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Low-molecular-weight chitosan (LC) promoted growth in weaned piglets as an alternative

to feed-grade antibiotics. To investigate the influence of LC supplementation on piglets’

gut microbiome and compare the differences in community composition between

LC and antibiotics with ZnO addition, we assessed the cecal microbial community

by 16S rRNA gene sequencing with three treatments consisting of basal diet (CTR

group), basal diet with low-molecular-weight chitosan (LC group), and basal diet with

antibiotic and ZnO (AZ group). LC decreased pH more than AZ did in the cecum

(both compared to CTR). Beta diversity analysis showed that community structure

was distinctly different among the CTR, LC, and AZ treatments, indicating that either

LC or AZ treatment modulated the piglet microbiota. Bacteroidetes, Firmicutes, and

Proteobacteria dominated the community [>98% of operational taxonomic units (OTUs)]

in piglet cecal contents. Compared to CTR, both LC, and AZ increased the relative

abundance of Bacteroidetes while they decreased the count of Firmicutes and AZ

decreased the population of Proteobacteria. In CTR the top four abundant genera were

Prevotella (∼10.4%), Succinivibrio (∼6.2%), Lactobacillus (∼5.6%), and Anaerovibrio

(5.4%). Both LC and AZ increased the relative abundance of Prevotella but decreased

the ratio of Lactobacillus when they compared with CTR. Moreover, LC increased the

relative abundance of Succinivibrio and Anaerovibrio while AZ decreased them. The

microbial function prediction showed LC enriched more pathways in the metabolism of

cofactors and vitamins than CTR or AZ did. LC may potentially function as an alternative

to feed-grade antibiotics in weaned piglets due to its beneficial regulation of the intestinal

microbiome.
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INTRODUCTION

The piglets at an early weaning stage face a dramatic life change in
the food source, the immune system as well as the environmental
and social status (Pluske et al., 1997; Lallès et al., 2007).
These stressful events often cause digestive disorders, nutrient
malabsorption and a high incidence of diarrhea in piglets (Madec
et al., 1998; Boudry et al., 2004; Fairbrother et al., 2005).
Antibiotics and zinc oxide (ZnO) have been widely supplemented
into the piglet diets, which improve the growth rates and
decrease the diarrhea rates (Barton, 2000; Zhu et al., 2017).
However, the continuous addition of antibiotics and ZnO leads
to negative consequences including the drug accumulation in
livestock products, environmental contamination and bacterial
antibiotic resistance (Barton, 2000; Vahjen et al., 2015).

Therefore, alternative diet supplements have been investigated
to replace antibiotics and ZnO (Turner et al., 2001). Among
the alternative supplements, chitosan (∼1,000 kDa of molecular
weight) and its derivatives low-molecular-weight chitosan (LC
or LMWC, <150 kDa) or chito-oligosaccharide (COS, <5
kDa), can be obtained from chitin after the physical, chemical,
and enzymatic conversions (Yin et al., 2009). They have been
widely applied in chemical, medicinal, food, and agricultural
industries such as food and feed additive (Yin et al., 2009;
Vinsová and Vavríková, 2011). Due to the properties of non-
toxic, biocompatibility and biodegradability as the few alkaline
polysaccharides with positive charge (Yin et al., 2009; Vinsová
and Vavríková, 2011), they have been reported to possess many
beneficial biological properties (e.g., anti-microbial, anti-tumor,
anti-oxidant, anti-diabetic, anti-obesity, cholesterol lowering,
immunity regulation, and metal ion adsorption in animals; Yin
et al., 2009; Vinsová and Vavríková, 2011).

