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Abstract: Among the various natural polymers, polysaccharides are one of the oldest biopolymers
present on the Earth. They play a very crucial role in the survival of both animals and plants. Due to
the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their
chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial
applications. The polysaccharides such as cellulose, starch, chitosan, etc., have several applications
but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a
number of applications. This review covers published literature on the seaweed polysaccharides,
their origin, and extraction from seaweeds, application, and chemical modification. Derivatization of
the polysaccharides to impart new functionalities by chemical modification such as esterification,
amidation, amination, C-N bond formation, sulphation, acetylation, phosphorylation, and graft
copolymerization is discussed. The suitability of extraction of seaweed polysaccharides such as agar,
carrageenan, and alginate using ionic solvent systems from a sustainability point of view and future
prospects for efficient extraction and functionalization of seaweed polysaccharides is also included in
this review article.

Keywords: agar; carrageenan; alginic acid; extraction; chemical modification; application;
ionic solvent

1. Introduction

Polysaccharides are high molecular weight macromolecules present in all living sys-
tems including plants and seaweeds. They act as structural materials and as suppliers
of water and energy [1]. Due to the structural and morphological versatility, they find
applications in various industries ranging from food to pharmaceuticals. Most of the
polysaccharides are water-soluble (at elevated temperatures) or they can be swollen in
water under ambient conditions giving the formation of colloidal, highly viscous solutions
or dispersions with pseudoplastic flow properties. The inherent functional properties
of the polysaccharides such as thickening, water holding and binding, stabilization of
suspensions, emulsions, gelling, etc., make them useful in various applications [2]. In
several occasions, tailor made functionalities for the polysaccharides can be achieved as
well. Among the polysaccharides, seaweed-based polysaccharides such as agar, agarose,
alginic acid, carrageenan, ulvans, and fucoidans are exploited for various commercial
applications. The polysaccharides with specific and distinguished characteristics are iso-
lated from the vast marine source and such polysaccharides are absent in terrestrial plants.
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These algal polysaccharides serve as fascinating tools for therapeutic and industrial ap-
plications, which include nutraceuticals, pharmaceuticals, cosmeceuticals, and functional
foods. At present such bioactive sulphated polysaccharides are used as formulations in
feed, food, and pharmaceutical applications but their various characteristic biological
capacities attract researchers to explore their applications in a number of other fields [3,4].
Marine polysaccharides have also been explored as efficient drug delivery systems combin-
ing the advantages of micelles and natural biopolymers showing excellent compatibility,
biodegradability, non-toxicity, non-immunogenicity, extended blood circulation time, and
better drug loading capacity [5–7]. Polysaccharides from the marine sources have found
their value addition due to their unprecedented therapeutic properties and hence are
exploited in tissue engineering, stent coating, and biomolecules immobilization [8].

As mentioned above, several seaweed polysaccharides are used in medicinal and
pharmaceutical fields to impart various biological activities. Seaweed polysaccharide
based nanoparticles, microspheres, and gels were found to have sustained and controllable
drug delivery potential for anticancer and anti-inflammatory drugs [9]. Several sulphated
polysaccharides were found have cytotoxic properties and were used as antiviral sub-
stances against respiratory syncytial virus (RSV), herpes simplex virus (HSV) types 1 and 2,
and human immunodeficiency virus (HIV). Carrageenan has been demonstrated as a
potential agent in vitro to impart antiviral activity like blocking of HIV and other sexually
transmitted diseases (Carraguard (vaginal microbicide)) [10]. Biomedical and biological
applications of seaweed polysaccharides, i.e., alginate, carrageenan, fucoidan, and ulvan
displays in drug delivery, tissue engineering, biosensor, and wound healing because of their
gel forming properties and capacity of inducing important differentiation in stem cells [11].
Alginate is used for both immediate (for rapid absorption) and sustained (for reproducible
and kinetically predictable) release of drug. Alginic acid and sodium salt of alginic acid
are used as tablet disintegrant and tablet binding agent respectively for immediate drug
release. The chitosan-alginate composite and calcium salt of alginic acid were used in
wound healing and tolerance for diabetic foot lesion. In such applications, calcium from
the alginate salt and sodium of the wound’s exudates goes through ion exchange and form
sodium alginate soluble gel, while free calcium ions help in clotting and endowing the
dressing [12]. Alginate and alginate beads were used in various treatments like in diabetes
treatment by the transplantation of chondrocytes, hepatocytes, and islets of langerhans,
treatment of gastroesophageal reflux disease and heartburn [13–17]. Combination of al-
ginate, chitin/chitosan, and fucoidan gave a hydrogel sheet having favorable properties
for wound healing in rats [18]. Similar to alginates, carrageenan is also used in drug
delivery applications in various forms such as beads, gelling agent, nanoparticles, nano
stabilizer, micro stabilizer, microspheres, and in microcapsules [19,20]. In the treatment of
hypercholesterolemia, carrageenan can be used for sustained fluvastatin drug release and
formulation [21]. The sustained release of ovalbumin macromolecule by the nanoparticles
of chitosan-carrageenan is also reported [22].

