHOP (cyclophosphamide,
doxorubicin, vincristine, and prednisone regimen). The ICC
between the two manual TMTVs was 0.86 (p < 0.001),
confirming the reproducibility of the segmentations. The median
Dice score across all patients between the set of PARS ROI’s
labeled as suspicious and the set of manual ROI’s was 0.65.
The average Dice score was 0.52. The median TMTVPARS was
194.79ml, maximum 1,821ml, and minimum 0ml. The median
TMTVmanual was 313.34ml, maximum 3,304ml, and minimum
8ml (Table 1 and Supplementary Figure 1). The ICC between
PARS and manual TMTVs was 0.68 (Table 1). Concerning
the Bland–Altman plot, the deviation from the mean between
TMTVmanual and TMTVPARS was +204ml with a confidence
interval of−554 to+963ml (see Figure 1A).

After a median follow-up of 5 years, 60 patients presented a
recurrence of the disease and 54 deceased. The 5-year survival
rates were 49.6% for PFS and 54.6% for OS.

The area under the ROC curve for predicting PFS was
0.62 for TMTVPARS and 0.71 for TMTVmanual (Figures 2A,B).
The optimal cutoffs for predicting PFS were 223.09ml for
TMTVPARS and 327.14ml for TMTVmanual. The 5-year PFS
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TABLE 1 | Summary results from two patient cohorts.

Cancer type Number Frequency

(%)

Mean Dice

score

Median Dice

score

Minimal Dice

score

Maximal Dice

score

ICC

(p-value)

Clinical research database

Lymphoma (DLBCL) 119 100 0.52 0.65 0 0.93 0.68

(p < 0.001)

Clinical routine database

Lung 150 34.88 0.51 0.59 0 0.94 0.71

(p < 0.001)

Lymphoma 71 16.51 0.40 0.45 0 0.97 0.56

(p < 0.001)

Breast 28 6.51 0.21 0 0 0.87

Unknown 26 6.05 0.30 0.04 0 0.93

Colorectal 25 5.81 0.46 0.56 0 0.88

Melanoma 23 5.35 0.37 0.50 0 0.85

Head and neck 23 5.35 0.40 0.36 0 0.93

Esophagus 19 4.42 0.54 0.74 0 0.90

Ovary 8 1.86 0.51 0.61 0 0.94

Anal 5 1.16 0.10 0 0 0.46

Kidney 5 1.16 0.24 0.22 0 0.61

Sarcoma 5 1.16 0.22 0 0 0.63

Carcinoma of unknown primary (CUP) 4 0.93 0.28 0.30 0 0.51

Cervix 4 0.93 0.16 0 0 0.64

Endometrium 4 0.93 0.18 0.02 0 0.66

Pancreas 4 0.93 0.35 0.27 0 0.86

Prostate 4 0.93 0.24 0.07 0 0.82

Pleural 3 0.70 0.21 0 0 0.63

Adrenal 3 0.70 0.18 0 0 0.54

Testis 3 0.70 0.19 0 0 0.56

Skin 2 0.47 0.40 0.40 0 0.79

Stomach 2 0.47 0.42 0.42 0.03 0.81

Myeloma 2 0.47 0.43 0.43 0 0.87

Bladder 2 0.47 0.85 0.85 0.85 0.85

Liver 1 0.23 0.53 0.53 0.53 0.53

Leukemia 1 0.23 0.74 0.74 0.74 0.74

Paraganglioma 1 0.23 0.70 0.70 0.70 0.70

Thymus 1 0.23 0.94 0.94 0.94 0.94

Thyroid 1 0.23 0.20 0.20 0.20 0.20

Miscellaneous 430 100.00 0.42 0.48 0 0.97 0.61

(p < 0.001)

DLBCL, diffuse large B-cell lymphoma.

rates were 61.5 and 35.2% for the low- and high-TMTVPARS

groups and 69.8% and 26.8% for the low- and high-TMTVmanual

groups, respectively (Figures 3A,B). The log-rank test indicated
a significantly longer PFS time in the low-TMTV group for both
TMTV estimation methods (p= 0.0034 for TMTVPARS and p <

0.0001 for TMTVmanual). Hazard ratios (high-TMTV group vs.
low-TMTV group) were 2.1 (range 1.3–3.5) for TMTVPARS and
3.3 (range 2.0–5.6) for TMTVmanual.