As the lowest molecular weight and the highest water-soluble,
COS as a feed additive was more widely studied than chitosan
and LC in animals (Jung et al., 2006; Han et al., 2007; Liu et al.,
2008, 2010; Yang et al., 2012; Zhou et al., 2012; Kong et al., 2014;
Xiao et al., 2014; Xiong et al., 2015). Several studies reported that
COS (100∼1,000mg/kg) promoted animal growth, increased feed
digestibility, reduced the incidence of diarrhea, anti-oxidative,
enhanced immunity, and improved intestinal surface barrier
function in weaned piglets (Jung et al., 2006; Han et al., 2007; Liu
et al., 2008, 2010; Yang et al., 2012; Zhou et al., 2012; Kong et al.,
2014; Xiao et al., 2014; Xiong et al., 2015). More importantly,
COS protected against pathogenic infections (Escherichia coli
and Staphylococcus aureus) and enhanced commensal bacteria
members (lactobacilli and bifidobacteria) to maintaining the
healthy gastrointestinal microflora in animals (Jung et al., 2006;
Han et al., 2007; Liu et al., 2008; Yang et al., 2012; Kong
et al., 2014). However, a newly reported that low dosage of
COS supplementation at 30 mg/kg had no effects on promoting
growth performance and even have compromised the intestinal
barrier integrity (Xiong et al., 2015). The effects of LC as a
feed additive on animals remain largely unknown. However,
LC (∼12 kDa) had much potent antimicrobial activity than did
COS, including against pathogens E. coli, S. aureus, Pseudomonas
aeruginosa, Salmonella enterica serovar Typhi, and Bacillus cereus
(Tsai et al., 2004). Moreover, compared to that in COS treatment,

diet supplementation of LC increased more lipid metabolism
and intestinal disaccharidase activities in obese rats induced by
high-fat-diet (Chiu et al., 2017). However, the effects of LC
on microbiome profiles in piglets remain unknown. Previous
information on gut microbiota affected by the probiotic LC was
fragmentary and the investigations were mostly limited in the
culture-based method (Tsai et al., 2004; Jung et al., 2006; Han
et al., 2007; Liu et al., 2008; Yang et al., 2012; Kong et al., 2014).

Our preliminary data showed that LC (20–30 kDa) at a dosage
of 50mg/kg improved the animal growth performance, intestinal
tract health and anti-oxidant in weaned piglets (unpublished
data). In this study, it was hypothesized that the diets containing
LC influenced the piglet gut microbiome andmight partly exhibit
similar effects as in-feed antibiotics and ZnO. High-throughput
sequencing of 16S rRNA gene was performed to investigate
the microbial community structure variation of cecal bacteria
in the weaned piglets with LC supplement and compared with
that in antibiotics and ZnO supplement. The study helps to
understand the effects of feed supplement on intestinal bacterial
communities and facilitate studies of the alternative strategy
for treating diarrhea in piglets. Given the similar gut bacterial
communities between human beings and sows, our study here
also contributes to understanding the effects of LC supplement
on modulating the complexity of animal microbial communities
and their functional properties in influencing health and disease.

MATERIALS AND METHODS

Animals and Sample Collection
All experimental procedures were carried out with the approval
(IACUC-150701) of the Animal Care and Use Committee in
Guangdong Academy of Agricultural Sciences, China. A total
of 60 male weaned piglets (Duroc × Landrace × Large White)
with an average weight of 6 kg and 21-day old were used in
this study. The control (CTR) group was the piglets fed the
basal diet (Supplementary Table S1); the antibiotics and ZnO
(AZ) treatment group was fed the basal diet supplemented with
aureomycin (30 mg/kg), polymyxin E (12 mg/kg) and ZnO
(3,000 mg/kg); the LC group was those given the basal diet
added with low-molecular-weight (20,000∼30,000 Da) chitosan
(50mg/kg), which was provided by Jiaxing Korui Biotech Co. Ltd,
Zhejiang, China (http://www.korui-china.com/). The product of
LC (KR901, Korui) is fabricated by physical methods and in the
form of fine powder, water insoluble but soluble in dilute acidic
solution, and recommended dosage 50 g/T for piglet’s feed. Five
replicates were used for each treatment (4 piglets per replicate,
totaling 20 animals). The feeding trials lasted for 28 days. The
food and water were daily processed ad lib. At day 28, 1 randomly
selected piglet in individual replicate for each treatment (total
5 animals/treatment) were slaughtered under anesthesia. The
contents of cecum were collected and proceeded. The cecal pH
was immediately determined.