As evident from the above studies, seaweed polysaccharides are explored for their
potential application as pharmaceutical drugs to treat number of ailments and hence it
becomes very important to study their pharmacokinetics. This focuses study on the drug
behavior after its administration in the body systems that include absorption, distribution,
metabolism, and excretion (ADME). This helps to understand pharmacological activity
at the molecular level to determine correct doses, treatment methods, and specific drug
applications [23]. The parameters, which are important to gain knowledge on changes
in drug concentrations with ADME, are apparent half-life of elimination (T1/2), the area
under the curve (AUC), clearance (Cl), maximum concentration (Cmax) and time at which
Cmax is observed (Tmax), median residual time (MRT), the high volume of distribution in
the blood (Vss), and bioavailability (F) [24]. Several analytical methods like biomarker assay,
anti-Xa activity, gas chromatography, ELISA, HPLC, etc., are used for the pharmacokinetic
study of fucoidan. Furthermore, the pharmacokinetics of alginates and fucoidan seaweed
polysaccharides are explored so far [23]. Despite the extensive exploitation of seaweed
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polysaccharides for their pharmaceutical applications, the pharmacokinetics of the same
has not been explored much. Thus, an increase in this field of research is expected in the
near future.

Considering the potential of the large scale application of seaweed polysaccharides in
various fields, it is important to understand the market positioning of the products from
sustainable exploitation point of view. Kappaphycus alvarezii and Eucheuma denticulatum are
the two seaweed species that contribute to 88% of raw material for carrageenan production.
Malaysia, Indonesia, and Philippines produce around 1,20,000 tons of the polysaccharide
per year [25]. The global carrageenan market was estimated to be around 931.6 million
USD in 2020 and its valuation is expected to reach 1.2 billion USD at a CAGR (compound
annual growth rate) of 5.6% by 2025 [26]. China is the world leader in agar agar production
with a harvest of 2.7 million tonnes of farmed Gracilaria seaweed (main source of agar) in
2015 [27]. In 2015, the global agar market was estimated to be USD 214.98 millions, which is
further anticipated to grow at 4.9% CAGR from 2016 to 2025 [28]. The alginate production
is estimated to be around 30,000 metric tonnes annually, which comes from farmed brown
seaweed of the genera Laminaria and Macrocystis [29]. The global alginate market size was
valued at USD 728.4 million in 2020 and is expected to grow at a compound annual growth
rate (CAGR) of 5.0% from 2021 to 2028 [30]. The source of certain seaweed polysaccharides
and their chemical structure is depicted in Table 1 and Figure 1 respectively.

Table 1. Origin of commercially important seaweed polysaccharides.

Name Origin Main Sugar
Moieties Seaweeds Ref.

Alginate

Cell wall of
brown seaweeds
and exopolysac-
charides of Azoto
bacter vinelandii

(1,4)-linked
β-D-mannuronic

acid and (1,4)-linked
α-L-glucuronic acid

Ascophyllum
nodosum, Laminaria

hyperborea,
Macrocystis
pyrifera, and
Sargassum

[31]

Agar Cell wall of
red seaweeds

(1,3) linked β-D-
galactopyranose and

(1,4) linked
α-3,6-anhydro-L-
galactopyranose

Acanthopeltis spp.,
Campylaephora
spp., Ceramium
spp., Gelidium
spp., Gracilaria
spp., Pterocladia

[32]

Carrageenan Cell wall of
red seaweeds

(1,3) linked α-D-
galactopyranose and

(1,4) linked
β-(3,6-anhydro)-D-

galactopyranose

Sarcothalia crispate,
Gigartina

skottsbergii,
Eucheuma

denticulatum,
Kappaphycus
alvarezii and

Chondrus crispus

[33]

Ulvan

Sulphated
polysaccharides
obtained from

Ulva and
Enteromorpha

(1,4)-, (1,3)-,
(1,3,4)-linked

rhamnose and (1,4)-,
(1,2,4)-linked xylose

Ulva lactuca, Ulva
faciata, Ulva

reticulata
[34]

Fucoidan

Sulphated
polysaccharide
obtained from

brown seaweeds

(1,3)-linked
α-L-fucopyranosyl

residue

Ascophyllum
nodosum, Laminaria

hyperborea,
Macrocystis pyrifera

[35]
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Figure 1. Repeating units of few commercially important seaweed polysaccharides [36–38].

