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Abstract: This paper presents a state-of-the-art survey of smartphone (SP)-based solutions 

for fall detection and prevention. Falls are considered as major health hazards for both the 

elderly and people with neurodegenerative diseases. To mitigate the adverse consequences 

of falling, a great deal of research has been conducted, mainly focused on two different 

approaches, namely, fall detection and fall prevention. Required hardware for both fall 

detection and prevention are also available in SPs. Consequently, researchers’ interest in 

finding SP-based solutions has increased dramatically over recent years. To the best of our 

knowledge, there has been no published review on SP-based fall detection and prevention. 

Thus in this paper, we present the taxonomy for SP-based fall detection and prevention 

solutions and systematic comparisons of existing studies. We have also identified three 

challenges and three open issues for future research, after reviewing the existing articles. 

Our time series analysis demonstrates a trend towards the integration of external sensing 

units with SPs for improvement in usability of the systems. 

OPEN ACCESS 
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1. Introduction 

Falls are defined as the inadvertent settling down of a body on the ground, floor or other lower 

level. The prevalence of falls is very common among the elderly and increases with age. The World 

Health Organization (WHO) reported that 28%–35% of people aged 65 years and above fall each year 

and the rate increases to 32%–42% for those over 70 years of age [1]. Those who are vulnerable to falls 

also include those suffering from neurological diseases (e.g., epilepsy and dementia), which commonly 

occur in older people. Individuals with epilepsy fall during seizure events due to loss of consciousness [2],  

while those with dementia are two to three times more likely to fall than individuals without cognitive 

impairment [3]. Living alone itself increases the risk of falls for community elders [4]. Falls can 

potentially cause severe physical injuries such as disabling fractures [5], and can reduce the 

independence of older individuals through dramatic psychological consequences [6]. If protective 

measures cannot be taken in the near future, the number of falls induced injuries is anticipated to 

double by 2030 [7]. 

Hence, early detection and treatment of falls are key strategies to be employed in reducing  

fall- related injuries and preventing their consequences, which include long laying periods (remaining 

on the floor for prolonged periods after a fall) leading to an increased risk of pneumonias, pressure 

ulcers and even death. The use of assistive devices for fall detection and prevention will help reduce its 

future burdens by preventing injurious falls, reducing the risk of long laying periods and admissions to 

nursing homes. Insights gained from research in this area by industry and academics will assist 

community, public health leaders and health care professionals in developing more efficacious 

intervention strategies to prevent or reduce falls, and its associated psychological, physical and 

economical consequences. 

This past decade alone has seen a tremendous amount of research in the development of assistive 

devices for fall management. Researchers and industry mainly focus on two automatic fall 

management strategies namely, its detection and prevention. Typically fall detection systems help the 

elderly and their caregivers avoid the consequences of long laying periods by detecting falls, triggering 

notification alarms, sending messages and calling for help as soon as falls occur. Fall prevention 

systems are usually based on the assessment of the medical and behavioral histories of users in order to 

predict the possible risk of falls. Most of these fall management technologies consist of three common 

functional units: a sensing/data-acquisition unit, processing unit and communication unit. The 

accelerometer, gyroscope and camera are the most frequently used sensors in SPs, while Bluetooth and 

Wireless Fidelity (Wi-Fi) technologies are typically used for communication purposes. Various 

microcontrollers and wirelessly connected desktops or laptops are usually used for feature extraction 

and classification from the sensors’ output signals. SP-based fall detection and prevention is attracting 

growing interest among researchers as state-of-the-art SPs come with built-in kinematic sensors  

(such as tri-axis accelerometers, gyroscopes, and magnetic sensors), high performance 
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microprocessors, advance communication facilities (e.g., Wi-Fi and Bluetooth) and other sensors (such 

as camera, proximity sensor and microphone) [8]. In a recent survey, Igual et al. [7] have shown a new 

trend towards the integration of fall detection into SPs. 

A variety of dedicated tools and methods have been proposed for fall management, but none of 

these solutions is universally accepted [9]. The SP however, is a very good candidate as this 

technology is widely accepted in daily life [10]. SPs are also more integrated than a dedicated monitoring 

device which reduces rejection due to the device’s poor aesthetic value and intrusiveness [11]. For  

these and many other reasons, the number of studies on SP-based fall management has increased 

steadily in recent years. Currently, to the best of our knowledge, there has been no published review 

specifically on SP-based fall detection and prevention systems. Although, there are some relevant 

review articles [7,12,13], there are none that focus exclusively on SP-based fall detection and 

prevention systems. 

This paper provides a comprehensive and integrative literature review of SP-based fall detection 

and prevention systems. The usability and overview of the general architecture of SP for fall 

management with several new dimensions including a comprehensive taxonomy of the SP-based fall 

management systems is presented. A critical analysis of the methods proposed so far and a comparison 

of their features, strengths and weaknesses is made. This includes the identification of the issues and 

challenges found with the SP-based fall management systems. 

Throughout this paper, the terms fall prediction and fall prevention are used interchangeably 

because SP-based fall prevention systems attempt to prevent falls by predicting the imminent fall 

events. Unless otherwise stated, accelerometer and gyroscope represent tri-axial-accelerometer and  

tri-axial-gyroscope respectively. A SP is a combination of a normal mobile phone and a Personal 

Digital Assistant (PDA) [14]. Ordinary mobile phones and PDAs have less functionality than SPs and 

cannot be considered as SPs. Therefore, PDA or pocket Personal Computer (PC)-based [15,16] and 

ordinary mobile phone-based [17] solutions are excluded from our comparative study. 