DNA Extraction, Library Construction and
16S rDNA Sequencing
Microbial genomic DNA was extracted from 200mg of
the sample using the QIAamp DNA stool minikit (Qiagen,
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Germany) according to the manufacturer’s recommendation.
DNA quality was evaluated by the agarose gel electrophoresis.
The V4 hypervariable regions (the forward primer was 520F
5-AYTGGGYDTAAAGNG-3 and the reverse primer was 802R
5-TACNVGGGTATCTAATCC-3) of 16S rDNA were PCR
amplified from microbial genomic DNA (Caporaso et al., 2011).
Briefly, 2 µL of diluted DNA sample (∼20 ng/µL) was used for
PCR amplification (25µLmixtures). The PCR conditions were as
follows: one pre-denaturation cycle at 98◦C for 2min, 25 cycles
of denaturation at 98◦C for 15 s, annealing at 50◦C for 30 s, and
elongation at 72◦C for 30 s, and one post-elongation cycle at
72◦C for 5min. The PCR amplicon products were purified using
2% agarose gels and used to construct the sequencing library.
The libraries of amplicons were attached to Illumina sequencing
adapters using the NEBNext UltraTM II DNA Library Prep Kit for
Illumina (E7645L), purified using AMPure XP beads (Biomek,
USA) and quality controlled on an Agilent 2100 Bioanalyzer
(Agilent, USA). The pooled libraries were pair-end sequenced
on the Illumina MiSeq platform with using 2 × 250 bp MiSeq
reagent kit v2 (Illumina, USA).

DNA Sequence Analysis
Raw sequences were filtered with the average base quality lower
than Q20, the quality of the head or tail bases lower than
Q20, sequence lengths shorter than 150 bp, or reads with N.
Then FLASH (v1.2.7) was used to assemble the paired-end
sequences (Magoc and Salzberg, 2011). Reads with homopolymer
runs exceeding 8 bp, primer mismatches, ambiguous bases and
sequence lengths shorter than 150 bp were further removed in
QIIME (v1.9.0) (Caporaso et al., 2010). The UCHIME (Chiu
et al., 2017) of mothur (v1.31.2) (Edgar et al., 2011) was used to
remove the chimera sequences.

Operational taxonomic units (OTUs) were counted for all
samples with a cutoff of 97% identity using the UCLUST function
(Schloss et al., 2009) in QIIME. Any reads <7 times (0.001%)
were removed to minimize the impact of rare OTUs on our
data analysis (Edgar and Baterman, 2010). The representative
sequences of each clustered OTU were selected according to
the maximum length, aligned to Greengenes 16S rRNA gene
database (v13.8) (Bokulich et al., 2013) and classified by RDP
classifier (v.2.2) (Mc Donald et al., 2012). The alpha-diversity
indices (PD, Shannon, observed species and Chao1) were
calculated for each sample, and beta-diversity (non-metric multi-
dimensional scaling, NMDS) analysis was performed to show
the group differences in microbial community structure. Beta-
diversity statistical analyses were also tested using permutational
multivariate analysis of variance (PERMANOVA) based on Bray–
Curtis dissimilarities and 999 permutations in the vegan package
(v. 2.3.2) (Wang et al., 2007).

Microbial Function Prediction and
Statistical Analysis
The microbial function was predicted using Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) (v1.1.0) (Oksanen et al., 2015). Based on
the pre-calculated Greengenes (v13.5) database (Langille et al.,
2013), PICRUSt was performed on the abundance predictions of

Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs
and KEGG pathways of bacterial communities. The functional
differences among groups were compared using Statistical
Analysis of Metagenomic Profiles (STAMP) (Parks et al., 2014).
Statistical analysis of two groups was conducted for Two-sided
Welch’s t-test and Benjamini-Hochberg FDR correction.Multiple
groups were conducted for ANOVA with Tukey-Kramer test and
Benjamini-Hochberg correction. Differences were considered
significant at P < 0.05. Heatmap diagrams were plotted in R
environment (v3.1.2) (http://www.r-project.org).