1.1. Agar and Agarose

Red seaweeds (Rhodophycea) such as Acanthopeltis spp., Campylaephora spp., Ceramium
spp., Gelidium spp., Gracilaria spp., Pterocladia spp., etc., are the major source of agar or
agarose. Apart from the use of agar in the food and beverage industries, this phycocolloid
is also used for bioengineering and biomedical applications as a gelling agent. Chemically
1,3-β-D-galactose and 1,4-α-L-3,6-anhydrogalactose are the basic repeating unit of agar or
agarose [39] (Figure 1).

Agar is isolated from red seaweed (agarophytes) employing various methods such as
freezing–thawing, extrusion using a hydraulic press, and solvent precipitation as depicted
in Scheme 1. Due to the biocompatible and non-toxic properties, it is widely used as a
thickener, stabilizer, and emulsifier in the food and beverage industries. Agar based films
with enhanced shelf-life are explored for their suitability to replace plastic based packaging
materials [40]. It is essential to understand the enzymatic mechanisms and agar biosyn-
thesis to help in selecting seaweed materials with extended gelling properties utilizing
molecular markers [41]. The rheological and thermal properties of agar change upon alkali
treatment and agaropectin enhances the gelling ability of agar [42]. Agar hydrogels were
formed by mixing of agar-agar with different compounds such as glycerin, sorbitol, sodium
citrate, and sodium chloride with varying concentrations and their rheological behavior
was studied. Such studies are important to design hydrogels with required characteristics
for specific applications [43]. Agar hydrocolloid is used as thickening and gelling agents for
food applications and soft capsule preparation methods are also developed using agar as
its base [44,45]. Agarose microparticles are explored to develop textural functionalities in
beverages from liquid to fluid gels [46]. Agarose is used in the form of gel-based separation
phase for microextraction due to easy fabrication, high inertness, and biodegradability [47].

Furthermore, derivatives of agar are used in various applications such as sweetening
agent, in bacterial culture, pH-responsive/stability materials, fluorogenic material and
for controlled release applications, and in the preparation of self-assembled nanomateri-
als [48–57].

Agarose is purified agar that is commonly used in the gel electrophoresis process for
the separation and purification of nucleic acid and proteins. To prepare it, agar needs multi
step further purification to remove the charges to make agarose neutral. Considering the
high cost involved in making agarose from agar, a cost-effective extraction method using
surfactant was developed [58]. In this method, molecular biology grade agarose can be
selectively isolated from the agarophyte extract as shown in Scheme 1.
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Scheme 1. Flow chart for the isolation of agar and agarose.

1.2. Alginic Acid

Alginic acid or alginates are commercially important polysaccharides having several
applications in the food, beverage, and pharmaceutical industries. Alginic acid in the
form of sodium, ammonium, and polypropylene glycol alginate (PGA) is used in various
applications. Alginates are the major structural components (ca. 40% of total dry mass) of
the cell walls of brown seaweed (Phaeophyceae) and they play a crucial role in maintaining
the structure of the algal tissue. α-L-Glucopyranosyl and β-D-mannopyranosyl are the two
monomeric units that are arranged in three distinct patterns to form the backbone of linear
block copolymer alginic acid by guluronic acid (G), mannuronic acid (M), and intermediate
composition (MG) as shown in Figure 1 [59].

The brown seaweeds are one of the most abundant seaweeds found in many parts of
the world. The giant kelp Macrocystis pyrifera is harvested mechanically using special ships
on the west coast of North America. These seaweeds have very high growth rate and hence
they can be harvested several times a year. Other species of the brown seaweeds, which are
relatively smaller in size in comparison to Macrocystis spp., are harvested semi-mechanically
using fishing boats or manually. Several brown seaweeds such as Ascophyllum, Laminaria,
Macrocystis, and Sargassum species are used for the extraction of sodium alginate employing
calcium alginate and/or alginic acid processes as shown in Scheme 2.

