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Abstract: The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention,
affecting millions, disrupting economies and healthcare modalities. With its high infection rate,
COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive
nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have
been successful in identifying its genomic sequence and the presenting antigen. These may serve as
promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to
establish herd immunity, massive efforts have been directed and driven toward developing vaccines
against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current
scenario and future perspectives in the development of vaccines against SARS-CoV-2.
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1. Introduction

The current pandemic, coronavirus disease 2019 (COVID-19), has officially been
confirmed in more than 187 million individuals and caused in excess of four million
deaths globally (as of 12 July 2021) [1,2]. The causative pathogen, severe acute respiratory
syndrome (SARS)-coronavirus 2 (SARS-CoV2) belongs to the coronavirus family, which
is a large family of enveloped viruses that contain a positive sense, single-stranded RNA
genome [3]. In the recent past, several members of the coronavirus family have been
involved in significant disease outbreaks globally. The major diseases in this category
include SARS and Middle East respiratory syndrome (MERS). In late 2019, SARS-CoV-2
was first detected in people who had visited the wet markets in the city of Wuhan, China.
The viral particles soon engulfed major parts of the globe in a chaotic manner, resulting in
an uncontrollable pandemic outbreak. A number of studies have reported that SARS-CoV-2
attacks the host’s respiratory system and thereby induces pneumonia-like syndrome, which
may even lead to death in severe conditions [4]. To date, there are no effective and proven
medications available to treat the disease in a synchronized manner, although a number of
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drugs and antiviral agents are being administered in an effort to contain the viral spread
and alleviate the inflammatory response in patients presenting with severe complications.

Simultaneous efforts, to considerable success, are being made to anticipate the sever-
ity and transmission potential of SARS-CoV-2 and to develop efficacious prophylactic
approaches, including public health messaging/advisories (lockdowns/hygiene/social
distancing) and, more importantly, the development of vaccines. To date, a number of
candidate vaccines are under various stages of development. A total of 8 of them have
been approved for use, 121 are in clinical development, and 184 are in the preclinical de-
velopment phase [5]. In this rapid review, we summarize the utility of vaccines to contain
COVID-19 in the longer term and elaborate on major vaccine candidates currently in use in
various countries.

2. Vaccination as a Promising Strategy Against COVID-19

Vaccination is a type of immunotherapy that introduces an immunogenic material
to artificially stimulate the adaptive immune response of the body. Its applications and
efficacy in combating and eradicating deadly infectious diseases such as smallpox, po-
liomyelitis, human papillomavirus, and several other infectious diseases have been well-
documented [6–9]. Hence, it is by far the primary strategy in contesting the COVID-19
pandemic [10]. Findings from the recent next-generation sequencing studies have revealed
approximately 5500 full-length genomes of SARS-CoV-2 that were isolated from various
countries. These findings facilitate delineating the polymorphisms in the S protein and
other important proteins of the virus that may serve as potential targets in the development
of vaccines [11–14]. Interestingly, there is little to no cross-neutralization between the SARS-
CoV and SARS-CoV-2, proposing that recovery from one infection may not necessarily
provide any immune protection against the other [15]. Hence, there is a compelling need for
a new vaccine agent that could exclusively target the SARS-CoV-2 pathogen. Notably, the
development is highly possible with the reference and aid of the available next-generation
sequencing database.

Besides the vaccine target, the production platform also plays an important role in
determining the efficacy of the product in question. There are multiple distinct vaccine
platforms that are currently available. These may include live-attenuated virus vaccine,
inactivated virus vaccine, protein subunit vaccine, viral vector transduction-based vaccine,
and nucleic acid-based vaccine, to name a few. Each platform has its own distinct advan-
tages and disadvantages [16]. The classical vaccine platforms are the live-attenuated viral
vaccine, the inactivated virus vaccine, and the protein subunit vaccine [16]. There exist a
series of vaccines containing viral antigen, either live-attenuated virus, inactivated virus,
synthetic or recombinant antigenic protein, that serve as immunogenic antigens to trigger
a strong and long-lasting adaptive immune response. Live-attenuated vaccines typically
use a living target virus, which had been weakened and no longer possesses the ability
to infect, to stimulate the body’s immune system to elicit an adaptive immune response
against the target virus [17]. As compared to an inactive virus or protein subunit vaccine,
the live-attenuated vaccine is an exemplar vaccine model that mimics the actual infectious
process of the infectious agent without causing a pathogenic infection [17,18]. However,
the disadvantage of this vaccine platform is, it may not be suitable to the population who
have weak or compromised immune systems, including those with long-term health condi-
tions, the elderly, or who had organ transplantation performed before vaccination [19–22].
For these specific groups of the population, inactivated virus or protein subunit vaccine
may be more suitable as vaccine candidates. Inactivated virus vaccine uses dead virus
as the immunogenic antigen, whereas a protein subunit vaccine uses a fragment of the
virus protein as the antigen to trigger an immune response [18,23,24]. As for COVID-19,
the spike protein of the SARS-CoV-2 is the most suitable target, as it holds an essential
role in regulating the binding of the virus with the host cells [15,25,26]. As compared to
live-attenuated vaccines, inactivated virus and protein subunit vaccines do not essentially
contain any living virus; hence, they are considered relatively safe [18,24]. However, the
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classical vaccine platform, including both types of the above-described vaccines, possess
relatively lower immunogenicity and require additional adjuvants or boosters to enhance
their biological half-lives and potentiate elicited immune responses [17,18,23,24,27].