Sequence Data Accession Number
Raw paired-end reads were submitted to the Sequence Read
Archive of the NCBI (accession number: SRP104359).

RESULTS

Effects of LC or AZ on the pH in Cecal
Samples
The cecal pH value in the piglets fed with LC was determined
to be 6.19, which was significantly lower than that in the control
(6.55) (P < 0.05). Similarly, compared to that in the control, the
cecal pH (6.33) was significantly lower in the piglets fed with
AZ (P < 0.05). The pH between LC and AZ treatments was not
significantly different (P > 0.05) (Supplementary Table S2).

Characteristics of Midgut Bacteria
Community Libraries
At least 47,083 sequence reads were obtained per sample and
a total of 706,251 high-quality sequences were used for later
analysis (Supplementary Table S3). Based on 97% sequence
similarity, these sequences were assigned to 17,890 OTUs. After
removing the rare OTUs (lower than 0.001% of total sequences),
2,242, 2,134, and 2,129 OTUs were retained from CTR group,
LC group, and AZ group, respectively (Supplementary Table S4).
From the Veen analysis of OTU, out of total 2,624 OTUs, 1,585
(∼60% of the total OTUs) existed in three groups (Figure 1A).
Instead, 148, 72, and 108 unique OTUs were identified in CTR,
LC, and AZ groups, respectively.

Effects of Dietary LC and AZ on Alpha and
Beta Bacterial Diversity
We compared bacterial diversity (PD and Shannon index) and
richness (observed species and Chao index) indices for alpha-
diversity. PD index in the LC group or AZ group was significantly
lower than that in the CTR group (P < 0.05), showing that
the bacterial diversity in cecum was decreased by AZ or LC
(Figure 1B). Shannon index between the two treatments did
not show statistical difference while the value in the treatments
was lower than the control (Supplementary Table S5). However,
there was no significant difference in diversity index (PD and
Shannon index) between LC and AZ (P > 0.05), indicating both
of the treatment strategies decreased bacterial diversity under our
testing conditions. About community richness indices (Observed
species and Chao), there was no significant difference between
LC and CTR, indicating that LC did not affect bacterial richness.
However, the number of observed species or Chao index in the
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FIGURE 1 | Microbial composition, alpha, and beta-diversity comparison among CTR, AZ and LC groups. (A) Comparison of OTUs in the three groups. A Venn

diagram was generated to describe the common and unique OTUs among the three groups. (B) Bacterial diversity comparison (PD index). LC group (n = 5) and AZ

group (n = 5) both significantly decreased the cecal bacterial diversity (P < 0.05). (C) Bacterial richness comparison (Observed species index). AZ group significantly

decreased the cecal bacterial richness (P < 0.05). (D) Bacterial richness (Chao index). AZ group significantly decreased the cecal bacterial richness (P < 0.05).

(E) The microbial community structure comparison. The NMDS indicated that it was distinctly different in distribution of microbiota at each group. (F) Characterization

of communities at the phylum level. Relative abundance of microbial phyla in the ceca of piglets fed the low-molecular-weight chitosan (LC) or antibiotics and ZnO (AZ)

diets. (G) The significant difference of phyla. Three predominant phyla of Bacteroidetes, Fimicutes, and Proteobacteria were affected in LC and AZ groups. (H) The

significant differences of genera. The relative abundance of Prevotella were increased by LC or AZ supplementation. Asterisk (*) indicates the significant differences

between two groups at P < 0.05.

AZ group was significantly lower than that in CTR (P < 0.05)
(Figures 1C,D), indicating that AZ decreased bacterial richness
in the cecum. Collectively, our data suggested that piglets fed
AZ had a decreased bacterial richness and diversity. Additionally,
supplementary LC only decreased the gut bacterial diversity
rather than bacterial richness.

For beta diversity analysis, we examined the relationships
in cecal microbiome between the control, AZ supplement and
LC addition using NMDS. The distribution of microbiota at
each group was distinctly clustered separately along principal
coordinate (Figure 1E). Moreover, PERMANOVA was used to
test the Beta-diversity statistical analysis. The results showed
that three groups were distinctly different in the distribution

of microbiota (P < 0.05) (Table 1), indicating that LC and AZ
significantly affected the cecal bacterial structure when compared
to CTR.