This paper is organized in five sections: Section 2 discusses the basic architecture and taxonomy of 

SP-based fall detection and prevention systems. A comparative analysis of the reviewed articles is 

provided in Section 3, illustrated by tables and graphs. Section 4 highlights the challenges of the SP- based 

solutions and also discusses some open issues. Finally, the concluding part—Section 5—points out 

important observations and areas that need further research. 

2. SP Based Fall Detection and Prevention 

Although a fall detection system was first introduced by Hormann in the early 1970s [18,19], the 

history of SP-based fall detection is far shorter. The first smartphone (―Simon‖) was first introduced by 

IBM in 1993 [20] and subsequently, various sensors useful for human activity monitoring were 

integrated into SPs. Hansen et al. [21] used the SP camera for the first time in 2005 for fall detection. 

The SP is also used for fall prevention [22], but instead of active fall prevention, most of the solutions 

proposed were based on standard falls risk assessment tests Timed Up and Go (TUG) and Get Up and 

Go (GUG). 
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2.1. Basic Architecture 

Fall detection and fall prevention systems have the same basic architecture as shown in Figure 1. 

Both systems follow three common phases of operation: sense, analysis and communication. The basic 

difference between the two systems lies in their analysis phase with differences in their feature 

extraction and classification algorithms. Fall detection systems try to detect the occurrence of fall 

events accurately by extracting the features from the acquired output signal(s)/data of the sensor(s) and 

then identifying fall events from other activities of daily living (ADL). On the other hand, fall 

prevention systems attempt to predict fall events early by analysing the outputs of the sensors. 

Data/signal acquisition, feature extraction and classification, and communication for notification are 

the necessary steps needed for both fall detection and prevention systems. The number and type of 

sensors and notification techniques however, vary from system to system (some examples are shown in 

Figure 1). In conventional systems, discrete hardware components are used for the implementation of each 

unit, whereas in SP-based systems, all required units may already be in-built within a state-of-the-art SP. 

Figure 1. Common basic architecture of fall detection and fall prevention systems. 

 

2.1.1. Phase 1: Sense 

This is the first phase of any fall detection and prevention system and in this phase, appropriate 

physical quantities are sensed or measured using suitable sensors. Modern SPs come with various 

built-in sensors and that is one of the vital reasons for choosing SPs as an alternative of conventional 

fall detection and prevention tools [9]. Moreover, the users of SP-based systems are more likely to 

carry SP (with built-in sensors) throughout the day since mobile phones are seen as indispensable in 

daily living. This is in contrast to the users of the conventional systems who may forget to wear the 

special microsensors [17]. Many types of sensors are now available for SPs. These include 

accelerometers, gyroscopes, temperature sensors and magnetic field sensors [23–25]. These sensors are 

used in various ways in SP-based solutions. Some solutions use only one of the abovementioned SP 

sensors for fall detection or prediction [26,27]. According to our survey, the tri-axial accelerometer is 

the most used sensor for SP-based fall detection and prevention. SP-based solutions can use 

combinations of two or more SP sensors during this sensing phase [22,28]. Some solutions use both SP 

sensors and external sensors for detection and prediction of falls events [29,30]. It is also possible to 

use SPs for analysis and/or communication but not for sensing [31,32]. An uncommon type of solution 
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was proposed by Hansen et al. [21]. They used a SP for sensing only, and external systems to perform 

the analysis and communication tasks. 

2.1.2. Phase 2: Analysis 

After measuring the physical quantities by using sensors, obtained signals/data should be analysed. 

In this phase, the significant features are extracted from the sensor’s outputs and preliminary decisions 

are made by classifying and analysing those extracted features. Most SP-based solutions, especially 

solutions for fall detection, use a Threshold-Based Algorithm (TBA). The most vital reason for 

choosing TBAs is that these algorithms are less complex and hence require the lowest computational 

power [9], which helps to reduce battery power consumption [33]. In order to make preliminary 

decisions about a potential fall event, these algorithms usually compare the sensor’s output(s) with 

predefined threshold value(s). Threshold-based algorithms may use more than one threshold [27] and 

threshold value(s) could be predefined (fixed) or adaptive. It should be noted that the adaptive threshold 

values are not calculated dynamically while using the system. Instead, users introduce some physiological 

data and the system obtains the corresponding threshold that is not re-calculated during the system 

operation. The algorithm proposed in [34] uses an adaptive threshold which changes with user-provided 

parameters such as: height, weight and level of activity. 

As mentioned earlier, most solutions employ the tri-axial accelerometer for sensing which measure 

simultaneous accelerations in three orthogonal directions. Threshold-based algorithms use these 

acceleration values for calculating Signal Magnitude Vector by using the following relation: 

                                   
 

     
  (1) 

where Ax, Ay, and Az represent tri-axial accelerometer signals of the x, y, and z-axis respectively. If the 

value of signal magnitude vector for a particular incident exceeds a predefined threshold value, then 

the algorithm primarily identifies that incident as a fall event. To make the final decision, algorithms 

usually depend on the next communication phase. 

The processing power of SP processors has increased dramatically over the past few years. The 

computational power of the latest SPs has become comparable to that of former workstations [35] and, 

thus, even complex machine learning and statistical classification algorithms for fall detection and 

prevention can easily be implemented in SPs [36]. Zhao et al. [37] implemented three machine 

learning algorithms, namely C4.5, Decision Tree (DT) [38], Naïve Bayes (NB) Classifier [39] and 

Support Vector Machine (SVM) [40], on SPs and compared their recognition accuracy. He and Li [8] 

employed a combined algorithm of Fisher’s Discriminant Ratio (FDR) criterion and J3 criterion [41] 

for fall detection. Majumder et al. [22] applied Hjorth mobility and complexity [42] for classifying gait 

and hence developed a fall prevention system. Some solutions [21,43] include external sensors and 

processing units, using the SP for sensing and/or communicating with the users and/or their caregivers. 

