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Serum metabolite profile 
associated with incident type 
2 diabetes in Koreans: findings 
from the Korean Genome and 
Epidemiology Study
Soo Jin Yang  1, So-Young Kwak2, Garam Jo2, Tae-Jin Song3 & Min-Jeong Shin2

The identification of metabolic alterations in type 2 diabetes (T2D) is useful for elucidating the 
pathophysiology of the disease and in classifying high-risk individuals. In this study, we prospectively 
examined the associations between serum metabolites and T2D risk in a Korean community-based 
cohort (the Ansan–Ansung cohort). Data were obtained from 1,939 participants with available 
metabolic profiles and without diabetes, cardiovascular disease, or cancer at baseline. The 
acylcarnitine, amino acid, amine, and phospholipid levels in fasting serum samples were analyzed by 
targeted metabolomics. During the 8-year follow-up period, we identified 282 cases of incident T2D. 
Of all metabolites measured, 22 were significantly associated with T2D risk. Specifically, serum levels 
of alanine, arginine, isoleucine, proline, tyrosine, valine, hexose and five phosphatidylcholine diacyls 
were positively associated with T2D risk, whereas lyso-phosphatidylcholine acyl C17:0 and C18:2 and 
other glycerophospholipids were negatively associated with T2D risk. The associated metabolites were 
further correlated with T2D-relevant risk factors such as insulin resistance and triglyceride indices. In 
addition, a healthier diet (as measured by the modified recommended food score) was independently 
associated with T2D risk. Alterations of metabolites such as amino acids and choline-containing 
phospholipids appear to be associated with T2D risk in Korean adults.

Type 2 diabetes (T2D) is an increasingly prevalent metabolic disorder that causes serious micro- and macrovas-
cular complications1. In Korea, the prevalence of diabetes and its accompanying cardiovascular disease burden 
have continuously increased as dietary habits become more westernized2,3. Therefore, identifying novel risk fac-
tors of T2D along with well-known factors such as insulin resistance or insufficient insulin secretion is important 
because proper screening can lower or delay T2D development.

Unlike genes or proteins, metabolites are biomarkers of the biochemical activity and are closely related to 
clinical phenotypes4. They can also serve as a good indicator of enzyme activity resulting from biological process 
of transcription and translation, allowing the monitoring of systemic changes in biological systems. Accordingly, 
metabolite analysis provides a functional readout of the physiological state of phenotypes, revealing previously 
undetected biological mechanisms that underlie diseases and metabolic pathways5. Therefore, through metabolic 
profiling, we can identify individuals or populations at a high risk for developing T2D and seek methods of con-
trolling the T2D occurrence.

Several studies have confirmed the association between metabolites and new-onset T2D. In a recent 
meta-analysis of eight prospective studies, several blood amino acids (leucine, valine, tyrosine, and phenylalanine) 
were positively associated with T2D risk, whereas others (glycine and glutamine) were negatively associated with 
T2D risk6. The European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort identified 
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serum metabolites such as hexoses, phenylalanine, and diacyl-phosphatidylcholines (C32:1, C36:1, C38:3 and 
C40:5) to be potential predictors of incident T2D7. Another prospective study in the Framingham Offspring 
Study cohort with a 12-year follow-up revealed that amino acids, namely isoleucine, leucine, valine, tyrosine, 
and phenylalanine, either singly or in combination increased the odds ratio for developing future diabetes8.  
Through similar approaches, a nested case–control design by the Framingham Heart Study cohort suggested that 
metabolite 2-aminoadipic acid is a strong marker of T2D onset9.

Although blood metabolite profiling of T2D pathogenesis has accumulated much knowledge in the western 
population7–9, efforts to identify predictive metabolites of new-onset T2D in the Asian population are limited. A 
recent metabolic analysis reported a distinctive metabolic signature, including palmitoylcarnitine, for incident 
T2D in the Chinese population10. Untargeted metabolomics analysis suggested a combination of six metabolites 
including proline, glycerol, aminomalonic acid, lysophosphatidylinositol (LPI) (16:1), 3-carboxy-4-methyl-5
-propyl-2-furanpropionic acid and urea to have potentials to predict the development of T2D in Chinese popu-
lation with high risk of T2D11. Another targeted metabolomics analysis identified 37 metabolites including LPI 
(16:1) and dihomo-γ-linolenic acid that are associated with incident T2D in a subset of the Singapore Chinese 
Health Study cohort12. Previous studies have identified several T2D-associated metabolites in Korean popula-
tions, but these studies were not prospective13,14. Therefore, the present study aims to identify the metabolites 
related to incident T2D in large populations by studying a prospective cohort in Korea. Whether the dietary 
pattern is related to the observed association between metabolites and incident T2D is also discussed.