Effects of Dietary LC and AZ on the
Composition of the Cecal Microbiota
Twenty-two bacterial phyla were assigned in the LC, AZ,
and CTR groups and 14 of them were shared among
them (Supplementary Table S6). Bacteroidetes, Firmicutes, and
Proteobacteria accounted for more than 98% of the total
sequence reads (Figure 1F). Approximately 1% of sequences
in the cecum samples could not be assigned to a certain
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TABLE 1 | Pseudo F table of PERMANOVA analysis based on Bray-Curtis

dissimilarities.

Source of variance Degree of freedom F R2 P.adjusted

Groupsa 2 2.813 0.319 0.002*

Pairwise comparison F R2 P P.adjusted

LC vs. CTRa 3.157 0.283 0.009 0.027*

AZ vs. CTRa 2.689 0.252 0.009 0.027*

LC vs. AZa 2.597 0.245 0.031 0.093

aBased on genus level and n = 5 per group.
*Significant P-values (< 0.05) are bolded.

rank (unclassified) (Supplementary Table S6), suggesting that
there were uncharacterized bacterial taxa existing in the cecal
microbiome. The proportion of Bacteroidetes in LC and AZ was
1.5- and 1.9-fold higher than that in the CTR group (P < 0.05),
respectively (Figure 1G). Instead, the proportion of Firmicutes in
the LC and AZ treatments was around 0.8- and 0.6-fold lower
than that in the CTR group (P < 0.05), respectively (Figure 1G).
The proportion of Proteobacteria in the AZ treatment was 0.2-
fold lower than that in the CTR group (P < 0.05), but in the LC
treatment, it was in accordance with CTR group (Figure 1G).

Moreover, 41 bacterial classes (Supplementary Table S7), 68
orders (Supplementary Table S8), 96 families (Supplementary
Table S9), and 124 genera (Supplementary Table S10) were
assigned to all the three treatments. On the genus level, the
relative abundance of Prevotella in the LC group (30% of the
total bacterial community) and AZ group (29%) was significantly
higher than that in the CTR group (10%) (P < 0.05) (Figure 1H).
Compared to CTR and AZ groups, the relative abundance
of Succinivibrio was significantly increased by LC treatment
(P < 0.05) (Figure 1H). Similarly, the relative abundance of
Anaerovibrio in the LC group was significantly higher than that
in AZ group (P < 0.05) (Figure 1H). However, the relative
abundance of CF231 in AZ group was significantly higher
than that in CTR as well as LC (P < 0.05) (Figure 1H). The
relative abundance of Desulfovibrio in treatments LC and AZ
was significantly lower than that in the control group (P < 0.05)
(Figure 1H).

Function Prediction of the Microbial
Community in the Cecum
Given the distinct microbiome changes within the LC and AZ
pigs compared to CTR pigs, we tested whether the different
treatments would lead to functional changes in eachmicrobiome.
Prediction of metagenome functional contents was conducted
by applying PICRUSt to insight our 16S rDNA sequences.
Compared to CTR, both LC and AZ had significantly higher
function enrichments of energy metabolism, metabolism of
terpenoids and polyketides, digestive systems and cell growth
and death (P < 0.05) (Figures 2A,B). However, both treatments
dramatically reduced the function enrichment of environmental
information processing such as membrane transport (P < 0.05)
(Figures 2A,B). In addition, LC group significantly increased
the abundance of glycan biosynthesis and metabolism when