2.1.3. Phase 3: Communication 

Depending on the sensor’s responses from the first phase, preliminary detection or prediction of 

falls events is performed by algorithms in the second phase. Whenever a SP-based solution detects or 
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predicts a fall event, it communicates with the user of the system and/or caregivers. Most fall detection 

solutions carry out this communication phase in two steps. In the first step, the system attempts to 

obtain feedback from the user by verifying the preliminary decision and thus improve the sensitivity of 

the system. The second step depends on the user’s response. If the user actively rejects the suspected 

fall, then the system restarts. Otherwise, a notification is sent to caregivers to ask for immediate 

assistance. Some systems may not wait for user’s feedback and will immediately convey an alert 

message to the caregiver [44,45]. Rather than requesting feedback, fall prevention systems generally 

alert the users about their imminent fall. Moreover, instead of alerting the users, fall prevention systems 

can also activate other assistive systems (e.g., wearable airbag [16,46–48], intelligent walker [49,50], 

intelligent cane [51,52], intelligent shoe [53], etc.) for protecting the user from the adverse effects  

of falling. 

User’s feedback can be collected automatically by analyzing the sensor’s output. For example, the 

algorithm proposed by Sposaro and Tyson [34] generates the final decision by automatically analyzing 

the difference in position-data before and after the suspected fall event. Other systems demand manual 

feedback from the user. Requests for the user’s feedback can be attempted by using the external speakers 

on the phone and requesting a vocal or keypad response from the user [21]. Combinations of alarm 

systems and graphical user interface of SPs are also used for collecting the feedback of the user [9,54]. 

After requesting a response from the user, the system waits for a pre-defined period (typically ≤ 1 min). 

If the user does not respond within that time, the system will consider the event as a fall. Fall detection 

systems may fail to detect a real fall event automatically. In such cases, some systems provide help  

(or panic) buttons and thus allow users to seek help manually [55].  

Smartphone-based systems generate several types of notifications to seek help from caregivers or 

for forewarning the users about an imminent fall such as audible alarms [56], vibrations [22], Short 

Message Service (SMS) [34,43,57], Multimedia Messaging Service (MMS) [8,27], and even automatic 

voice calls [21,57]. E-mails and Twitter messaging have also been described [2]. Notification 

messages may contain information on time [27], Global Positioning System (GPS) location 

(coordinates) [27,29,57], and location map [2,26,58]. SP-based solutions can also support streaming of 

phone data from microphones and cameras for further analysis of the situation [21]. 

2.2. Taxonomy 

This section presents a detailed taxonomy of SP-based fall detection and prediction systems with 

respect to the three different phases of operation: sense, analyze and communicate. Here we focus on 

the categorization of various attributes/aspects of SP-based solutions for fall detection and prevention. 

The aim of this taxonomy is to provide a complete reflection of the properties of existing as well as 

possible SP-based solutions. The correctness and completeness of the taxonomy will be reflected upon 

in Section 3. 

Figure 2 illustrates the taxonomy of SP-based fall detection and prevention technologies based on 

their sensing mechanism and sensor placement. Existing solutions are represented with rectangles, 

while rounded rectangles represent possible solutions that have not previously been reported to identify 

areas for future research. SP-based solutions can be categorized into two types: context-aware and 

body worn. With context-aware systems, the user should not wear any sensor or system. Sensors are 
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placed in the surrounding and the user can move freely, but within the catchment areas of the sensors. 

Though, the main advantage of context-aware systems is that the person does not need to wear any 

special device, their operation is limited to those places where the sensors have been previously 

deployed [59]. No such SP-based context-aware solution has been found. All the SP-based solutions, 

proposed so far, are body worn systems and users are required to keep their SPs close to their body. 

This type of solution can be further classified according to the existence of external sensor(s)/system(s) 

and the placement of the SP.  

Figure 2. Taxonomy of smartphone-based systems based on sensing mechanism and 

sensor placement. 

 

Smartphone-based solutions can also be categorized on the basis of algorithms used in the analysis 

phase. Figure 3 presents the taxonomy of SP-based fall detection and prevention algorithms. Due to the 

lower processing capacity and low energy storage capacity of batteries in SP compared to desktop or 

laptop computers, SP-based solutions mostly use TBAs for the detection or prediction of falls events. 

Machine learning algorithms are also attracting research interest because of the improved processing 

and battery capacities of newer, high-end, SPs.  

Figure 3. Taxonomy of smartphone based fall detection and prevention algorithms. 
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Existing and potential SP-based fall detection and prevention systems communicate with the users, 

caregivers or assistive systems by sending alert signals, obtaining user or system feedback or activating 

assistive systems. The taxonomy of communication patterns in SP-based fall detection and prevention 

is shown in Figure 4. Rectangles and rounded rectangles hold the same meaning as in Figure 2. 

Detection systems communicate with the users to obtain feedback, whereas prediction systems 

communicate to alert them about their possible forthcoming falls. Prediction systems are only 

concerned with pre-fall data, but detection systems deal with pre-fall, post-fall and intermediate data. 

Finally, detection systems notify caregivers of fall events and ask for help, whereas prediction systems 

attempt to prevent impending falls with the help of other assistive systems. Some SP-based solutions 

require external sensing units that may or may not have built-in processors. These external units may 

transmit either raw data or results after primary analysis. No article has been found, that uses assistive 

system and/or external processing unit for implementing SP-based fall prevention solution.  

Figure 4. Taxonomy of communication patterns in smartphone-based fall detection and 

prevention systems. 

 

3. Comparative Analysis 

In the reviewed articles, the authors commonly report their main objective (detection/preventing), 

usability (sensor placement & type), the SP operating systems, algorithm novelty, efficiency 

(sensitivity and specificity) and notification techniques. For comparison we focused on those features, 

which are inevitable or have comparatively more variants. Other features have been discussed 

separately. This section compares existing works based on their functional and architectural properties 

and quantitative properties.  