Subjects and Methods
Study participants. The study population was assembled through the Korean Genome and Epidemiology 
Study (KoGES) (the Ansan–Ansung study). The procedure and design of the KoGES-Ansan and Ansung cohorts 
are described elsewhere15,16. Briefly, 10,030 individuals aged 40–69 years living in the Ansan (urban) and Ansung 
(rural) districts were recruited as the baseline in 2001–2002. The aim was to construct a genomic and epide-
miologic database for examining the genetic and environmental effects on disease prevalence in Korean. The 
participants attended questionnaire-based interviews in a community clinic, where they were questioned on 
their sociodemographic information, lifestyle, health condition, and medical history. They were also subjected to 
anthropometric measurements and clinical examination, and biennial follow-up examinations. Our dataset was 
obtained from the second follow-up (2005–2006) of the KoGES study. Among the 7,515 participants, we selected 
2,580 participants whose metabolite information was available. After excluding subjects with no data on diabetes 
(n = 20), preexisting cancer (n = 33), diabetes (n = 537), and cardiovascular diseases (n = 51) at the time of enrol-
ment in the study, 1,939 subjects were recruited. Patients with cancer, diabetes, and cardiovascular diseases were 
excluded because their medical treatments could alter their metabolic profiles (Fig. 1). All study participants gave 
their informed consent. The study protocol was approved by the Institutional Review Board of the Korea Centers 
for Disease Control and Prevention17,18, and by the Institute Review Board at the Korea University (KU-IRB-16-
EX-272-A-1). All experiments were performed in accordance with relevant guidelines and regulations.

General data and anthropometric and biochemical measurements. The demographic and behav-
ioral information of the participants (i.e., information on age, sex, physical activity, cigarette smoking, and alcohol 
consumption) was obtained from survey questionnaires administered by trained interviewers. The income level 
(monthly household income) was divided into lowest (<1 million Korean won), lower-middle (100–199 thousand 
Korean won), upper-middle (200–399 thousand Korean won), and highest (≥4 million Korean won). Here 1,000 
Korean won approximately corresponds to 0.9 US dollars. Smoking and drinking statuses were classified into 
three categories: never, former, and current. Participants were asked how long they had participated in five types 

Figure 1. Flow chart of study population.
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of activities (sedentary, very light, light, moderate, and intense physical activities). The total metabolic equivalents 
(METs) were calculated by summing the METs during each type of activity (1.0 for sedentary, 1.5 for very light, 
2.4 for light, 5.0 for moderate, and 7.5 for intense)19. Height and body weight were measured to the nearest 0.1 cm 
and 0.1 kg, respectively, while wearing light clothes without shoes. The body mass index (BMI; kg/m2) was calcu-
lated as the weight divided by the squared height. Blood pressure was repeatedly measured by a trained technician 
using a mercury sphygmomanometer. The participant assumed a sitting position and the blood pressure was read 
from the left and right arms, with a 5-minute rest between the two readings. The measurements were recorded to 
the nearest 2 mmHg and averaged to obtain the systolic and diastolic blood pressures. Hypertension was defined 
as a systolic blood pressure of  ≥140 mmHg or a diastolic blood pressure of ≥90 mmHg, a doctor-diagnosis of 
hypertension by the participants, or the taking of anti-hypertensive medication. To assay their fasting plasma 
glucose (FPG; mg/dL), fasting plasma insulin (FPI; μIU/mL) and triglycerides (TG; mg/dL), participants were 
required to fast for at least 8 h before providing a blood sample. The assays were performed by an automatic 
analyzer (ADVIA 1650 and 1680, Siemens, Tarrytown, NY, USA). Glycosylated hemoglobin (HbA1c) was meas-
ured by high-performance liquid chromatography (Variant II, Bio-Rad, Hercules, CA, USA). Homeostasis model 
assessment of insulin resistance (HOMA-IR) was calculated as follows20: HOMA-IR = [FPI (μIU/mL) × FPG 
(mg/dL)]/450.