compared to that in CTR group (P < 0.05) (Figure 2A). The
relative abundance in the metabolism of cofactors and vitamin
in LC treatment was higher than that in CTR or AZ group
(P < 0.05) (Figures 2A,C). Furthermore, we also analyzed the
microbial genes connected to KEGG Orthology (KO) terms.
1,373 of 6,014 KO terms (23%) were found to be significantly
different among AZ, LC, and CTR groups based on Tukey-
Kramer’s ANOVA Test (P < 0.05). Remarkably, out of 1,373,
462 KO terms were assigned to bacteria Prevotella. It is worthy
of highlighting that most of them (462 different KO terms from
any two-group comparisons) were enriched on carbohydrate
metabolism (15% different KO terms), metabolism of cofactors
and vitamins (9%), energy metabolism (8%), glycan biosynthesis
and metabolism (6%) (Figure 3), suggesting that the drastically
increased Prevotella by LC and AZ played an important function
among the intestinal microbiota. Further, 79 different KO terms
whose relative abundance were >0.1% in any group were
screened out, and most of them including iron complex were
increased in LC than in CTR group (Figure 4). In the metabolism
pathways, there were 62 and 29 different KO terms, whose
relative abundance was >0.01% in any group, involved in the
metabolism of cofactors and vitamins (Supplementary Figure S1)
and glycan biosynthesis and metabolism (Supplementary Figure
S2), respectively.

DISCUSSION

The gut microbiota plays a critical role in animal growth
and production; a different influence on microbiome profiles
resulting from different treatments is expected to impact host
digestion efficiency and intestinal function (Frese et al., 2015).
LC, a growth promoter as the alternative supplement in
animals, possibly promoted the animal growth performance
by modulating the microbiota in the host digestion tract.
Our study showed that supplementation of LC (50 mg/kg) to
piglets decreased the cecal bacterial diversity without affecting
bacterial richness while utilization of antibiotics and ZnO
as antimicrobials decreased the cecal bacterial community
richness and the bacterial diversity (Supplementary Table S5
and Figures 1B–D). Our early study also observed that in-feed
antibiotics or high dietary ZnO supplementation to weaned
piglets increased the microbiota diversity and richness of ileal
digesta whereas decreased the microbiota diversity of the colonic
digesta (Yu et al., 2017). Further, microbial community structure
in piglets fed with LC was remarkably different from that in
AZ group or CTR (Table 1, Figure 1E). Collectively, our results
demonstrated LC differently modulated the intestinal microbiota
in piglets using a different mechanism from that in AZ.

In this study, the supplementation of LC (50 mg/kg)
to weaned piglets significantly increased the cecal relative
abundance of Bacteroidetes (Figure 1G). Bacteroidetes are well-
known excellent degraders for plant polysaccharides and other
recalcitrant organic carbon and nitrogen sources (Salyers, 1984).
It is also reported that abundant Bacteroidetes may prevent
diarrhea because members of phylum Bacteroidetes are known to
interact with the gut immune system, suggesting a link between
early microbiota colonization and gut immune maturation after
weaning (Jakobsson et al., 2013). Particularly, the abundance
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FIGURE 2 | Comparison of microbial function prediction. PICRUSt-predicted relative abundance of KEGG pathway (KEGG level 2) was compared among LC, AZ, and

CTR groups. (A) the difference of the predicted function between LC and CTR; (B) the difference of the predicted function between AZ and CTR; (C) the difference of

the predicted function between LC and AZ. Statistical analysis was conducted using a Welch’s t-test between two groups; a significant difference of KEGG pathways

(P.adj < 0.05) was displayed.

FIGURE 3 | Different KO terms in Prevotella. The abundance of enrichments was shown: Translation (18%), Carbohydrate metabolism (15%), Nucleotide metabolism

(10%), Metabolism of cofactors and vitamins (9%), Energy metabolism (8%), Amino acid metabolism (7%), Glycan biosynthesis and metabolism (6%).

of genus Prevotella within phylum Bacteroidetes was acutely
increased from 10.41% in control group to 30.17% in LC
group (Supplementary Table S10 and Figure 1H). Prevotella are
saccharolytic and produce acetate and succinic acids as end
fermentation products (Downes et al., 2007). Evidence showed
a strong association between Prevotella and carbohydrates from
fiber-rich diets or from long-term carbohydrates diets (De
Filippo et al., 2010; Wu et al., 2011). It was also reported
that a higher abundance of Prevotellaceae dominated in fecal
microbiota of healthy piglets when compared to post-weaning
diarrheic piglets (Dou et al., 2017). Thus, diets supplementation
of LC, as oligosaccharides that belong to carbohydrates,
stimulated the amount increase of Bacteroidetes and Prevotella
to help the breakdown of carbohydrate and maybe improve the
intestinal immune and decrease diarrhea. Further investigations