We included journal articles and conference proceedings published on SP-based fall detection and 

fall prevention. Advanced Boolean searches are conducted, with no time limit, in MDPI, IEEE Xplore, 

PubMed, Web of Knowledge and Google Scholar with the search condition: ―Find articles with all the 

words {keyword1 AND keyword2} anywhere in the article‖. The keyword ―smartphone‖ is always 

inserted as keyword1 with any one of the other three keywords: ―fall detection‖, ―fall prevention‖ and 

―fall prediction‖. Each keyword is inserted within double quotation marks and two keywords are 

separated by a Boolean operator AND. Additional articles are identified from the cross-referencing 

from these articles. A total of 578 articles are matched our search criteria. Among these articles,  



Sensors 2014, 14 7189 

 

51 articles included some experimental results or pioneering investigations on SP-based solutions for 

fall detection and fall prevention and are selected for further review. The remaining articles were 

excluded as they have used these keywords for other purposes such as, use of their proposed systems, 

references, and examples. 

3.1. Functional and Architectural Comparison 

Common built-in sensors of recent SPs and their corresponding functions are shown in Table 1. 

Examples of fall detection and prevention or related solutions (SP-based or non-SP-based), which use 

similar dedicated sensors, are also included, to identify potential new areas for research.  

Table 1. Smartphone built-in sensors and their uses. 

Built-in Sensors of SP Usual Use in SP 
Use in Fall  

Detection & Prevention 

Accelerometer 
Senses the changes in orientation of SP and adjusts the viewing 

angle accordingly. 
[60] 

Gyroscope Detects angular momentum (roll, pitch and yaw); facilitates game. [60] 

Magnetometer Senses the Earth’s magnetic field; works as a digital compass. [60] 

Barometer Measures atmospheric pressure; facilitates weather widgets. [61] 

Image Sensor Provides still picture and video capturing facilities. [62] 

Microphone Sound capture. [63] 

Wi-Fi sensor Facilitates wireless communication through Wi-Fi. [64] 

Bluetooth Sensor Facilitates wireless communication through Bluetooth. [60] 

Location sensors (GPS) Targets or navigates by map or picture with the help of GPS satellites. [2] 

Temperature Sensor Measures temperature; facilitates weather widgets. [65] 

Humidity Sensor Measures humidity; facilitates weather widgets. [65] 

Ambient Light Sensor Adjusts the display brightness. [66] 

Proximity Sensor Detects how close our SP’s screen is to our body. [67] 

Touch Sensor Helps to operate the SP through touching. - 

NFC Sensor 
Establishes communication between similar device by touching or 

bringing them into proximity. 
[68] 

Infrared Sensor Can sense temperature. [69] 

Back-Illuminated sensor Adjust the light captured while capturing a photograph. - 

3.1.1. SP-Only Systems 

Depending on the uses and placement of sensors the SP-based solutions are categorized into two 

major categories: context-aware systems and body-worn systems (see Figure 2). Table 2 summarizes 

and compares the important features of existing SP only systems. In this table the articles are  

organized chronologically. 
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Table 2. Comparison of smartphone-only fall detection and prevention systems. 

Y
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Objective SP Position Sensor(s) Algorithm(s) Alerting Feature(s) 

2
0

0
9
 [34] Detection Any Accelerometer 

TBA (Adaptive: depends on 

user provided parameters) 

SMS (time, GPS coordinates, password for 

activating bidirectional voice call). 

[70] Detection Trouser Pocket Accelerometer TBA (Fixed) 
SMS, voice call,  

vibration, sound. 

2
0

1
0
 

[28] Detection Chest, Waist, Thigh Accelerometer & gyroscope TBA (Fixed) Sound alarm, voice call. 

[2] Detection Trouser Pocket Accelerometer 
Discrete Wavelet Transform 

(DWT) 

SMS (GPS coordinates), email (Google Map), 

twitter messages. 

[56] Detection Chest, Waist, Thigh Accelerometer TBA (Fixed) Audible alarm, voice call. 

[37] Detection Waist Accelerometer C4.5 DT, NB and SVM SMS 

2
0

1
1
 

[9] Detection Waist Accelerometer TBA (Fixed) E-mail and/or SMS. 

[44] Detection Waist Accelerometer TBA (Fixed) SMS (date, time, location) 

[71] Detection Pocket Accelerometer TBA (Fixed) SMS (name, time, GPS coordinates, street address) 

[72] Detection Hand, Shirt or Trouser Pocket Accelerometer & gyroscope 
TBA (Fixed),  

One-Class SVM 
Not found 

[45] Detection Not found Accelerometer TBA (Fixed) 
Audible alarm, SMS (GPS coordinates), voice call 

(manual), remote server draws help path 

[73] Detection Shirt Pocket Accelerometer TBA (Fixed) SMS 

2
0
1
2
 

[26] Detection Waist Accelerometer TBA (Fixed) SMS (time, GPS data), draw help path 

[27] Detection Waist Accelerometer 
TBA (Fixed), Median filter 

attenuate noise 

MMS (time, map of suspected fall location, and 

GPS coordinate) 

[31] Detection Waist Accelerometer 
TBA (Fixed), ANN 1 based  

pattern classifier 
Notification contains GPS coordinates. 