The key properties of alginates that make them useful are their ability to increase the
viscosity of fluids and the ability to form gels and films. They exhibit excellent properties
such as water solubility, biodegradability, film forming ability, and biocompatibility. These
unique properties of the natural polysaccharide make it useful in fields of healthcare food
industry, catalysis, for water treatment, packaging, and immobilization of cells [60,61]. This
biodegradable polymer has also found its application in tissue engineering and preparation
of biomaterial scaffolds that are very important for rendering medical needs [62]. Recently,
alginic acid has been studied for its structural, molecular, and functional abilities such as
tablet ability, elasticity, deformation ability, disintegration ability, and compressibility [63].

Additionally, alginates are used in textile printing, as release agents for paper, welding
rods, binders for fish feed, etc., and in medical and pharmaceutical applications [64].
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Scheme 2. Flow chart for the isolation of alginic acid and sodium alginate.

1.3. Carrageenan

Carrageenans are another class of seaweed-based polysaccharides that have several
applications in various industries. There are several types of carrageenans available with
different chemical structures and properties. The primary source of carrageenan is red sea-
weeds such as Sarcothalia crispate, Gigartina skottsbergii, Eucheuma denticulatum, Kappaphycus
alvarezii, and Chondrus crispus. The carrageenan composition differs in different species of
red seaweeds (carrageenophytes). ι-Carrageenans,κ-carrageenans and λ-carrageenans are
the major forms of carrageenans. D-Galactose-4-sulphate and 3,6-anhydro-D-galactose-2-
sulphate, D-galactose-4-sulphate and 3,6-anhydro-D-galactose, and D-galactose-2-sulphate
and D-galactose-2,6-disulphate (Figure 1) are the basic disaccharide repeating units of
ι-carrageenans, κ-carrageenans, and λ-carrageenans respectively. In the presence of metal
ion, ι-carrageenans and κ-carrageenans give the formation of a gel but λ-carrageenan
does not form a gel [39]. Carrageenan is isolated from carrageenophytes following dif-
ferent methods such as the freeze–thawing method, KCl precipitation method, solvent
precipitation method, etc. (Scheme 3).

Scheme 3. Flow chart for the isolation of κ-carrageenan.

Carrageenans are used to impart thickening, stabilizing, and gelling properties in
various food and beverage formulations. These phycocolloids also find application for
immobilization of biocatalysts, in toothpaste as a stabilizer, in air freshener gels, pet food,
and meat products [64].
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In recent times, carrageenan-based biomaterials are gaining attention due to their
multifunctional properties such as biodegradability, biocompatibility, non-toxicity, antivi-
ral, antibacterial, anticoagulant, antioxidant, antitumor, and immunomodulating prop-
erties [65,66]. Carrageenan has been widely exploited as food additives and several car-
rageenan based biomaterials for drug delivery applications have also been developed.
These materials are also studied for their adverse effect on biological systems. The pH
sensitivity and adhesive properties play an important role in preparation of such biomate-
rials [67–69]. These polysaccharides are a source of sustainable and renewable polymers
that can be employed for film formation and as coating materials. Blending these with
other materials to form composites enhance their film properties for potential applications.
Such composites exhibit enhanced tensile strength and reduced hydrophilicity [70]. These
sulphated polysaccharides have been exploited for their use in the preparation of oral
release tablets as a novel extrusion aid for the production of pellets and as a carrier sta-
bilizer in micro/nanoparticles system. Due to its therapeutic properties, it is also used
in tissue regeneration and cell delivery [71]. They are used as control release vehicles,
gelling agents, encapsulating agents, beads, films, and can efficiently encapsulate flavors,
fragrances, enzymes, and probiotics [72]. A recent study shows that these polysaccha-
rides have anti-cancer activity thereby improving immunity and exhibit chemotherapeutic
effects [73].

2. Chemical and Physical Modification of Seaweed Polysaccharides

Over the past several decades, biopolymers have received special attention for their
application in the medical, biomedical, and chemical industries. Among the natural poly-
mers, chitin structures are popularly used in medical applications due to their absorbable
nature by human tissues. Due to the biocompatible nature and compatibility among natural
polymers, chitosan-collagen composite films were prepared for use as an artificial replace-
ment of human skin. The biodegradability and edibility of such polymers make them more
useful in such applications [39,74]. However due to the increasing scarcity of bioresources
for material generation for the future, seaweeds are being given special attention to use
them as suitable biomass resources for various products and materials. The seaweeds
are associated with several advantages such as excellent growth rate, cultivable, no need
for land and fertilizers for cultivation, etc. Among the seaweed-based polysaccharides
agar/agarose, carrageenan, fucoidan, ascopllyan, prophyran, and alginates are the most
exploited biopolymers for products and materials. The polysaccharides are chemically
and physically modified to generate new functional derivatives to make them suitable
for targeted applications. Different functional groups (e.g., amine, carboxylic acid, amide,
thiol, etc.) were used to modify polysaccharides for various new applications.