Metabolite measurements. The serum metabolites in the 2,580 subjects were quantitatively analyzed by 
a targeted metabolomics approach using the AbsoluteIDQTM p180 kit (BIOCRATES Life Sciences, Innsbruck, 
Austria), which contains 40 acylcarnitines, 21 amino acids, 19 biogenic amines, 1 hexose, 90 glycerophospho-
lipids, and 15 sphingolipids. The experimental procedure and sample measurements in the present study are 
described in detail elsewhere13,14. Briefly, 10 µL of serum was aliquoted on a 96-well plate with a filter and then 
centrifuged for 2 min at 100 × g. After extraction of metabolites, the extracts were analyzed by flow injection 
analysis/tandem mass spectrometry (FIA–MS/MS) for the analysis of acylcarnitines, hexose, glycerophospho-
lipids and sphingolipids in both positive (acylcarnitines, glycerophospholipids, and sphingolipids) and negative 
(hexose) ion mode. Amino acids and biogenic amines were quantified by using liquid chromatography/tandem 
mass spectrometry (LC–MS/MS) in positive ion mode. Internal standards labeled with stable isotopes, such as 
13C or 15N, were used as reference for the identification and quantification of all metabolites provided with the 
AbsoluteIDQTM p180 kit. The metabolite concentration measurement in uM units was automatically carried out 
with the MetValTM software package (BIOCRATES Life Sciences AG, Innsbruck, Austria), and quality assurance 
was performed for the quality assessment using calibration standards and QC samples included on each plate as 
well as reference standards as normal human pooled serum. Data quality of each metabolite was checked based 
on the following criteria: (1) the coefficient of variance for each metabolite in the reference standards <25%, (2) 
half of the analyzed metabolite concentrations in the reference standards > limit of detection, and (3) half of the 
analyzed metabolite concentrations in the experimental samples > limit of detection. After excluding 51 metabo-
lites that failed the quality criteria, we finally used 135 metabolites (13 acylcarnitines, 21 amino acids, 10 biogenic 
amines, 1 hexose, 78 glycerophospholipids, and 12 sphingolipids) for the present study.

Dietary assessment. Dietary assessments were collected through a validated semi-quantitative food fre-
quency questionnaire (FFQ), which records the consumption frequencies and portion sizes of 103 food items21 
(see the previous study for details). The frequency of dietary consumption was divided into nine categories: never 
or seldom, once a month, 2-3 times a week, 1-2 times a week, 3-4 times a week, 5-6 times a week, once daily, 
twice daily, or more than three times daily. For the statistical analyses, the daily consumption frequencies were 
converted into weekly consumption frequencies. The serving size of each food item was categorized as small, 
medium, or large. Participants were also asked about the daily frequency of their meals: one meal a day, two meals 
a day, three meals a day, more than four meals a day, or irregular. From this information, we calculated the recom-
mended food score (RFS), and hence measured the diet quality in the study population.

Recommended food score. RFS is a dietary score based on the consumption frequency of food items 
that are emphasized in the current dietary guidelines for Americans, following the methods of Kant et al.22. In 
this study, we modified RFS for consistency with the current dietary guidelines for Koreans23. Our RFS included 
54 previously validated food items with the following slight modifications24,25; whole grain (two items; barley, 
steamed rice with barley), legumes (four items; steamed rice with cong, tofu, miso soup or soybean paste, soy 
milk), vegetables (20 items; green chilies, pepper leaves, spinach, lettuce, wild sesame leaves, chives, green vegeta-
bles, white radish, bellflower, onion, Chinese cabbages (excluding kimchi), cucumbers, soybean sprouts, carrots, 
pumpkin, young pumpkin, brackens, vegetable wrappings, oyster mushrooms, other mushrooms), fruits includ-
ing juice (12 items; persimmons, tangerines, melons, bananas, pears, apples, oranges, watermelons, peaches, 
strawberries, grapes, tomatoes), fish (nine items; sashimi, hairtail, eel, yellow corbina, mackerel, mackerel pike, 
anchovy, tuna, fish cakes), seaweed (two items; laver, kelp), dairy products (three items; milk, yogurt, cheese), 
nuts (one item; peanuts or almonds or pine nuts) and tea (one item; green tea). One point was awarded for 
each food item consumed at least once a week. Participants were assigned an additional score of 1 if they ate 
three meals daily. Missing dietary variables including daily frequency of meals were imputed by fully conditional 
specification approach26. RFS was computed by summing the points for each of the 54 recommended food items 
listed in the FFQ, plus the daily-frequency-of-meals score. Therefore, the total score can range from 0 to 55, with 
a higher score indicating better diet quality.