[54] 
uFall for Detection, 

uTUG for Prevention 
Waist Accelerometer, Gyroscope TBA (Fixed) 

E-mail or SMS, recorded signals are sent to remote 

server, audio cue (for uTUG) 
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Table 2. Cont. 
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Objective SP Position Sensor(s) Algorithm(s) Alerting Feature(s) 

2
0

1
2
 

[74] Prevention (GUG) Waist Accelerometer 

Segmentation, filtering, 

dispersion measures 

calculation 

Not found 

[75] Detection Waist (Back) Accelerometer 
SVM, SMLR 2 in SP, NB, 

DT, KNN 3 in PC 
Not found 

[76] Detection Shirt or Trouser Pocket Accelerometer 
TBA (Considers axis wise 

data separately) 
Not found 

[77] Detection Shirt Pocket Accelerometer TBA (Adaptive) Not found 

[78] Detection Shirt Pocket Accelerometer TBA (Adaptive) Text message 

[79] Detection Waist Accelerometer 
TBA (Fixed),  

Median Filter, 
MMS (time, GPS coordinate, Google map) 

[80] Detection Trouser Pocket Accelerometer SVM classifier 
Vibration, sound alarm, SMS  

(time, location, & health information) 

[64] Detection Waist 
Accelerometer, Wi-Fi 

module 

DT Classifier, location 

estimation using RSSI 4 
SMS (name, time, location) 

[81] Detection Hand, Pocket, waist Accelerometer, Gyroscope Semi-supervised learning Not found 

[82] Detection Not found Accelerometer, Gyroscope Not found SMS (location), 

[83] Detection Chest, Waist, Thigh Accelerometer 
TBA (Adjusted based on 

user’s profile) 
SMS 

[84] Detection Hand, Pocket Accelerometer, Gyroscope TBA (Fixed) Not found 
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Table 2. Cont. 

Y
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Objective SP Position Sensor(s) Algorithm(s) Alerting Feature(s) 

2
0

1
3
 

[57] Detection Trouser Pocket Accelerometer TBA (Fixed) 
SMS (date, time, GPS data), voice call, 

vibration, sound. 

[8] Detection Chest 

Accelerometer, 

Gyroscope, & 

Magnetometer 

Fisher’s discriminant 

ratio and  3 criterion 

MMS (time, map of suspected fall location, 

GPS coordinate) 

[22] Prevention Trouser Pocket 
Accelerometer & 

Gyroscope 

C4.5 DT classifier, Hjorth 

mobility and complexity [42] 

Alert the user about imminent fall by using 

message & vibration. 

[33] Detection Waist Accelerometer TBA (Fixed) 
SMS, voice call, others: twitter, email, 

Facebook. 

[55] Detection Not found Accelerometer TBA (Fixed) 
SP trigger PC via Wi-Fi, PC send alert via 

SMS, emails or/and voice calls 

[58] Detection Waist Accelerometer TBA (Fixed) SMS (time, GPS data), draw help path 

[85] Detection Not found Accelerometer TBA (Fixed) Not found 

[86] Detection (User’s height 164 cm) Accelerometer TBA (Fixed) 
Server displays current states and triggers 

an alarm 

[87] Detection Trouser Pocket Accelerometer 

OneRAttributeEval, 

ReliefFAttributeEval 

SVMAttributeEval,  

K* [88], C4.5, NB 

SMS (GPS coordinate) 

[89] Detection (Free Fall) Not found Accelerometer 
Displacement based 

algorithms 
SMS (GPS coordinate) 

[90] Detection Waist Accelerometer TBA (Fixed) SMS 

1 Artificial Neural Network; 2 Sparse Multinomial Logistic Regression (SMLR); 3 k-Nearest Neighbours (KNN); 4 Received Signal Strength Indication. 
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3.1.2. Smartphones with Other External Systems 

Table 2 shows that most of SP-only systems demand fixed placement of SPs, but this is considered 

as a usability constraint, because not all people carry their mobile phones in a fixed position [31]. 

Moreover, sensors in SPs usually have much lower resolutions than dedicated sensors [33].  

Body-worn systems can also use external sensing and processing units together with SPs to overcome 

these two constraints. Some of these external units are used only for sensing or measuring physical 

quantities [31,32]. These units will transmit raw data to the SP, and then the SP will perform feature 

extraction, classification and notification tasks. External units can also perform the feature extraction 

and classification tasks with the help of attached microcontrollers. Such units will communicate with 

the SP for the communication step. Moreover, these external units will minimize the computational 

load and wireless communication burden of the SP and reduce battery consumption. External components, 

which are used in various SP-based fall detection and prevention solutions, are listed in Table 3. 

Table 3. External components, used in SP-based fall detection and prevention solutions. 

Component Name Features Used In 

SensorTag (TI) 
Temperature, Humidity, & Pressure Sensor, Accelerometer, 

Gyroscope, Magnetometer, Bluetooth, 8051 Microcontroller 
[43] 

Shimmer2 (Shimmer) 
Accelerometer, 802.15.4 standard Radio, Bluetooth Module, 

MSP430 Microcontroller 
[31] 

GPSADXL 2-axis Accelerometer (Two), GPS Module [21] 

BlueGiga WRAP Bluetooth RS-232 cable replacer [21] 

Camera Video Camera [29] 

X6-2 Mini (Gulf Coast) Accelerometer [75] 

ADXL335 Accelerometer [91] 

ADXL345 Accelerometer [92] 

BC5 (CSR Inc.) Bluetooth Module [92] 

EZ430 Chronos (TI) 
Accelerometer, Pressure, Temperature & Battery Voltage 

Sensor, Bluetooth Module, MSP430 Microcontroller 
[93] 

CC1111 (TI) USB RF Access Point [93] 

LIS344ALH (STMicro) Accelerometer [94] 

BlueGiga WT12 Bluetooth Module [94] 

XBee RF (Digi) ZigBee Module [94] 

XU-Z11 (Digi) USB to ZigBee Adaptor [94] 

XR-Z14-CW1P2 (Digi) ZigBee Wall Router [94] 

Bed Presence (Ibernex) Detects the absence of user on bed [94] 

PIC24F (Microchip) Microcontroller [65,94] 

Piezoresistive sensors Can measure mechanical stress [30] 

Arduino Microcontroller [30,91] 

WiFly Shield Able to connect to 802.11b/g wireless networks [30] 

NODE (Variable Tech) Accelerometer, Gyroscope, Magnetometer, Bluetooth Module [95] 
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Table 4. Fall detection and prevention systems using smartphone and other external units. 