With the emerging challenges and increasing drawbacks associated with the cur-
rent vaccine development platforms, the global attention has now turned toward next-
generation vaccine platforms, which essentially consist of, viral vector-based and nucleic
acid-based vaccine platforms [16]. In particular, the viral vector transduction-based vac-
cine has been demonstrated to be a promising vaccine platform. Unlike the conventional
vaccine, this type of vaccine uses host cells to produce target immunogenic antigens for
adaptive immune response by viral transduction of the genetic code into host cells via
modified viral vectors [28]. Viral vector transduction-based vaccines may be further differ-
entiated into replicating or non-replicating types. A replicating vaccine may infect host cells
and transduce gene sequences for both viral vectors and the target antigen to produce more
infectious viral vectors that are able to infect more host cells; whereas a non-replicating vac-
cine only transduces gene sequences for the target antigen, hence, restrict self-replication
of the viral vector [29–31]. As there is no living infectious agent that is involved during
the vaccination process, this vaccine platform is relatively safe, and furthermore, prevents
the need of handling the infectious agent [32]. Furthermore, this vaccine platform offers a
long-term antigenic immune response against the target pathogens, as the genetic code
for the immunogenic antigen of the pathogen is constitutively expressed in host cells after
the vaccination [32]. However, the vaccine has relatively low efficiency, as the host may
react against the viral vector during the first exposure and produce an unspecific immune
response [30,31].

Meanwhile, the nucleic acid-based vaccine may be further classified as DNA or mRNA-
based vaccines [16]. A DNA-based vaccine is a type of vaccine that consists of a synthetic
DNA plasmid-construct encoding the target virus’s antigen [33]. Unlike the conventional
vaccine administration, a DNA-based vaccine requires additional electroporation after the
vaccine administration to facilitate the uptake of DNA-construct into the host cell [33].
On the other hand, mRNA-based vaccines use a similar principle, except in, they bypass
the nuclear translocation and mRNA transcription process [34,35]. As both mRNA and
DNA vaccines do not use any extracted viral material, the vaccination process is safe and
is suitable for most of the population [35–37]. As synthetic DNA is temperature stable,
it poses significant advantages from the point of view of mass production, delivery, and
storage [36]. As compared to DNA, mRNA-based vaccines are relatively unstable and are
temperature-sensitive, hence require extensive precautions in the developing and handling
process [36,37]. Nevertheless, as both vaccine platforms are relatively new, there is an
insufficient number of studies to determine their possible adverse effects on the receivers.

3. COVID-19 Vaccine Development

To further fast-track the development of counter-measures against the COVID-19
pandemic, the WHO has declared the outbreak as a Public Health Emergency of Interna-
tional Concern, as well as has initiated a Research and Development Blueprint under the
recommendation of the WHO emergency committee [38]. The blueprint aims to “accelerate
innovative research to help contain the spread of the epidemic and facilitate care for those
affected”. It further emphasizes to “support research priorities that contribute to global
research platforms in hopes of learning from the current pandemic response to better
prepare for the next unforeseen epidemic” [38]. Since then, massive research funding
and government support have been channeled toward the development of vaccines. In
accordance with the blueprint, currently, there are more than 40 vaccine candidates that are
prepared to progress until the clinical trial phase, as of 29 June 2021, as shown in Table 1.
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Table 1. Current COVID-19 vaccine candidates.