Follow-up and incident T2D. Participants were followed up at two-yearly intervals. At each follow-up 
examination, the subjects were administered the questionnaire, FPG, and a 2-h oral glucose tolerance test. 
New-onset T2D was defined by at least one of the following criteria: self-reported diagnosed diabetes, treatment 
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with a hypoglycemic medication, FPG levels of ≥126 mg/dL, or plasma glucose levels of ≥200 mg/dL after the 
oral glucose tolerance test18.

Statistical analysis. All continuous and categorical values were expressed as mean ± standard error and 
as number of counts, respectively. Differences among the modified RFS quartiles were determined by one-way 
variance and a general linear model with a Bonferroni’s multiple comparisons test, in which the possible con-
founding factors were sex, age, energy intake, metabolic equivalent, smoking status, household income, and edu-
cational level. The level of each metabolite was log-transformed and normalized to z scores with a mean of 0 and 
a standard deviation of 1. Some variables outside of the normal distribution were also log-transformed. Whether 
a metabolite was associated with new-onset T2D was determined by a multivariable Cox regression analysis. 
The association between the modified RFS and T2D risk was tested similarly. Finally, the selected metabolites 
(phosphatidylcholine diacyl [PC aa] 32:1 and hydroxysphingomyelin [SM(OH)] 22:2) and the dietary quality 
score were adjusted in the model, both alone and in combination. The hazard ratios (HRs) were obtained by a 
Cox proportional hazards regression model, adjusting for sex, age, BMI, educational level, household income, 
smoking status, drinking status, METs, total energy, consumptions of coffee, red meat and whole grain, and his-
tory of hypertension. The p value was corrected for the false discovery rate (FDR) by the Benjamini–Hochberg 
method (q < 0.05). The cross-sectional association between the metabolites and the modified RFS was evaluated 
by a multiple linear regression model, adjusting for age, sex, energy intake, METs, smoking status, drinking status, 
household income and educational level. All analyses were performed using Stata SE 13.0 (Stata Corp, College 
Station, TX, USA) with a two-sided p value of <0.05 signifying statistical significance.

Data availability. All data generated or analyzed during this study are included in this published article and 
its Supplementary Information files.

Results
The average age of the 1,939 participants was 56.6 ± 0.2 years, and 892 (46.0%) were males. Table 1 displays 
the baseline characteristics of the study participants in the quartiles of modified RFS. The subjects in the high-
est modified RFS quartile were significantly younger, had a higher education and household income, smoked 
less and exhibited lower metabolic equivalent than subjects in the other groups. All nutrient intakes, including 
the percentage of macronutrients, significantly differed among the quartiles of modified RFS (Supplementary 
Table S1). After adjusting for confounders, high-density lipoprotein-cholesterol was significantly higher in the 
highest quartile of RFS.

Prospective associations between metabolites and T2D risk. During the 8-year follow-up period, 
282 incidents cases of new-onset T2D were identified. Figure 2 presents the metabolites prospectively associ-
ated with T2D risk after adjusting for covariates, with a strict correction for multiple comparisons. Twenty-two 
of the 135 metabolites were significantly related to T2D risk (with FDR-corrected p value of <0.05, Fig. 2 and 
Supplementary Tables S2). Levels of alanine [HR, 1.47; confidence interval (CI), 1.29–1.67], arginine (HR, 1.27; 
95% CI, 1.12–1.45), isoleucine (HR, 1.35; 95% CI, 1.19–1.54), proline (HR, 1.26; 95% CI, 1.12–1.42), tyros-
ine (HR, 1.27; 95% CI, 1.12–1.45), and valine (HR, 1.46; 95% CI, 1.27–1.66) were positively associated with 
new-onset T2D. Among the biogenic amines, only spermine was negatively correlated with new-onset T2D (HR, 
0.73; 95% CI, 0.66–0.82). Hexose sugar was independently related to new-onset T2D (HR, 1.76; 95% CI, 1.55–
1.99). Among the choline-containing phospholipid compounds, lyso-phosphatidylcholine acyls (LysoPC a) C17:0 
(HR, 0.79; 95% CI, 0.70–0.89), C18:2 (HR, 0.75; 95% CI, 0.66–0.85), PC aa C38:0 (HR, 0.80; 95% CI, 0.71–0.90), 
C40:1 (HR, 0.79; 95% CI, 0.70–0.90), and C42:1 (HR, 0.80; 95% CI, 0.71–0.90), along with phosphatidylcholine 
acyl-alkyls (PC ae) C34:3 (HR, 0.77; 95% CI, 0.69–0.87) and C36:3 (HR, 0.80; 95% CI, 0.70–0.90), were negatively 
related to new-onset T2D. In contrast, PC aa C32:1 (HR, 1.42; 95% CI, 1.25–1.61), C34:1 (HR, 1.32; 95% CI, 
1.16–1.49), C36:1 (HR, 1.26; 95% CI, 1.11–1.42), C40:5 (HR, 1.33; 95% CI, 1.17–1.51), and C42:5 (HR, 1.24; 95% 
CI, 1.11–1.39) were positively associated with new-onset T2D. Two sphingomyelins (SM), SM(OH) C22:2 (HR, 
0.72; 95% CI, 0.63–0.82) and SM C16:1 (HR, 0.79; 95% CI, 0.69–0.90), were negatively correlated with new-onset 
T2D (Fig. 2).