Agarose was modified by substituting a new functional group in the primary alco-
hol group at their C-6 carbon of (1,3) linked β-D-galactose moiety. The derivatives thus
obtained were characterized thoroughly using competent analytical tools. Usually, organic
and aqueous solvents were used for the modification. In organic solvents, DMF and DMSO
were used for the reactions. Most of the reactions were done under microwave irradia-
tion for improved yield and to shorten the time durations. The modification reactions
involved esterification [49,52], amination [56], amidation reactions [56], -C-N- bond forma-
tion [53–55,57], etc. (Figure 2). These modified agarose derivatives have new functional
properties such as enhanced fluorescence emission, sweetness properties, cationic proper-
ties for gene/drug delivery, ability to form fluorescence hydrogel, highly stable hydrogel
formation, stable in different pH solution, self-assembled nanoparticles, etc.
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Figure 2. Derivatization of agarose via esterification, amination, amidation, and C-N bond formation
reactions.

Apart from the methods mentioned above for functionalization, grafting, and crosslink-
ing can be used to chemically modify polymers. Grafting a polymerizable synthetic moiety
on a natural polysaccharide followed by polymerization is a way of creating large molecules,
which have some of the properties of each of the polymers. The primary focus of carrying
out these types of grafting reactions is to obtain products having good water absorption
properties, new polymers that can form sheets [75]. Due to the bulky industrial applica-
tion of starch and cellulose in textile, paper, and food industry, they are being grafted or
crosslinked to produce derivatives having different functional properties [76].There are
several reports of chemical modification of agar and agarose by inducing hydrophobic
groups such as alkyl, acetyl, and hydroxy alkyl groups to decrease gelling and melting tem-
perature, which is very crucial for bacteriological applications of the polysaccharide [77].
Low gel strength agar gel is prepared by reacting high gel strength agar with salts of weak
acids viz., citric and ascorbic acids. Such soft gels are mainly used as massage gels, skin
moisturizers, or as an active carrier for pharmaceuticals, which have to be applied through
skins [78]. κ-Carrageenan based super absorbent hydrogel was synthesized through graft
polymerization of acrylic acid on the biopolymer back bone in presence of crosslinking
agent (N, N’-methylene bis acrylamide) and an initiator (ammonium persulphate) [79].
Due to the compatibility of carrageenan with inorganic materials, sol–gel biomaterial based
on the polysaccharide and silica was prepared [80]. Physical modification of agar gels by
interacting agar with ionic and nonionic surfactants to study the gel inhibition effect is
studied [81].

Numerous chemical modifications have been proposed to modify the physicochemical
properties of carrageenan. Most of the modifications aim to induce new properties by
substituting the primary alcohol group present in the D-galactose-4-sulphate moiety of the
biopolymer with a new functional group. The modification reactions involve free radical
graft-copolymerization, sulphation, acetylation, and phosphorylation [82–84] (Figure 3).
All of the carrageenan derivatives have new functional properties such as improved ab-
sorptivity, gel strength, mechanical, magnetic, rheological, water-holding capacity, swelling
properties, antioxidant activity, biodegradability, stability in different pH region, storage,
thermal stability of the enzymes upon encapsulation, etc., which broaden the application
area of the polysaccharides [85].
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Figure 3. Derivatization of carrageenan via free radical graft-copolymerization, sulphation, acetyla-
tion, and phosphorylation.

Alginates are important polysaccharides that form hydrogels at mild temperature and
pH making them valuable industrial pharmaceutical excipient [86–88]. Biomaterials like
nanospheres are prepared using alginates that exhibit drug delivery capacity and facilitate
cell imaging. Alginate derivatives are also used for preparation of plastic materials with
tunable organosolubility and thermal properties [89–91]. Catalytic hydrogenation of the
polysaccharide leads to sugar alcohols that may provide opportunities to diversify biomass
resources [92]. Alginic acid can be chemically modified by attaching various moieties at
the end of the carboxylic acid group of guluronic acid (G) or mannuronic acid (M). The
obtained derivatives were characterized thoroughly using various analytical tools. Usually,
the sodium salt of alginic acid was used for the modification because of the good solubility
of sodium alginate in water. Most of the reactions were done under microwave irradiation
for improved yield and to shorten the time duration. The modification reactions involved
esterification and amidation (Figure 4). These modified alginic acids have new properties
and has the potential to be used in fluorogenic metal scavenging [93,94], thixotropic
material [95,96], efficient photosensitizing material [97], etc.