Y
ea

r 

A
rt

ic
le

 

O
b

je
c
ti

v
e 

*
 

Sensor(s) SP Position 
External Sensor’s 

Position 

SP—External Unit 

Connectivity 
Analysis Unit Algorithm(s) 

2
0
0
5
 

[21] D SP camera, External accelerometer Any Waist Bluetooth External PC Not found 

2
0
1
0
 

[28] D 
SP accelerometer, gyroscope & magnetometer, 

Several external magnets (35 mT) 

Trouser right  

(left) Pocket 

Just above left  

(right) knee 
Magnetic Field SP TBA (Fixed), Hausdorff distance 

2
0
1
1
 

[32] D External accelerometer & gyroscope Any 
Waist, left &  

right ankle 
ZigBee SP Center of gravity clustering algorithm 

[96] D SP accelerometer & gyroscope Not found Chest, Finger tip Bluetooth External PC TBA (Fixed) 

2
0
1
2

 

[31] D External accelerometer Any Waist Bluetooth SP ANN Based Pattern Classifier 

[91] D External accelerometer Any Chest Bluetooth External Arduino Board TBA (Fixed) 

[92] D External accelerometer Not found Chest/Waist Bluetooth SP TBA & Binary DT 

[65] P 
External bend, temperature & humidity sensor, 

accelerometer, gyroscope 
Not found Shoe-Sole Bluetooth SP SVM, Fast ANN & TBA 

2
0
1
3
 

[29] D 
SP accelerometer & GPS receiver,  

External video camera 
Chest Wall mounted Client/Server network SP & Network PC Both TBA & machine learning 

[43] D SP GPS Module, External accelerometer Any Torso Bluetooth External Unit Not found 

[93] D External accelerometer Any Wrist Bluetooth External PC TBA (Fixed) 

[94] D 
External accelerometer, gyroscope,  

bed presence sensor 
Any Waist Bluetooth External Unit Not found 

[30] P 
SP accelerometer & gyroscope, External pressure 

sensor (4 units), 
Pocket or Hand Shoe-Sole Wi-Fi SP 

Hjorth mobility and complexity, 

Energy Integral 

[95] P External accelerometer & gyroscope (two sets) Not found Chest and Arm Bluetooth SP TBA (Fixed) 

* ―D‖ represents Detection and ―P‖ represents Prevention. 
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Features of SP-based fall detection and prevention solutions, which employ external system(s) 

along with SPs, are summarized in Table 4. Smartphones with other external systems can be  

subcategorised, based on three phases of operations, into four types as shown in Figure 2. Such 

solutions can utilize SP for all of the three phases of operations while employing external units for the 

sensing phase only. It is also possible to use SPs for only the sensing or communication phases, but 

such systems must use external microcontrollers for analysis. If the SP is only used for the sensing 

phase, then for acquiring less ambiguous signals, it is important to firmly attach the SP at a fixed 

position of the user’s body, but not all users like to carry their SPs in a fixed location. In order to 

overcome this constraint, some solutions utilize SPs for both analysis and communication phase and an 

external sensor for the sense phase. Since the SP is mainly a communication device, using SPs for 

analysis phase only or for both sensing and analysis phases is not a better solution. Moreover, using 

SPs for sensing and communication phase is also an impractical solution, because that will demand 

excessive wireless communication and thus consume excessive battery power. We therefore omit the 

latter three options from our taxonomy and Table 4 also supports our decision. 

3.2. Quantitative Analysis 

This section presents some statistical and time series analysis based on the articles that have been 

compared in Tables 2 and 4. The most important feature, that is not included in these articles,  

is the performance or the correctness of the reviewed solutions. More than half of the  

articles [2,21,26,27,29,32,34,43,45,54,55,57,65,70,71,73,74,77,79,82,85,89,91,93–95] do not declare 

the performance/accuracy of their systems, because these articles present very preliminary 

investigations on SP-based fall detection and fall prevention. The remaining articles, included in Table 5, 

discussed the performance of their proposed solutions but there were major differences between the 

evaluation techniques. Moreover, their test results were obtained by analysing simulated falls events, 

not true falls.  

Table 5. Declared performances of the SP based fall detection and prevention solutions. 

Article Objective Declared Performance 

[8] Detection 
The total classification accuracy is 95.03% (accuracies for static, transitions, 

dynamic, and falls are 98.75%, 94.625%, 91.8%, and 97.63%, respectively) 

[9] Detection 
Both specificity and sensitivity are 100%, except the case when fall dynamics is 

completely in the vertical direction 

[22] Prevention 99.8% accuracy in gait abnormality detection 

[28] Detection Average of false negative values is 2.13% and the false positive value is 7.7% 

[30] Prevention 97.2% accuracy in gait abnormality detection 

[31] Detection Obtained 100% sensitivity, specificity, and accuracy 

[33] Detection Sensitivity 83.33% and a specificity 100% 

[44] Detection Specificity and sensitivity are 81% and 77% respectively 

[56] Detection 
Waist is the best position to attach the phone and gives average false negative 

value of 2.67% and false positive value of 8.7%. 

[58] Detection Accuracy 94% (50 samples for the test and 47 of these samples are correct) 
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Table 5. Cont. 