Association between selected metabolites and biomarkers for T2D. Figure 3 illustrates the corre-
lations between the metabolites associated with new-onset T2D risk and the established biomarkers for diabetes 
(HOMA-IR, HbA1C and TG). The metabolites associated with new-onset T2D were also significantly correlated 
with the diabetes indicators. The exceptions were PC aa C38:0 for HOMA-IR, and alanine, arginine, spermine, 
LysoPC a C17:0 and C18:2 for TG (Fig. 3).

Associations among dietary score, selected metabolites, and incident T2D. Given that 22 metab-
olites were identified as predictors for incident T2D, we further tested the associations among habitual dietary 
quality, metabolites, and T2D incidence in this study population. As shown in Table 2, a healthier dietary pat-
tern (as quantified by the modified RFS) was significantly negatively associated with T2D incidence (HR: 0.80 
CI: 0.70–0.90) after adjusting for covariates. The cross-sectional associations between dietary score and the 22 
selected metabolites are shown in Supplementary Table S3. After multiple linear regression analysis and covariate 
adjustment, two metabolites that were significantly associated with T2D incidence, namely, PC aa C32:1 and 
SM(OH) C22:2 (beta coefficients −0.28 and 0.26, respectively), were significantly associated with healthier die-
tary pattern (FDR-corrected p value of <0.05). We further tested whether the metabolite levels exert a mediating 
effect in the observed association between modified RFS and T2D incidence. The results showed that both modi-
fied RFS and metabolites significantly contribute to future T2D risk, although the magnitudes of the associations 
were more or less attenuated (Table 2).
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Total (n = 1939)

Recommended food score (RFS)

p-value†Q1 (n = 465) Q2 (n = 486) Q3 (n = 480) Q4 (n = 508)

Score, mean/median (range) 19.6/20 (0–48) 7.6/8 (0–12) 16.1/16 (13–19) 22.5/22 (20–25) 31.2/30 (26–48) —

Age, years 56.6 ± 0.2 59.9 ± 0.4a 58.3 ± 0.4b 55.2 ± 0.4c 53.2 ± 0.3d <0.001

Sex %, (n)

Male 46.0 (892) 46.7 (217) 45.5 (221) 49.6 (238) 42.5 (216)
0.165

Female 54.0 (1,047) 53.3 (248) 54.5 (265) 50.4 (242) 57.5 (292)

Body mass index, kg/m2 24.3 ± 0.1 24.2 ± 0.2 24.2 ± 0.1 24.3 ± 0.1 24.5 ± 0.1 0.349

Education %, (n)

Elementary 40.9 (792) 62.3 (289) 50.0 (243) 31.6 (151) 21.5 (109)

<0.001
Middle school 20.3 (392) 17.7 (82) 21.2 (103) 20.7 (99) 21.3 (108)

High school 27.7 (535) 15.3 (71) 21.6 (105) 33.9 (162) 38.9 (197)

University 11.2 (216) 4.7 (22) 7.2 (35) 13.8 (66) 18.3 (93)

Income status %, (n)

Lowest 37.4 (718) 59.0 (269) 44.5 (215) 29.3 (140) 18.7 (94)

<0.001
Lower middle 22.9 (439) 22.8 (104) 25.3 (122) 20.5 (98) 22.9 (115)

Upper middle 27.7 (531) 14.7 (67) 22.8 (110) 36.2 (173) 36.0 (181)