For OS, the area under the ROC curve was 0.66 for TMTVPARS

and 0.71 for TMTVmanual (Figures 2C,D). The optimal cutoffs
for predicting OS were 220.80ml for TMTVPARS and 327.14ml
for TMTVmanual. The 5-year OS rates were 68.3 and 39.3% for the
low- and high-TMTVPARS groups and 73.0% and 33.9% for the

low- and high-TMTVmanual groups, respectively (Figures 3C,D).
The log-rank test indicated a significantly longer PFS time in
the low-TMTV group for both TMTV estimation methods (p =
0.0016 for TMTVPARS and p = 0.0001 for TMTVmanual). Hazard
ratios (high-TMTV group vs. low-TMTV group) were 2.4 (range
1.4–4.1) for TMTVPARS and 3.1 (range 1.8–5.3) for TMTVmanual.

Routine Cohort
Concerning the routine cohort, 430 patients were analyzed; 35%
of them had lung cancer, 17% lymphoma, 7% breast cancer, 6%
colorectal cancer, 5% melanoma, 5% head and neck cancer, 4%
esophageal cancer, and 15% another cancer. In 6% of the cases,
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FIGURE 1 | Bland–Altman analysis between manually and automatically obtained total metabolic tumor volumes (TMTVs) for the clinical research cohort (A) and the

clinical routine database (B).

FIGURE 2 | Receiver operating characteristic (ROC) curve analysis of the population of diffuse large B-cell lymphomas (clinical research database) for progression-free

survival (PFS) for manually obtained total metabolic tumor volumes (TMTVs) (A) and automatically obtained TMTVs (B) and for overall survival (OS) for manually

obtained TMTVs (C) and automatically obtained TMTVs (D).
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FIGURE 3 | Kaplan–Meier analysis of the population of diffuse large B-cell lymphomas (clinical research database) for progression-free survival (PFS) for manually

obtained total metabolic tumor volumes (TMTVs) (A) and automatically obtained TMTVs (B) and for overall survival (OS) for manually obtained TMTVs (C) and

automatically obtained TMTVs (D).

the patients were followed up in another center, and we did not
have the proven cancer origin.

The median Dice score across all patients between the
suspicious PARS ROIs and the manual ROIs was 0.48. The
average Dice score was 0.42. For automatic segmentation,
median TMTV was 7.37ml, maximum TMTV was 1,626.97ml,
and minimum TMTVs was 0.00ml. For manual segmentation,
median TMTV was 20.09ml, maximum TMTV was
4,076.63ml, and minimum TMTV was 1.00ml (Table 1 and
Supplementary Figure 1). The intraclass coefficient between
PARS andmanual TMTVwas 0.61 (Table 1). Concerning Bland–
Altman plot, the deviation from the mean between TMTVmanual

and TMTVPARS was +60ml with a confidence interval of −386
to+506ml (see Figure 1B).

DISCUSSION

We analyzed an automatic segmentation software prototype
using CNN in PET to distinguish hypermetabolic foci suspicious

for cancer from nonsuspicious foci in two distinct cohorts
of patients.

The first of these cohorts consisted of 119 patients with
DLBCL, a disease used for the training of the model and
for which the prognostic value of TMTV is well known
(10). The median overlapping score of automatic and manual
segmentation estimated by the Dice coefficient was 0.65. The
ICC between automatically and manually determined TMTVs
was 0.68. As follow-up was available for this cohort, survival
analysis based on volume thresholds determined by the ROC
curves showed that automatically determined TMTVs remained
a predictive factor for PFS and OS, but hazard ratios were
however lower than for manually determined TMTVs.

The second cohort consisted of 430 patients with a variety of
cancers who were referred for PET/CT evaluation. The aim of the
analysis of this cohort was to determine the possible utility of the
algorithm for clinical routine, in terms of speed and reliability
of the analysis of the different foci, and the estimation of the
TMTVs. The median overlapping score of automatic and manual
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FIGURE 4 | Examples in axial and sagittal views of limitations of the automatic segmentation. (A) Pathological testicular mass labeled as physiological by positron

emission tomography Assisted Reporting System (PARS) (false negative). For this patient, the manually and automatically obtained total metabolic tumor volumes

(TMTVs) were 281.18 and 5.18ml, respectively. (B) Pathological mesenteric mass was erroneously labeled as physiological by PARS (false negative). For this patient,

the manually and automatically obtained TMTVs were 2,125.38 and 89.35ml, respectively. (C) Physiological urinary bladder focus was erroneously labeled as

pathological by PARS (false positive). For this patient, the manually and automatically obtained TMTVs were 816.94 and 661.08ml, respectively. (D) Pathological

mesenteric mass was correctly labeled as pathological by PARS (true positive). For this patient, the manually and automatically obtained TMTVs were 1,369.19 and

1,343.88ml, respectively.

segmentation estimated by the Dice coefficient was 0.48. The
ICC between automatically and manually determined TMTVs
was 0.61.