Article Objective Declared Performance 

[64] Detection 
Precision & Recall (respectively) for DT: 100% & 75.8%;  

for SVM: 99.81% & 75.43%; for NB: 98.67% & 73.20% 

[37] Detection Accuracy for DT is 98.85%, for SVM is 86.47%, and for NB is 87.78% 

[72] Detection 
Accuracies are 75% (while typing SMS), 87.5% (while listening),  

77.9412% (SP in chest pocket) and 84.2857% (SP in pants pocket) 

[75] Detection Identify falls with 98% accuracy and classify the type of falls with 99% accuracy 

[76] Detection Average sensitivity & specificity are 97% & 100% respectively 

[78] Detection Sensitivity 92.75% and specificity 86.75% (for adaptive TBA) 

[80] Detection Average recall is 90% and precision is 95.7% 

[81] Detection Sensitivity 85.3% and specificity 90.5% 

[83] Detection 72.22% sensitivity and 73.78% specificity 

[84] Detection Sensitivity 80%, specificity 96.25% and accuracy is 85% 

[86] Detection Accuracy is 86% in lying and 100% in falling 

[87] Detection 
Precision & Recall (respectively) for NB: 83.8% & 82.0%;  

for J48 DT: 88.2% & 88.3% for K-Star: 88.9% & 88.6% 

[90] Detection 90% specificity, 100% sensitivity and 94% accuracy 

[92] Detection Overall accuracy of 92% 

[96] Detection Falls (active) accuracy 95.2%, Falls (inactive) accuracy 95.7% 

The existing solutions tried to detect and classify the falls events, risk of falls and other normal 

ADLs accurately. Usually, the performance of such solutions is examined based on the sensitivity, 

specificity and total accuracy [97]. Some articles [64,87] measured the performance of their proposed 

systems in a different way. They used the performance parameters: precision and recall [80] Some 

other articles measured the accuracy of their proposed systems, simply by finding the ratio of number 

of correctly identified cases and the total number of cases [58,92]. Same as fall detection systems, 

standard approach for describing accuracy of fall prevention systems has been through sensitivity 

(proportion of fallers correctly classified as high fall risk) and specificity (proportion of nonfallers 

correctly classified as low fall risk) [98]. Table 5 summarizes the declared performances of the SP 

based fall detection and prevention solutions. 

Fifty-one SP-based solutions are compared in Tables 2 and 4 and forty-one (80%) solutions used SP 

with the Android operating system. The Android platform is preferred [8,33,83] as it is an open source 

framework designed for mobile devices [34,78,89]. Other SP operating systems which have been used in 

fall detection and prevention solutions include iOS (8%) [22], Symbian OS (6%) [64] and Windows 

Mobile (4%) [57]. One paper (2%) did not report the SP operating system they used.  

The accelerometer was used in all the reviewed solutions and the GPS receiver is the second most 

commonly used sensor (42%) followed by the gyroscope. In addition we have performed a time series 

analysis on SP based fall detection and prevention solutions and the outcome is shown in Figure 5. 

This line chart shows a comparison of the numbers of studies on SP-only solutions with other solutions 

having a combination of SP and external devices. In the past few years, though the number of studies 

on SP-only solutions are higher than those of other SP based solutions, the use of external devices in 

SP based fall detection and prevention systems is increasing gradually. 
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Figure 5. Estimation of the number of SP based fall detection and prevention studies. 

 

4. Discussion 

Various benefits of using the SP as a pervasive fall management system have already been 

discussed [28]. Despite all these benefits, SP-based systems do face some critical challenges with 

certain issues remaining open to further research. Based on our extensive literature review, these 

challenges and open issues in SP-based fall management systems have been identified. This section 

presents the most relevant ones. 

4.1. Challenges 

4.1.1. Quality of SP Sensors 

It remains doubtful whether the qualities of built-in SP sensors in existing SPs are adequate to 

produce fall detection and prevention systems with acceptable performance. The SP sensor that is used 

by all SP-only solutions is the accelerometer and the usual dynamic ranges of these built-in 

accelerometers are insufficient for accurate fall incident detection [31]. Acceptable dynamic ranges for 

accelerometers from ±4 g to ±16 g have been mentioned in previous publications (where,  

1 g = 9.8 m/s
2
) [31,33,99]. Smartphones typically contain accelerometers with dynamic ranges  

of ±2 g or less [33], but higher dynamic ranges can be found in high-end SPs [81]. While choosing an 

SP for a particular application (fall detection or fall prevention) adequate attention should be paid to 

the quality of the sensors. Specifications of the sensors should satisfy the minimum requirements of the 

applications. Similar attention should be paid to all other SP sensors. 

4.1.2. Energy Consumption and Battery Life 

A major weakness of SP-based solutions is the limited battery life of SPs. Usually the battery life of 

an SP in normal use is about one day [33], but no SP battery will last more than a few hours with 

heavy usage [36,100]. The issue of energy consumption should therefore be considered when 

designing an SP-based system. The energy consumption or battery life of the SP is dependent on the 

number of sensors used [54], data sampling frequency [28,54], data recording time [75], features of 

algorithm [87] and mode (backend or frontend) of operation [26]. The battery life of a particular SP 
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(Samsung Galaxy S II) was reduced from 30 h when only one sensor was used, to 16 h if three sensors 

were used simultaneously [54]. Majumder et al. [22] showed that an iPhone, which runs a machine 

learning algorithm, can run for at most 3 h with a fully charged battery. The battery life is also directly 

proportional to the recording time and activities of user [74].  

While choosing the right algorithm, care should be taken to incorporate a minimal number of 

features, fewer features would decrease the usage of processor and would save energy [87]. 

Experimental results of [26] shows that the consumption rate of the battery per hour for foreground 

execution mode and background execution mode are 2.5% and 2.25% respectively. However, energy 

saving measures could adversely affect accuracy and usability.  