Highest 12.1 (232) 3.5 (16) 7.5 (36) 14.0 (67) 22.5 (113)

Smoking status %, (n)

Never 63.1 (1,222) 60.0 (279) 64.2 (312) 60.8 (292) 66.9 (339)

<0.001Former 16.7 (323) 13.8 (64) 14.8 (72) 20.4 (98) 17.6 (89)

Current 20.3 (393) 26.2 (122) 21.0 (102) 18.9 (90) 15.6 (79)

Drinking status %, (n)

Never 48.3 (935) 52.0 (242) 49.8 (242) 45.2 (217) 46.2 (234)

0.358Former 4.3 (84) 4.7 (22) 3.9 (19) 4.4 (21) 4.3 (22)

Current 47.4 (919) 43.2 (201) 46.3 (225) 50.4 (242) 49.5 (251)

Metabolic equivalent (h) 53.5 ± 0.4 58.2 ± 0.8a 54.9 ± 0.8b 50.0 ± 0.7c 51.1 ± 0.7c <0.001

Energy intake, kcal 1775.2 ± 13.6 1449.5 ± 19.6a 1665.2 ± 22.2b 1825.7 ± 22.8c 2127.0 ± 31.5d <0.001

Hypertension %, (n) 31.6 (613) 37.2 (173) 34.4 (167) 30.2 (145) 25.2 (128) <0.001

Table 1. Baseline characteristics of the study population. Values are expressed as means ± standard error for 
continuous variables and percentages and numbers counts for categorical variables. †Statistical differences 
were determined using chi-square test for categorical variables and one-way analysis of variance (ANOVA) for 
continuous variables with Bonferroni’s multiple correction (p < 0.05).

Figure 2. Metabolites being associated with future Type 2 diabetes mellitus risk. Hazard ratios were obtained 
with cox proportional hazards regression model adjusting for sex, age, energy intake, body mass index, 
metabolic equivalent, smoking status, drinking status, household income, and education level, consumption 
of coffee, red meat, and whole grain, and history of hypertension. LysoPC a: lyso phosphatidylcholine acyl; PC 
aa: phosphatidylcholine diacyl; PC ae: phosphatidylcholine acyl-alkyl; SM(OH): hydroxysphingomyelin; SM: 
sphingomyelin.
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Discussion
In the present study, various biological pathways, including amino acid and choline-containing phospholipid 
metabolisms, were altered in the incident T2D group of our community-based cohort sample. Recent Korean 
reports have implicated seven metabolites (hexose, valine, and five PC aas) in obesity and T2D. These metabolites 
are related to the fat mass and obesity-associated (FTO) genotype13. Altered metabolites associated with genetic 
loci were also identified in Korean T2D subjects14. Extending these previous analyses, which investigated only the 
cross-sectional association between metabolites and T2D, this study sought the metabolic profiles associated with 
incident T2D over an 8-year follow-up period.

Amino acids. Previous studies have identified the branched-chain amino acids (BCAAs) as among the most 
consistent and important metabolites in dysregulation of the peripheral glucose metabolism. BCAAs and aro-
matic amino acids have been implicated in insulin resistance27, obesity28, diabetes risk8,29,30 and coronary artery 
disease31. Similarly, increased isoleucine, valine, and tyrosine were predictive markers of future T2D risk in our 
present study, and were also correlated with metabolic markers of insulin resistance (HOMA-IR, HbA1C, and 
TG). The association between BCAAs and new-onset T2D might be explained by following mechanisms. First, 

Figure 3. Correlation analysis plot of metabolites and biomarkers. *Correlation coefficients were 
obtained with partial correlation analysis adjusting for sex, age, energy intake, body mass index, metabolic 
equivalent, smoking status, drinking status, household income, and education level (p < 0.05). †The value of 
biomarkers used in these analyses were log-transformed. LysoPC a: lyso phosphatidylcholine acyl; PC aa: 
phosphatidylcholine diacyl; PC ae: phosphatidylcholine acyl-alkyl; SM(OH): hydroxysphingomyelin; SM: 
sphingomyelin.