Figure 4. Derivatization of alginic acid via esterification and reactions.

In another attempt, chemical reaction of sodium alginate with o-aminobenzoic acid
and m-aminobenzoic acid in the presence of 1-ethyl-3-[3-(dimethylamino) propyl]-carbodiimide
hydrochloride (EDC) gave formation of amide derivatives of the biopolymer that could
form viscous hydrogel systems with thixotropic behavior [96]. The soft gel thus formed
turned into a flowing liquid on gentle stirring making it suitable for possible application as
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a delivery system or sprayable gel material for transporting small active molecules to the
targeted locations in health and personal care formulations (Figure 5).

Figure 5. Chemical modification of sodium alginate for the formation of a thixotropic hydrogel.

Considering the suitability of grafting copolymerization reactions for the preparation
of new derivatives of seaweed polysaccharides, alginates were also grafted with suitable
polymerizable monomers such as acrylonitrile, methacrylate, acrylamide, etc., to prepare
new materials or products of the polysaccharide. In one of the endeavors, polyacrylonitrile
grafted agar/sodium alginate (Agar/Na-Alg-graft-PAN) was synthesized in an aqueous
medium under reflux conditions in the presence of potassium persulphate as a free radical
initiator [98]. The resulting polymer was found to have improved swelling properties in
water and stability in acidic pH (Figure 6).

Figure 6. Grafting copolymerization reaction of sodium alginate with acrylonitrile.

3. Ionic Solvents
3.1. Ionic Liquids and Deep Eutectic Solvents

Ionic liquids (ILs) are molten salts consisting of ions with a melting point lower than
room temperature or below the boiling point. ILs have properties such as non-flammability,
low vapor pressure, low melting point, excellent thermal and electrochemical stability,
high conductivity, high stabilization of specific solutes and the ability to recycle [99]. By
using various combinations of cations and anions, ILs have a wide range of applications
in the fields of lubricants and additives (lubricants and fuel additive) [100,101], electro-
elastic material (artificial muscles and robotics) [102], analytics [103–105], solvents for
processing [106–114], liquid crystals (displays) [115,116], heat storage (thermal fluids) [117],
electrolytes [118–120], and separation (gas separations, extractive distillation, extraction,
and membranes) [121–123].

Deep eutectic solvents (DESs) are formed from hydrogen bond acceptor (HBA) and
hydrogen bond donor (HBD) by simply mixing them followed by heating [124]. DESs can
be used as an alternative of ILs because DESs have similar physicochemical properties as
ILs (low vapor pressure and melting point, non-flammability, high thermal and chemical
stability, high dissolution ability, and the ability to recycle) [125,126]. However, DESs are a
bit different from ILs because DESs are not completely composed of ionic species and it
can also be produced from non-ionic components [127]. The melting point of an individual
hydrogen bond donor and hydrogen bond acceptor of deep eutectic solvent is considerably
higher because of the charge delocalization due to hydrogen bond between HBA and HBD.
The dissolution of biopolymers such as DNA also follow a different mechanism in both the
solvent systems (ILs and DESs) [128].
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3.2. Sustainable Extraction of Seaweed Polysaccharides Using Ionic Solvents