4.1.3. SP Placement and Usability Issues 

Smartphone-based fall detection and prevention systems are mostly designed for older people and 

individuals with neurodegenerative disorders. However, the acceptability of these solutions among 

older individuals has been suggested as a limiting factor [31]. People with intellectual disabilities also 

face great difficulty using the complicated interfaces of modern SP-based applications [101,102].  

A recent study has revealed the myth that older people avoid new technologies is a fallacy [103]. Older 

people have been found to be willing to accept new technologies to support their independence and 

safety [104]. The older person may also prefer to have a single phone with self-contained fall detection 

functionality than to wear a separate fall detection device [22]. 

As mentioned earlier, all SP-only solutions use the accelerometer as a sensor which requires  

fixed placement of the SP. Various fixed positions on the body have been proposed, such as: the shirt 

pocket [73], waist [44] and trouser pocket [70]. This requirement limits the usability of SP-based 

solutions because not everyone caries their SP in a fixed position [31] and it may be difficult to 

convince them to do so [105]. In order to overcome this obstacle, researchers have proposed the use of 

external body-worn sensors in combination with SPs. This solution is also not accepted universally 

because these external devices expose the frailty of the user [33] and many users forget to put on such 

external devices [106]. Therefore, while designing new SP based solution, SP placement and usability 

issue should be handled carefully. 

4.2. Open Issues 

4.2.1. SP Based Context-Aware Fall Detection and Prevention 

Context-aware fall detection and prevention systems use sensors deployed in the environment to 

detect or predict falls. The main advantage of such systems is that the user does not need to wear any 

special device on his or her body [59]. Due to this advantage, several context-aware fall detection and 

prevention solutions using various conventional external systems have been proposed [62,69,107–109]. 

No previous report has been found in our literature search on SP-based context-aware solutions. 

Existing SP based solutions are body-worn type, but at home, users usually do not carry SPs on their 

bodies, so those SP based solutions are not suitable for home environments. Users should depend on 

separate conventional context-aware solutions at home. In this context, single SP based solution having 

both body-worn and context-aware modes of operations would be a better alternative to using separate 
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solutions for indoor and outdoor protection. Such a SP-based solution may run in body-worn mode and 

context-aware mode when the user goes outside and comes back home, respectively. Automatic 

switching between two modes of operations is also possible. 

The taxonomy of such SP-based systems is shown in Figure 2. Han et al. [110] have proposed a 

multimodal approach which utilizes the set of embedded sensors (accelerometer, audio tool, GPS,  

Wi-Fi, etc.) on smartphones in order to recognize eight different user contexts, such as walking, 

jogging, riding on a bus, or taking the subway. Although this system does not recognize fall events, it 

provides feasible support for SP-based context-aware fall detection and prevention solution.  

The sensors that are used frequently in traditional context-aware systems are cameras, infrared sensors, 

microphones and pressure sensors. Most of these sensors are also available in modern SPs. Moreover 

the computational and processing capacities of SPs are continuously improving. Therefore it is highly 

possible to use SPs for context-aware fall detection and prevention. For small monitoring area, such as 

a single room, context-aware system may require a single sensor. Such single sensor (e.g., camera) 

based context-aware system can be completely replaced with SP-only context-aware system. In that 

case, SP should be kept at the place (e.g., wall mounted holder) of that sensor during its context-aware 

mode of operation. It should be noted that we have proposed this novel concept of SP-based context-aware 

system based on our own observations. 

4.2.2. Smartphones with Other Assistive Devices for Fall Prevention  

Smartphone-based fall prevention is comparatively less explored with respect to SP-based fall 

detection. Among 51 reviewed articles only five articles [22,30,65,74,95] reported or evaluated fall 

prediction solutions and two articles [9,54] dealt with both fall detection and prediction. All previously 

reported solutions attempted to prevent falls by early prediction and alerting the user for imminent 

falls. Previous reports have only described fall prediction systems, but a working SP-based prevention 

system linked to assisted devices has not yet been achieved. Wu and Xue [16] proposed a pocket  

PC-based fall prevention system. This system can detect falls events at least 70 ms before the impact 

and activate an inflatable hip pad for preventing fall-related hip fractures. Since SPs can be easily 

substituted for Pocket PCs, this system demonstrates that SP-based fall prevention systems can be 

designed with the help of other assistive devices like airbags or inflatable hip pads.  

4.2.3. Real-Life Falls Analysis  

Falls in individuals occur relatively infrequently in real-life even in individuals with increased 

susceptibility to falls [111]. Therefore, only two of the SP-based solutions reviewed had evaluated 

their system in real-life falls [31,94]. The remaining articles only evaluated their system within 

simulated falls situations. Klenk et al. [112] demonstrated that simulated falls and real-life falls differ 

in terms of acceleration magnitude and dynamics. Consequently, the performances measured on 

simulated falls situations are considered inadequate for robust testing of fall detection and prevention 

systems [113]. Evaluation of SP-based fall detection and prevention systems in real-life conditions 

should therefore be considered a vital area for future research. 
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5. Conclusions 

In this paper we have comprehensively evaluated the existing literature on SP-based solutions for 

fall detection and prevention. Built-in inertial sensors, open source operating systems, state-of-the-art 

wireless connectivity and universal social acceptance make SP a very good alternative to conventional 

dedicated fall detection and prevention tools. However, the performance and usability of current 

systems remain limited by the relatively lower quality of in-built sensors such as accelerometers in 

existing SP devices, as well as the need to wear the SP in a fixed position for SP-only solutions.  

The addition of component parts or additional systems may resolve these issues, but reduces the 

attractiveness of SP-based solutions. Future research should be aimed at context-aware fall detection 

and prevention systems which do not require the device to be worn as well as assessment of fall 

detection and prevention systems in real-life situations. 
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