PC aa C32:1 SM(OH) C22:2 Modified RFS

HR p-value HR p-value HR p-value

Model 1 1.469 <0.001 0.714 <0.001 — —

Model 2 — — — — 0.795 <0.001

Model 3

PC aa C32:1 1.428 <0.001 — — 0.837 0.006

SM(OH) C22:2 — — 0.734 <0.001 0.826 0.003

Table 2. Risk of type 2 diabetes according to metabolites and diet quality score. Hazard Ratios were obtained 
with cox proportional hazards regression model according to the model adjusted. Basic model: age, sex, area, 
metabolic equivalent, smoking status, drinking status, household income, education level, and prevalence 
of hypertension adjusted (data not shown). Model 1: basic model + metabolites adjusted; Model 2: basic 
model + modified RFS adjusted; Model 3: basic model + metabolites + modified RFS adjusted. The values of 
metabolites used in this analysis were log-transformed and normalized using z score.
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the increased BCAAs may evoke catabolic materials (propionyl CoA and succinyl CoA), leading to accumulation 
of incompletely beta-oxidized fatty acids and glucose, impaired insulin effect, and (ultimately) disturbance of 
glucose control32. Second, the composition and derangement of the intestinal microbiota might induce diabetes 
development33. According to recent research, higher BCAA levels are associated with gastrointestinal microbiome 
patterns such as Prevotella copri and Bacteroides vulgatus species34, suggesting a role for the human microbiome in 
the association between BCAAs and T2D development. Our results imply that a healthier dietary pattern signif-
icantly reduces the likelihood of future T2D development. Thus, whether certain dietary factors interact with the 
potential BCAA-biosynthetic component of the gut microbiome pattern, thereby affecting BCAA levels, deserves 
further investigation. Finally, the mammalian target of rapamycin complex 1 (mTORC1) is important for insulin 
signaling and secretion and the proliferation of pancreatic beta cells. The primary regulator of mTORC1 signaling 
is leucine35. Long–term elevation of these BCAAs may contribute to the hyperactivation of mTORC1 and Jun 
N-terminal kinase signaling, presumably causing impaired insulin signaling, and subsequent early dysfunction 
and destruction of beta cells36–38. Despite the accumulating evidence that BCAAs are related to T2D pathogen-
esis, whether increased BCAA levels are a cause or consequence of T2D has not been elucidated. Very recently, 
the causal association between BCAA metabolism and T2D was clarified in a Mendelian randomization study, 
using genetic proxies as instrumental variables30. The authors identified the BCAA-raising polymorphisms by a 
genome-wide approach, and associated them with elevated T2D risk. This result supports a causal pathway of 
BCAA metabolism in T2D pathogenesis. In the present study, we found that higher levels of alanine and arginine 
increase the likelihood of incident diabetes. Alanine levels might increase when the metabolism is altered by glu-
tamate turnover39, when alanine is released from sites other than skeletal muscle, and when alanine production is 
disturbed by BCAA catabolism, which is associated with increased T2D risk. Arginine plays multiple beneficial 
roles against metabolic abnormalities, but might also induce oxidative stress40. Collectively, we speculate that 
altered amino acid metabolisms predict the future risk of T2D through mechanisms involving impaired BCAA 
metabolism, increased oxidative stress, and increased muscle protein degradation, which precedes the develop-
ment of T2D.

Biogenic amines. The biogenic amines spermine and spermidine are involved in several cellular processes, 
including DNA replication, RNA transcription, and protein biosynthesis41. They also trigger glucose-stimulated 
insulin release41; moreover, spermine is a possible glycation inhibitor42,43. Consistent with these studies, we found 
a negative association between blood spermine levels and new-onset T2D, emphasizing the importance of evalu-
ating various metabolites, such as biogenic amines, in new-onset T2D prediction.

Hexoses. As expected, hexose level was positively associated with new-onset T2D in our present study, even 
after adjusting for confounding influencers of insulin resistance. Hexose comprises not only glucose, but all 
six-carbon monosaccharides. Increased hexose level may indicate pancreatic beta-cell dysfunction and insulin 
resistance. In previous studies, the six-carbon monosaccharide fructose was increased in T2D regardless of glu-
cose level44, and higher intake of fructose (including sweetened beverages) was associated with insulin resistance 
and the risk of new-onset T2D45. Our result was consistent with the earlier results44,45, confirming that hexose 
metabolites are valuable for evaluating associations or predicting new-onset T2D in population-based samples.