Although polysaccharides are present in plants or seaweeds in reasonably in good
proportions (15–60% w/w) but their extraction from the bio resources is very crucial and
deciding factor for the commercial viability for the polysaccharide-based industries. As
described above, the extraction of polysaccharides from seaweed by conventional extrac-
tion process involve number of steps also produce effluents. Excessive amounts of alkali
and acids are commonly used to break the cell walls of the seaweeds and the unutilized
chemicals remained as effluent at the end of the process. Moreover, conventionally one of
the commercially most important seaweed polysaccharide known as agar is extracted from
agarophytes employing alkaline pretreatment of the seaweed followed by autoclaving
and subjecting the aqueous extract to several cycles of freeze–thaw to isolate the product
followed by purifying the product further through solvent/chemical treatment and/or
chromatography to eliminate residual impurities (Scheme 1) [129]. The agar thus obtained
is further purified employing chromatographic techniques to obtain agarose. Considering
the lengthy purification and expensive isolation processes and requirement of expensive
infrastructure, the process for the isolation of agar and preparation of agarose is not at-
tractive for small-scale industries. Hence, reduction of operational steps and lower usage
of chemicals or use of recyclable processing solvents may a sustainable approach for the
isolation of seaweed polysaccharides. Due to the very good dissolution, extraction, and
reuse efficiency of ionic liquids (ILs), few of the imidazolium and ammonium based ILs
were found to be suitable for the extraction of agar from Gracilaria dura, a red seaweed [130].
More specifically the agarophyte was treated with 1-ethyl-3-methylimidazolium acetate un-
der microwave conditions and agarose was isolated by precipitation in methanol. However,
in order to make a process more sustainable the use of chemicals in the process and num-
ber of operational steps must be reduced. Selective coagulation of the targeted molecule
using a single step treatment is always a better way to isolate products from the complex
natural matrices. In one of the attempts, a biobased ionic liquid namely choline laurate
was found to have a selective affinity towards agarose present in the hot seaweed extracts
resulting in eventual selective precipitation of the biopolymer as depicted photographically
in Figure 7 [131]. This method may be considered as sustainable since agarose was directly
obtained from the seaweed extract without involving any purification stage of agar and
freezing–thawing step that are energy intensive (Scheme 1). The ionic liquid was recyclable
and reusable for subsequent batches of experiments. Isopropyl alcohol (IPA) used to wash
the final product was also recovered by distillation and reused in the process. The process
ensures lower energy inputs in the form of presence of lesser number of operations result-
ing lesser duration of the process. Further, recyclability and reusability of solvents ensures
use of lesser amounts of chemicals and this make the process sustainable.

Figure 7. Selective precipitation of agarose using ionic liquids.
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Similar concept of preferential coagulation of κ-carrageenan from the water extract
of Kappaphycus alvarezii was demonstrated as shown in Figure 8 [132]. Herein, unlike the
conventional process of extraction (Scheme 2), no alkali treatment of the seaweed was
done and no acids were used during extraction. The polysaccharide was preferentially
coagulated using biobased ILs such as choline capriate and choline laurate. IPA used to
wash the product was also half to the amount used conventionally in such isolations. Due
to the bio origin it is much safer to dispose the ionic liquid wastes produced in the process.
These merits make the process sustainable.

Figure 8. Extraction of carrageenan from Kappaphycus alvarezii using ionic liquids (permission
from Publisher).

Furthermore, in order to replace energy intensive autoclaving of seaweeds to facilitate
extraction under pressure and considering several advantages associated with deep eutectic
solvents (DESs), few hydrated DESs were used to extract κ-carrageenan from Kappaphycus
alvarezii [133]. As shown in Figure 9, Kappaphycus alvarezii powder was soaked in several
hydrated DESs followed by 1 h extraction at elevated temperature (85 ◦C) followed by
centrifugation and washing with IPA resulting isolation of κ-carrageenan more efficiently in
comparison to the conventional extraction methods [133]. The yield of the polysaccharide
was about 60% in comparison to about 36% by conventional process. Unlike conventional
process of isolation of carrageenan, herein no alkaline treatment or autoclaving was done
and use of hydrated DESs ensure the usage of lower amount of chemicals in the process.
The effective DESs used are of bio-origin and hence the disposal is not going to create any
environmental issues. These merits make the process sustainable in nature.

Figure 9. Extraction of carrageenan from Kappaphycus alvarezii using ionic liquids (permission
from Publisher).

3.3. Modification of Seaweed Polysaccharides in Ionic Solvent

Ionic liquids are considered as a good choice for chemical transformations. ILs have a
good ability to solubilize polysaccharides such cellulose, starch, and many more resulting
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formation of homogeneous conditions suitable for chemical derivatizations [134]. In a
large variety of polysaccharide modification reactions, imidazolium-based ionic liquids
are very much appropriate because they are chemically inert for a number of organic
reactions [135]. In homogeneous reaction conditions of polysaccharides such as acetyla-
tion, carboxymethylation, esterification, etherification, regioselective enzymatic acylation,
tosylation, etc., ionic liquids are emerging as ideal solvent systems. Further, the charac-
teristics of the solvent such as low vapor pressure, recyclability, high boiling point, etc.,
are added advantages for carrying out such modifications. Acetylation and tosylation of
cellulose in 1-allyl-3-methylimidazolium chloride indicate suitability of the ILs for chemical
modification of natural polymers [136,137]. The carboxymethylation and esterification of
cellulose were also positively accomplished in 1-N-butyl-3-methylimidazolium chloride
([C4mim]+Cl-) [138]. Enzymatic regioselective acylation of unprotected monosaccharides
in ionic liquids is also reported [139].