Vaccine Type Candidate
Vaccine Developers Trial Phase

Number of
Virologically

Confirmed
Symptomatic

Cases of
COVID-19

Efficacy
Compared to

Placebo for the
Prevention of
SARS-CoV-2

Efficacy of
Vaccine Against

Severe and
Non-Severe
COVID-19

Efficacy:
Seroconversion

Rates

Assess Humoral
Immunogenicity

Safety and
Immunogenicity
of a Booster Dose

Inactivated
virus CoronaVac Sinovac Research and

Development Co., Ltd 4 X X X X X X

Inactivated
virus Vero cell

Sinopharm + China
National Biotec Group Co

+ Wuhan Institute of
Biological Products

3 X X X X X

Inactivated
virus BBIBP-CorV

Sinopharm + China
National Biotec Group Co

+ Beijing Institute of
Biological Products

4 X X X X X X

Viral vector
(Non-

replicating)
AZD1222 AstraZeneca + University

of Oxford 4 X X X X X

Viral vector
(Non-

replicating)

Recombinant
novel coronavirus

vaccine
(Adenovirus type

5 vector)

CanSino Biological
Inc./Beijing Institute of

Biotechnology
4 X X X X X

Viral vector
(Non-

replicating)
Gam-COVID-Vac

Gamaleya Research
Institute; Health Ministry
of the Russian Federation

3 X X X X

Viral vector
(Non-

replicating)
Ad26.COV2.S Janssen Pharmaceutical 4 X X X X X X

Protein
subunit NVX-CoV2373 Novavax 3 X X X X X X

RNA based
vaccine mRNA-1273

Moderna + National
Institute of Allergy and

Infectious Diseases
(NIAID)

4 X X X X X X

RNA based
vaccine

BNT162b2
(Comirnaty)

Pfizer/BioNTech + Fosun
Pharma 4 X X X X X

Protein
subunit CHO Cell

Anhui Zhifei Longcom
Biopharmaceutical +

Institute of Microbiology,
Chinese Academy of

Sciences

3
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Table 1. Cont.

Vaccine Type Candidate
Vaccine Developers Trial Phase

Number of
Virologically

Confirmed
Symptomatic

Cases of
COVID-19

Efficacy
Compared to

Placebo for the
Prevention of
SARS-CoV-2

Efficacy of
Vaccine Against

Severe and
Non-Severe
COVID-19

Efficacy:
Seroconversion

Rates

Assess Humoral
Immunogenicity

Safety and
Immunogenicity
of a Booster Dose

RNA based
vaccine CVnCoV Vaccine CureVac AG 3 X X X X X X

Inactivated
virus

SARS-CoV-2
vaccine (vero cells)

Institute of Medical
Biology + Chinese

Academy of Medical
Sciences

3 X X X X X

Inactivated
virus QazCovid-in®

Research Institute for
Biological Safety Problems,

Rep of Kazakhstan
3 X X X X X

DNA based
vaccine INO-4800

Inovio Pharmaceuticals +
International Vaccine
Institute + Advaccine

(Suzhou)
Biopharmaceutical Co.,

Ltd

2/3 X X X X X X

DNA based
vaccine

AG0301-
COVID19

AnGes + Takara Bio +
Osaka University 2/3 X X X X X

DNA based
vaccine nCov vaccine Zydus Cadila 3 X X X X X

Inactivated
virus Covaxin Bharat Biotech

International Limited 3 X X X X X X

Inactivated
virus

Inactivated
SARS-CoV-2

vaccine (Vero cell)

Shenzhen Kangtai
Biological Products Co.,

Ltd.
3 X X X X X

Protein
subunit EpiVacCorona

Federal Budgetary
Research Institution State

Research Center of
Virology and

Biotechnology “Vector”