The scanner type and acquisition parameters were different
between the two cohorts. However, the results obtained were
relatively similar despite these differences. Moreover, the manual
segmentation methods differed (fixed threshold for the clinical
research cohort and adaptive threshold for the routine cohort),
but this did not greatly influence the results. The use of the 41%
SUVmax thresholding method has been published in the context
of DLBCLs and is a standard in clinical research (15), although
much discussed (16). In particular, this method is difficult to
use in clinical routine where tumor lesions are often smaller
than those observed in DLBCL where a threshold of 41% of the
SUVmax becomes unsuitable because of the partial volume effect
for small lesions (29).

Finally, in the PARS configuration, to limit the computation
time without impacting the TMTV measurement, only
segmentations with volumes over 1ml in the routine cohort were
analyzed, as potentially small tumors were observed while the
limit of 2ml was used in the research cohort, as DLBCLs present
generally large tumors.

In recent years, a number of algorithms have been
developed that focus on PET segmentation, mainly in
lymphoma, using different branches of artificial intelligence
(30–32). In particular, machine learning using CNNs is a

major advance in medical imaging. In PET, this technology
stands to assist the nuclear physician’s interpretation by
facilitating, or even refining, the analysis. Concerning
lymphomas, and DLBCL particularly, TMTV is usually not
calculated during pretherapeutic PET/CT because it takes too
long to determine using manual segmentation. Automatic
or semiautomatic determination of TMTV could enable
clinicians to integrate it in the determination of prognosis and
therapeutic adaptation.

PARS is among the first published and validated CNN
algorithms for PET/CT lesion classification (21). It was developed
to detect FDG foci, and to predict the anatomic location and the
expert classification (i.e., suspicious or not suspicious for cancer).
It was trained on 380 examinations of patients with lung cancer
or lymphoma with a validation set of 126 examinations and a test
set of 123 patients (21).

In a recent study (33), the PARS software prototype was tested
on a cohort of 280 patients with DLBCL. As with this study, we
have established the ability to determine the prognosis of DLBCL
using automatic segmentation. The authors however obtained
a better lymphomatous lesion recovery coefficient (Dice) of
0.73 and a better TMTV correlation of 0.76. The automatically
determined TMTVs were, as in our study, predictive of total and
PFS with hazard ratios of 2.8 and 2.4, respectively. The difference
in Dice coefficients and TMTV correlation could be explained by
the difference in the populations.

Frontiers in Medicine | www.frontiersin.org 7 February 2021 | Volume 8 | Article 628179

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pinochet et al. Automatic FDG PET Classification

Our results are consistent with a recent study (34), in which
the performances of a CNN model, based on nnU-Net, were
investigated to automatically segment TMTV in patients with
DLBCL. A first cohort of 639 patients with pretherapeutic FDG
PET/CT was used to train the model. In this cohort, the mean
Dice score and Jaccard coefficients for manual and automatic
segmentations were 0.73 and 0.68, respectively. There was amean
underestimation of automatic TMTV by 12ml (p = 0.27). An
external validation was done on a second cohort of 94 patients.
In this testing set, the mean underestimation of automatically
determined TMTV was 116ml, which was statistically significant
(p= 0.01).

Concerning the clinical routine database, we chose to
analyze the examinations of patients followed for any cancerous
pathology, whereas the model was trained only on lung
cancer and lymphomas. This approach corresponds well to
the clinical routine where the pathology is variable, and the
results remain consistent with those of the research cohort.
Nevertheless, the results are more similar to those obtained for
the research cohort, which is closer to the training conditions of
the algorithm.

Although promising, the PARS software prototype tends,
in this study, to underestimate the number of cancerous
foci, leading to some false-negative cases (see Figure 4). For
both clinical research and clinical routine cohorts, the results
obtained suggest that a manual check is still needed after the
automatic segmentation.

CONCLUSION

The purpose of our study was to evaluate the software
prototype PARS, which applies CNNs to detect carcinologically
suspicious foci of hypermetabolism in FDG PET scans.
The total tumor metabolic volumes determined by PARS
were predictive of OS and PFS for patients belonging

to the DLBCL research cohort. The segmentations and
TMTVs determined automatically by the algorithm need
to be verified and, sometimes, corrected to be similar
to the manual segmentation in both clinical research and
clinical routine.
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