are needed to establish the relation between the abundance
of Bacteroidetes or Prevotella and diarrhea. Kong et al. (2014)
indicated that dietary supplementation of COS at 500 mg/kg
increased the number of Prevotella in ileal contents (Kong et al.,
2014). Our study here showed that LC supplementation (50
mg/kg) could increase the gastrointestinal Prevotella population.
Moreover, antibiotics and ZnO supplement also increased the
relative abundance of Prevotella. The weaned pigs fed with
chlortetracycline had an increased Prevotella in fecal samples (Li
et al., 2017). Collectively, Prevotella could be a potential microbial
marker for modulation effects of gut microflora by LC or AZ
supplementation.

An interesting finding is that the relative abundance of
Succinivibrio was increased 38-fold in LC group while it was
decreased 0.17-fold in AZ group compared to that in CTR
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FIGURE 4 | Seventy-nine different KO terms. The relative abundance greater than 0.1% in any group was shown.

(Figure 1H). The relative abundance of Succinivibrio in faece was
decreased in the weaned pigs fed with chlortetracycline, or zinc
bacitracin, or colistin sulfate, or amixture of them, indicating that
Succinivibrio was sensitive to antibiotics or zinc (Li et al., 2017).
Bacteria Succinivibrio are known to degrade starch and produce
acetic and succinic acids (Wang et al., 2017). Our results further
demonstrated that Succinivibrio involving in polysaccharide
biodegradation can be increased by some oligosaccharides (i.e.,
COS). Moreover, the relative abundance of Enterobacteriaceae
and Staphylococcus in the cecum presented a decreased trend
in LC group and AZ group (Supplementary Tables S9, S10).
However, dietary supplementation with LC (50mg/kg) and
AZ group had no effects on increasing Lactobacillus and
Bifidobacterium counts in the cecum (Table S10). The decreased
intestinal pH may contribute to inhibit intestinal pathogen
propagation and alleviate post-weaning diarrhea in young
animals (Mourao et al., 2006). The cecal pH in LC group was
the lowest compared to AZ and CTR (Supplementary Table
S2). It is reasonable to assume the decreased pH is attributed
to the increased Prevotella and Succinivibrio in LC because
both produce acetic and succinic acids as the end fermentation
products (Downes et al., 2007; Wang et al., 2017).

Prediction of metagenome functional contents showed
that several metabolic pathways were enriched in piglets
with LC supplementation including energy metabolism,
metabolism of terpenoids and polyketides, digestive systems,
cell growth and death, glycan biosynthesis and metabolism
as well as metabolism of cofactors and vitamin (Figure 2).
It is worthy of highlighting that “digestive systems,”
particularly those involved in biodegradation of plant
materials (Figure 4), are very important for early-weaned
piglets because of the sudden switching from protein-rich
milk to plant fiber-rich diets. Abbreviation of such pathways
in animal digestion tracts will cause digestive disorders,
nutrient malabsorption and a high incidence of diarrhea.
Terpenoids and polyketides serve numerous biochemical
functions such as quinones in electron transport chains,
membrane components, hormones, anti-microbial, and
anti-parasites.

Moreover, LC increased the abundances of riboflavin (VB2)
kinase and iron complex related proteins (Figure 4). LC
effectively chelates some vitamins and heavy metals (such as
Fe3+) (Varma et al., 2004; Sun et al., 2010), which may contribute
to solubilize these cofactors and transport them to hosts.
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In conclusion, low-molecular-weight chitosan modulated the
gut microbial diversity and altered the microbial community in
the cecum of weaned piglets, and showed comparable effects to
in-feed antibiotics and ZnO additive, especially increased the
population of Prevotella microbiota in the cecal digesta. The
understanding on effects of low-molecular-weight chitosan on
intestinal bacterial communities may provide insights into future
application of the alternative strategy for treating diarrhea in
piglets.
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