3 X X X X X X
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3.1. BNT162b2

BNT162 is a series of mRNA-based vaccine candidates developed by Pfizer and
BioNTech as a measure to contain COVID-19 spread. These vaccines are essentially lipid
nanoparticles containing mRNA that encodes the SARS-CoV2 antigens and expresses 1
of 2 antigens for the SARS-CoV-2 full-length, P2 mutant, prefusion spike glycoprotein
(P2 S) (version 9) (Genbank: MN908947); or a trimerized SARS-CoV-2 spike glycoprotein
receptor-binding domain (RBD) (version 5) [39]. Notably, vaccine candidates, BNT162b1
(variantRBP020.3; nucleoside-modified messenger RNA (modRNA) with blunted innate
immune sensor-activating capacity and augmented expression encoding the RBD) and
BNT162b2 (variant RBP020.2; nucleoside-modified messenger RNA (modRNA) as above,
but encoding P2S) have demonstrated their efficacy in vivo by “inducing protective an-
tiviral effects rhesus macaques, with concomitant high neutralizing antibody titers and
a TH1-biased cellular response in rhesus macaques and mice” [39,40]. Under a phase
3 clinical trial setting (NCT04368728) with 195 healthy adult participants, both BNT162b1
and BNT162b2 demonstrated similar immunogenicity [41]. However, the trial also dis-
covered that participants who received the BNT162b1 vaccine suffered greater adverse
effects as compared to those individuals who received the BNT162b2 variant, where the
adverse effects ranged from mild fever (38–40 ◦C) to moderate systemic effects such as
fatigue, headache, and chills. The observations and findings have led to rising concerns
on the safety and tolerability of BNT162b1 [41]. Similarly, another clinical trial study with
60 healthy adult participants found that participants who received two doses between 1
and 50 µg of BNT162b1 had robust RBD-specific antibody, T cell, and favorable cytokine
responses [42]. However, due to the relatively small population size, it is still obscure if
the adverse effects exclusively occur only in a certain population who received BNT162b1.
BNT162b2 was authorized by the Medicines and Healthcare products Regulatory Agency
(MHRA) for use in the U.K. on 2 December 2020 after a rolling review of vaccine data
submitted by Pfizer and BioNTech, despite the vaccine candidate having not completed its
planned clinical trials assessment [43]. Following the approval, the United States of Amer-
ica Food and Drug Administration (USFDA) released their independent analysis of the
clinical trial conducted on the vaccine candidate, in which they discovered the candidate
has about 95% vaccination efficacy without eliciting serious adverse events [44]. Similarly,
a recent clinical study in Israel also reported the high efficacy of BNT162b2 in protecting the
receiver against COVID-19, with a vaccine efficacy of around 90% [45]. The observations
and findings have further attracted global attention as it was one of the notable vaccine
candidates against COVID-19, leading WHO to list BNT162b2 in Emergency Use Listing
for COVID-19 [46]. So far, multiple countries have approved BNT162b2 as a COVID-19
vaccine, not limited to Argentina, Canada, Chile, Costa Rica, Ecuador, Jordan, Kuwait,
Mexico, Panama, Singapore, Bahrain, Saudi Arabia, and Switzerland [47–57]. Notably, a
recent observational study with a total number of 9876 participants who received a com-
plete dosage of BNT162b2 (4938 vaccinated, 4938 unvaccinated) demonstrated a significant
reduction in SARS-CoV-2 viral load (p < 1 × 10−17), further pointing toward the efficacy of
this vaccine against SARS-CoV-2 [58]. So far, the BNT162b2 vaccine has passed phase 1, 2,
and 3 clinical trials and currently undergoing a phase 4 clinical trial (NCT04760132) with
10,000 participants [59].

3.2. Sputnik V

Sputnik V, also known as Gam-COVID-Vac, is a non-replicating viral vector vaccine
developed by the Gameleva Research Institute in collaboration with the Russian Direct
Investment Fund and The Gamaleya National Research Center for Epidemiology and Mi-
crobiology of the Ministry of Health of the Russian Federation. It consists of a recombinant
adenovirus type 26 (rAd26) vector and a recombinant adenovirus type 5 (rAd5) vector,
in which both encoded the SARS-CoV-2’s spike glycoprotein (rAd26-S and rAd5-S). By
using a replication-competent EGFP-reporter vesicular stomatitis virus system, it consists
of recombinant DNA, rcVSV-CoV2-S, which encodes spike glycoprotein from SARS-CoV-2
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(Genbank: MN908947.3), and packed in recombinant adenovirus type 26 (rAd26) vector
and a recombinant adenovirus type 5 (rAd5) vector [60].

Unlike other vaccine candidates, the Sputnik V trial protocol has not been made
public. Moreover, there are limited preclinical and clinical trial data available with regards
to the Sputnik V vaccine. So far, there are a total of 2 phase 1/2 clinical trial studies
(NCT04436471 and NCT04437875) that were conducted with a total of 76 healthy adult
participants. The preliminary observations on the vaccine trial have been published [60].
According to both the concluded trials, participants has developed antibodies against
SARS-CoV-2 glycoprotein after being administered with the Sputnik V vaccine, without
any serious adverse events [60]. Currently, a phase 2 trial of 110 participants who are
older than 60 years (NCT04587219) and a phase 3 trial of about 40,000 participants at
multiple centers in Russia (NCT04530396) are being conducted for the Sputnik V vaccine
to further determine its safety and efficacy profile under larger population trial [61,62].
Despite having a smaller pool of tested participants and limited clinical trial data, the
Sputnik V vaccine was quickly approved and was registered on 11 August 2020 by Russian
Federation [63]. This approval has drawn strong criticisms from various quarters from
among the international scientific community for lack of data on safety and efficacy and
for not following proper clinical trial safety guidelines [64,65]. So far, the vaccine candidate
was granted approval in various countries, including Belarus, Argentina, Algeria, Bolivia,
Serbia, and Palestine [66–71].