Glycerophospholipids and sphingomyelin. Consistent with earlier studies6,7, we found a possible 
involvement of phospholipid metabolism in incident T2D among our Korean population. Specifically, two 
LysoPC metabolites (17:0 and 18:2), 8 PC aa metabolites (32:1, 34:1, 36:1, 38:0, 40:1, 40:5, 42:1, and 42:5), 2 PC 
ae (34:3 and 36:3), SM(OH) 22:2, and SM 16:1 were significant predictors of T2D risk in this prospective study. 
Phospholipids such as PC and SM are the dominant components of cellular membranes and play an important 
role in cellular signal transduction46. They also constitute most of the human lipoproteins47. The LysoPC 17:0 and 
18:2 were negatively associated with incident T2D in our cohort. LysoPC a 17:0, found exclusively in dairy foods, 
is particularly effective in reducing T2D risk48, indicating the beneficial effect of regularly consuming dairy prod-
ucts. LysoPC is a signaling molecule involved in atherogenic and inflammatory processes49, of which the major 
function needs to be clearly elucidated. PC aa is essential for the hepatic release of TG-rich very-low-density 
lipoprotein46. On the other hand, PC ae is an antioxidant that inhibits lipoprotein oxidation50. Previous studies 
have shown that PC ae levels are reduced in obese or insulin-resistant subjects50,51. Furthermore, reduced SM 
synthesis is associated with increased levels of reactive oxygen species and reduced insulin secretion52. The signif-
icant contributions of LysoPC, PC, and SM to T2D development in the present study, and the correlations of these 
metabolites with blood phenotype (observed as expected), support the hypothesis that altered choline-containing 
phospholipid metabolism potentiates the development of T2D.

Several recent studies have also identified the metabolites associated with food intake, and related them to 
the metabolic diseases at the population level53–58. Untargeted metabolomics analysis in the subset of African 
Americans from the Atherosclerosis Risk in Communities (ARIC) Study cohort identified 48 pairs of significant 
association between diet and metabolites53. Specifically, ‘sugar-rich foods and beverages’ were associated with 
metabolites related to oxidative stress and lipid profiles53. Another approach to reveal the association between 
dietary pattern and plasma/urinary metabolites reported that O-acetylcarnitine and phenylacetylglutamine are 
positively associated with different food groups, red-meat and vegetable intakes, respectively54. Given that diet 
can be a primary and secondary (by induction of metabolic responses) source of metabolites57,58, we further 
tested the interrelationships among dietary quality, metabolites, and T2D incidence. In this study, only 22 metab-
olites were significant predictors of incident T2D. After controlling for covariates, multiple regression analy-
sis revealed that a healthier diet was significantly associated with reduced PC aa 32:1 level and increased the 
SM(OH) 22:2 level. To test whether each of these two metabolites may act as a mediator in the observed negative 
association between dietary quality and T2D risk, both dietary score and metabolite were considered in the Cox 
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proportional regression model. The result showed that each metabolite and dietary score remained significant in 
combination, although the HRs were somewhat attenuated. This indicates that a better diet quality, characterized 
by well-balanced nutrient intakes reduces the future T2D risk both dependently and independently of interme-
diate metabolites. Given that food intake and relevant nutrients possibly interact with the environment and the 
gut microbiome, and that these interactions would be reflected in the blood metabolites, the links among dietary 
intake, gut microbiota and metabolic biomarkers and their associations with T2D must be further investigated. 
Indeed, the consumption of PC-containing foods such as meat and eggs reportedly increases the T2D risk59, 
possibly through bacterial transformation of PC and consequent production of trimethylamine N-oxide60,61. In 
addition to the complexity and differences of etiology of T2D and environmental factors including diet, ethnic 
difference also should be considered to interpret metabolic profile in a specific population. Because the response 
to the specific stimulus (e.g. chemicals, nutrients, etc.) can be distinct depending on gender and ethnic group62, 
separate analysis in a certain population is required to apply the identified metabolites for planning the preventive 
strategy as well as for pharmacological targeting to treat T2D.

In conclusion, our study showed that metabolites relevant to amino acids, biogenic amines, spermine, 
hexoses, and choline-containing phospholipid metabolism are associated with incident T2D in a prospective 
community-based cohort study. Through targeted metabolite profiling, we elucidated the underlying biochemical 
pathway of T2D pathogenesis. However, many of the covered metabolites were choline-containing phospholipids 
with structural similarities and metabolic interrelationships, which hindered the comprehensive assessment of 
the metabolic alterations preceding T2D. Our results confirm that metabolites beyond the conventional T2D risk 
factors are important for preventing or controlling the development of new-onset T2D. With this knowledge, we 
can develop strategies for early intervention against average-risk T2D.
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