4. Functionalization of Seaweed Polysaccharides by Interaction with Other
Bio Macromolecules

Numerous research have studied the interaction of biopolymers for at least 50 years.
The predominant interactions studied are protein–protein interaction, protein–polysaccharide
interaction, DNA–protein interaction, DNA–polysaccharide interaction, DNA–DNA in-
teraction, DNA–carbohydrate interaction, etc. [140]. Intermolecular interactions between
biopolymers produce enhanced functional properties in comparison to the individual
biopolymers. These interactions depend on the different intermolecular forces like covalent
interactions, Van der Waals interactions, hydrogen bonding, ion-bridging, electrostatic
forces, and hydrophobic interactions between two biopolymers [141], and some other
factors like mixing ratio, molecular concentration, pH, ionic strength, charge density, molec-
ular conformation, charge distribution, molecular weight, shear, pressure, temperature,
and acidification [142]. These complexes, obtained from the interaction of biopolymers are
used in dairy products, to control the shelf-life, texture, and structure of semisolid foods
through their gelling/thickening behavior and surface properties, separations, drug carrier,
chiral sensing applications, etc. [143–145].

Considering the application of seaweed polysaccharides in food and beverage indus-
tries, the interaction of agarose derivatives (6-aminoagarose succinate half-ester derivative)
with protein and DNA in various pH regimes was studied. Modified agarose showed differ-
ent complexation and decomplexation with bovine serum albumin (BSA) protein and DNA
in pH 5.2, pH 6.8, and pH 10.0 [146]. Further modification of the agarose derivative with
PEG resulted in formation of PEGylated amphoteric agarose, which showed interactions
with BSA [147]. Furthermore, agarose was derivatized to generate two fluorescent aromatic
agarose amino acid nanoconjugates, which also showed interactions with BSA [148].

5. Future Prospect

As discussed above due to several problems associated with the conventional process
of extraction of seaweed polysaccharides it is a pressing need to develop a sustainable
process for the extraction of the polysaccharides with the involvement of lesser energy
inputs in the form of lesser number of steps and lower time durations. The processes also
must have usage of a lower amount of chemicals and must produce a lower amount of
effluents to meet sustainability. As discussed in this article the ionic liquids and deep eutec-
tic solvents may be considered as sustainable solvent systems for the extraction of seaweed
polysaccharides. It is demonstrated that few of the polysaccharides can be extracted with
higher yield, lower effluent production using ILs and DESs without using acids and alkali.
The high boiling point and recyclability of the solvents also ensure lower usage of chemicals
and lower production of volatile organic compounds (VOCs), which make the processes
more sustainable. However, such work needs to be scaled up and techno-commercial
feasibility of the processes should be evaluated for commercial exploitation in a sustainable
manner. Other commercially important seaweeds such as ulvans and fucoidans are not be-
ing extracted using any ionic liquids or deep eutectic solvents. Considering the tremendous
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dissolution ability of the ILs/DESs, they should be used for the extraction of these polysac-
charides as well. There is a need for the development of commercially viable extraction
processes based on ionic liquids and deep eutectic solvents for the commercially important
seaweed polysaccharides. Furthermore, as discussed above, seaweed polysaccharides and
their derivatives have a very large range of applications. To target new applications or
to improve the functionalities in existing applications, it is important to synthesize new
derivatives of the polysaccharides. There are many polysaccharide derivatives still left to
be synthesized and such derivatizations should be attempted to further add value to the
seaweed derived products and target application in the industries. Moreover, there is a
need for the development of commercially viable synthesis processes and the use of recy-
clable solvents like green neoteric solvents may be encouraged in industrial applications for
such syntheses. The interaction of polysaccharides with other protein and DNA may led to
the formation of new derivatives having improved pH-responsive cationic/anionic drug
capturing and releasing properties, protein binding, chiral sensing, and separations and
hence derivatization of polysaccharides by interaction with other macromolecules may be
targeted in order to develop cost effective sustainable derivatization methods and products.
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