3.3. EpiVacCorona

EpiVacCorona is a peptide vaccine developed by the Russian Federal Budgetary Re-
search Institution, the State Research Centre of Virology and Biotechnology. It consists of
3 distinct amino acids: (1) CRLFRKSNLKPFERDISTEIYQAGS, (2) CKEIDRLNEVAKNL-
NESLIDLQE, and (3) CKNLNESLIDLQELGKYEQYIK, which are artificially synthesized
small fragment-peptide antigens of SARS-CoV-2 protein, conjugated to a carrier protein
and adsorbed on an aluminum-containing adjuvant (aluminum hydroxide) [72]. Its phase
1/2 clinical trial (NCT04527575) was reported with excellent efficacy, with a 100% response
rate and seroconversion with a neutralizing antibody titer >1:20, 21 days following com-
plete vaccine administration. Moreover, all participants are reported free from any severe
local or systemic adverse events [72,73]. Currently, it is under a phase 3 clinical trial tar-
geted at 3000 participants [74]. EpiVacCorona was granted emergency approval from the
Russian government on 15 October 2020 [75,76].

3.4. CoronaVac (PiCoVacc)

CoronaVac is a formalin-inactivated, alum-adjuvanted vaccine developed by the
Sinovac Biotech Company. It is developed from purified inactivated SARS-CoV-2 virus
strain CN2, which was isolated from the bronchoalveolar lavage fluid from one of the
11 hospitalized patients infected with SARS-CoV-2 [77]. The CN2 strain is selected as it was
closely related to SARS-CoV-2 strain 2019-nCoV-BetaCoV Wuhan/WIV04/2019 (GISAID
accession ID = EPI_ISL_402124), which has been firstly reported as the main source of
the infectious agent for the coronavirus pandemic [77–79]. Under preclinical setting,
CoronaVac vaccine demonstrated distinct safety and immunogenicity profile in various
animal models, including Wistar rat and rhesus macaque monkey models, in which the
animals survived and produced a high titer of neutralizing antibodies without developing
serious adverse events [77]. Furthermore, a recent phase 1/2 clinical trial (NCT04352608)
with 743 healthy participants demonstrated similar outcomes, with positive seroconversion
in most participants (92.4% of participants after being administered with a 3 µg dose,
on a 0–14 day schedule and 97.4% after being administered with a 3 µg the same dose
on a 0–28 day schedule) [80]. Notably, another safety and tolerability trial targeting the
elderly population (aged 65–68) (NCT04383574) further showed that the participants who
received a complete dosage of CoronaVac did not show severe adverse reactions, and
about 97% of participants showed at least four-fold neutralizing antibody titer, suggestive
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of the vaccine candidate well tolerable and effective among the elderly community [81].
Due to its distinct safety and immunogenicity efficacy profile, the Government of China
has fast-tracked the production and has given emergency approval for the administration
of CoronaVac exclusively to high-risk essential populations, such as health care workers,
doctors, and nurses [82]. Currently, several international phase 3 clinical trials are in
progress for the CoronaVac in Brazil (NCT04456595), Turkey (NCT04582344), and Indonesia
(NCT04508075) [83–85].

3.5. mRNA-1273

mRNA-1273 is a vaccine candidate developed by Moderna Inc. in collaboration
with the Coalition of Epidemic Preparedness Innovations and the National Institute of
Allergy and Infectious Disease. It is a novel lipid nanoparticle-encapsulated mRNA-based
vaccine developed against SARS-CoV-2. The mechanism is based on the principle that
cells intake non-replicating mRNA, translate, and transiently express viral antigen protein
on the cell surface without entering the cellular nucleus or interacting with the genome
constitutively [86]. mRNA-1273 encodes for the full-length spike protein of SARS-CoV-2
(Genbank: MN908947.3), which gets further modified to introduce two proline residues
that stabilize the spike protein in a prefusion conformation [86]. Several studies have
shown that the spike protein regulates adherent and admission of the virus into host
cells upon infection, hence presented as a potential target for the infection [87–90]. Under
in vivo setting, the mouse models administered with the mRNA-1273 vaccine showed a
reduction in viral replication and induced a potent neutralizing antibody against SARS-
CoV-2 virus, as well as, CD8+T cell response. This mechanism has provided immune
protection against SARS-CoV-2 infection in the lungs and noses of the mice, without
evidence of immunopathology [91]. Similar events were also observed in non-human
primate models, in which those vaccinated with the mRNA-1273 triggered a robust immune
response against SARS-CoV-2 upon a challenge with the infection [92]. Meanwhile, under
a clinical setting, a phase 1 trial demonstrated the efficacy of the vaccine candidate in
upregulating SARS-CoV-2 neutralizing antibody titer in 45 healthy adult participants (aged
18–55 years old) and 40 healthy elderly (aged > 56 years old) [93,94]. In the cohort, three
participants reported severe local adverse reactions (erythema and induration), and another
three participants reported severe systemic adverse reactions (fever, fatigue, nausea, and
myalgia) [93,94]. Nonetheless, all adverse reactions resolved within 24 h, proposing that the
vaccine candidate is well tolerated by the healthy adult and elderly [38,95]. Meanwhile, in
phase 3 efficacy, safety, and immunogenicity trial (NCT04470427) with 30,420 participants
(15,210 participants each in vaccine receivers and placebo control group) demonstrated
94.1% of vaccine efficacy in preventing COVID-19 illness after receiving two complete
dosages of vaccine, without having any severe adverse side effects [96–98]. This study
supports that mRNA-1273 is safe to be used as an efficacious vaccine against COVID-19. On
30 November 2020, Moderna requested an emergency use authorization from the FDA and
additionally a conditional marketing authorization from the Europen Medicines Agency
(EMA) [99,100]. In the meantime, U.K.’s MHRA and Switzerland’s Swissmedic regulator
initiated a review on mRNA-1273, which will allow a quick approval process for the vaccine
candidate [101,102]. On 19 December 2020, FDA authorized mRNA-1273 for emergency
use in the United States of America [103]. Following that, Canada, European Union, Israel,
Switzerland, and United Kingdom approved the usage of mRNA-1273 [104–108].

3.6. AZD1222

AZD1222 (also known as Oxford-AstraZeneca vaccine, ChAdOx1 nCoV-19) is a
COVID-19 vaccine candidate developed by the Oxford University and AstraZeneca. It
is a non-replicating primate adenovirus vector containing the sequence of SARS-CoV-2
S protein (Genbank: MN908947) and tissue plasminogen activator. Its preclinical study
with mice (BALB/c and CD1) and primate (rhesus macaque) models demonstrated its
efficacy in eliciting an immune response against the SARS-CoV-2, including the inducing
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of viral-specific antibodies and the activation of T-helper 1 immune response (high level
of IFN and TNF; low level of IL-4 and IL-10) post-vaccination [109]. Moreover, under a
clinical setting, a phase 1/2 trial demonstrated the efficacy of the vaccine candidate in
inducing an immune response against SARS-CoV-2 after vaccination [110]. In addition,
all participants were found to be well tolerated to the vaccine, and no serious adverse
events were reported [110]. However, during its phase 2/3 trial, several adverse cases
were reported, such as an unexplained neurological symptom developed by one of the
participants in the United Kingdom and a volunteer who died during the trial in Brazil,
which forced the trial to be suspended for safety review [111,112]. On 23 October 2020,
FDA approved the trial to be restarted after the trial passed its safety review [113]. The
preliminary findings of the phase 2/3 trial were published, and it demonstrated 90%
vaccination efficacy in 420 healthy adult volunteers without developing any significant
adverse events [114]. However, the result raised concern as some participants involved
were administered half the actual required dosage. AstraZeneca later admitted that it
was a mistake [115]. Despite this, the vaccine candidate was granted emergency autho-
rization by MHRA, Argentina’s National Administration of Drugs, Food, and Medical
Devices (ANMT), and Mexico’s Health Regulator “Comision Federal para la Proteccion
contra Riesgos Sanitarios” (COFEPRIS) [116–118]. On 1 January 2021, India approved
the vaccine candidate, with the condition that the vaccine will be manufactured by the
Serum Institute of India and will be released as “Covishield” vaccine [119]. Recently, a
vaccine efficacy result for AZD1222 with 11,636 participants was reported with an overall
vaccine efficacy of 90.0% (67.4%–97%) for those who received two standard doses and 70.4%
for those who received one standard dose [120]. Notably, several patients were reported
with prothrombotic immune thrombocytopenia after receiving AZD1222 [121–124]. Pa-
tients involved are presented with a thrombotic disorder, including cerebral venous sinus
thrombosis, splanchnic vein thrombosis, arterial cerebral thromboembolism, or thrombotic
microangiopathy [121–124]. Furthermore, the hematologic analysis found the presence of
anti-platelet factor 4 autoantibodies in patients’ sera, which targets healthy donor platelet
in an AZD1222 dependent manner, despite no previous history of heparin-induced throm-
bocytopenia [121–124]. Importantly, such aggregation can be resolved and suppressed by
heparin [121–124]. Collectively, AZD1222 demonstrated vaccine efficacy against COVID-19,
but its application is associated with severe autoimmune prothrombotic disorders.

3.7. Covaxin (BBV152)

Covaxin (also known as BBV-152) is a COVID-19 vaccine candidate developed by the
Bharat Biotech and the Indian Council of Medical Research (ICMR) [125]. It is an inactivated
vaccine that consists of the whole-virion SARS-CoV-2 inactivated via the β-propiolactone
inactivation method [126]. Under preclinical setting, Covaxin demonstrated remarkable
immunogenicity and protective efficacy against SARS-CoV-2 in both hamster and rhesus
macaques models [126,127]. Within the hamster model, the vaccinated group developed
an immune response against the SARS-CoV-2 virus with an increased titer of neutralizing
antibodies and rapid clearance of the virus from the lower respiratory tract, reduced virus
load in the upper respiratory tract, and absence of lung pathology after vaccination [126].
Similar events also were observed in rhesus macaques models [127]. On the other hand,
under a clinical setting, a phase 1 trial with 375 healthy adult participants demonstrated
the production of increased neutralizing antibodies against the SARS-CoV-2 virus without
developing any serious adverse events [128]. The findings were further supported by
its phase 2 trial that was conducted with 380 participants, where seroconversion rates of
neutralizing antibodies reached up to 73% without causing any serious adverse events
after vaccination [129]. On 3 January 2021, the Indian government approved Covaxin
as a COVID-19 vaccine in India [130]. Such quick approval drew global criticism within
the international scientific community for lack of data on safety and efficacy and for not
following standard clinical trial safety guidelines [131–133].
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3.8. Ad26.COV2

Ad26.COV2 (also known as Janssen COVID-19 vaccine or Johnson & Johnson COVID-
19 vaccine) is a vaccine candidate developed by Janssen Pharmaceutical in collaboration
with Johnson & Johnson pharmaceutical company [134]. It is a recombinant adenovirus
serotype 26 vector encoding SARS-CoV-2 peplomers based on SARS-CoV-2 Wuhan-Hu-1
isolate strain (Genbank accession number: MN908947) [135]. Ad26.COV2 demonstrated
high efficacy under preclinical setting in multiple animal models, including Syrian hamster,
non-human primates, in which all vaccinated animals showed a rapid increase in neutral-
izing antibodies and reduction in lung viral load [136–139]. Notably, all animal models
reported the absence of any adverse side effects or signs of vaccine-related respiratory
disease, suggestive of a safe and tolerable vaccine candidate against SARS-CoV-2 [136–139].
Under clinical setting, safety and tolerability trial (NCT04436276) exhibited high safety and
efficacy profile of Ad26.COV2 in human participants, with elevated neutralizing antibody
response of 88% in the adult population (aged 18–55) and 93% in the elderly population
(aged > 65) without any significant adverse events reported [140]. On the other hand,
phase 3 trial (NCT04505722) with 43,783 (21,895 received vaccine; 21,888 received placebo)
participants revealed vaccine efficacy of approximate 66.8% [141]. Moreover, there are only
18 participants who reported pyrexia, which is resolved by using analgesics or antipyretics
7 days after vaccination [141]. Due to the excellent efficacy, FDA issued an emergency use
authorization for Ad26.COV2 for the prevention of COVID-19 on 27 February 2021 [142],
followed by the conditional marketing authorization by EMA [143] and MHRA [144].
However, increasing case reports found that some patients who received the Ad26.COV2
vaccine develop thrombotic thrombocytopenia symptoms [145–147]. In response, the man-
ufacturers acknowledge the presence of rare thrombotic thrombocytopenia among the
vaccine receiver but argue that the reporting rate is less than 1:1,000,000, and more evidence
and studies are needed to clarify such observations [146].

3.9. BBIBP-CorV

BBIBP-CorV is an inactivated viral vaccine manufactured by Sinopharm pharmaceuti-
cal company in collaboration with the Chinese Center for Disease Control and Prevention
and the Beijing Institute of Biological Products. It is an aluminum hydroxide-based ad-
juvant, β-propiolactone-inactivated vaccine according to the 19nCOV-CDC-TAN-HB02
strain (HB02 strain) [148]. Under a preclinical setting, the BBIBO-CorV vaccine was able
to induce active seroconversion, leading the host to develop a significantly high titer of
neutralizing antibodies in immune-competent mice models [149]. Similar positive effects
were also demonstrated in other non-human animal models, including rabbit, guinea
pig, rat, and rhesus macaques models [149]. Furthermore, it also demonstrated a suitable
safety profile, in which the animal models that received the vaccine did not show any sign
of ethical endpoint or ill-health after vaccination, suggestive of the safe and efficacious
vaccine candidate. On the other hand, under the clinical trial setting, its safety and tolera-
bility trial (ChiCTR2000032459) demonstrated that participants who received the vaccine
have significantly elevated neutralizing antibody titer levels in their sera; 14 days after
vaccination, with the seroconversion rates of approximately 100% [150]. Furthermore, no
patients were reported with severe adverse events within 28 days after vaccination [150].
Whereas, in immunogenicity trial (NCT04510207) with 45,000 healthy participants, the
vaccine candidate demonstrated excellent efficacy in preventing against COVID-19, with
the seroconversion of neutralizing antibody of approximate 99.5% among adult partici-
pants (aged 18–59) and 100% among elderly participants (aged > 65) [150]. In a preliminary
analysis based on the available data, BBIBP-CorV has an efficacy of 78.1% in protecting
against COVID-19 [150]. Similarly, no severe adverse events were reported in participants
who received the vaccination, suggesting that BBIBP-CorV is safe and tolerable in healthy
participants [150]. Due to its high safety and efficacy profile, WHO granted approval for it
to be used in the COVID-19 Vaccine Global Access program, and it is currently being used
by multiple nations [151,152].
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4. Efficacy of Vaccine Against Emerging SARS-CoV-2 Variant Strains

Increasing case studies have reported new variants of SARS-CoV-2 virus strains
diagnosed in people around the world. By definition, a SARS-CoV-2 variant is a mutated
strain of SARS-CoV-2, in which the mutated strain may possess different replication,
transmission, or virulence rate as compared to its parental strain [153–157]. Notably, the
mutated strain was reported with enhanced resistance or immune escape mechanisms
against current vaccine candidates; hence, the vaccine developed so far may lose partial or
complete efficacy in combating these mutated variant strains, posing an extreme challenge
in combating the COVID-19 pandemic [157–162]. The earliest variant discovered is known
as the SARS-CoV-2 Alpha variant (B.1.1.7), which was found and documented in United
Kingdom [163]. Since then, multiple variant strains, such as SARS-CoV-2 Beta variant
(B.1.351, South Africa) [164], Gamma variant (P.1, Brazil) [165], or Iota variant (B.1.526,
United States of America) [166] were reported across the countries. So far, there are at least
19 lineage variants of SARS-CoV-2 were discovered and documented, as summarized in
Figure 1 [167].
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Fortunately, some vaccine candidates were found to be efficacious against these vari-
ants. For instance, the BNT162b2 vaccine had an estimated vaccination efficacy of 75%
against the Beta variant, 88% against the Delta variant (B.1.617.2), and 93% against the
Alpha variant of SARS-CoV-2 [168,169]. BBIBP-CoV showed that patients who were diag-
nosed with variant strain GDPCC (501Y.V2) and BJ01 (D614G) produced a high titer value
of neutralizing antibody after receiving BBIBP-CoV vaccine, although the neutralization
titer is relatively lower than compared to its target strain (HB02 = 110.9 vs. BJ01 = 107.2
vs. GDPCC = 70.9), suggesting that the vaccine candidate provided certain protections
against the variant strains [170]. On the other hand, the mRNA-1273 demonstrated a
reduction in seroconversion rates and neutralizing antibody titer level against the Beta,
Gamma, and Alpha variants, concerning its effectiveness in protecting against COVID-19
variant strains [171]. Collectively, these findings highlight the limited efficacy of the current
vaccine candidates against the SARS-CoV-2 variant strains, urging for a need to develop a
better vaccine candidate with higher vaccine efficacy against these variants.
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5. Conclusions

In this review, we have appraised the current state of the COVID-19 pandemic and
the vaccines that have been approved so far in the fight against this viral disease. However,
as SARS-CoV-2 is a novel organism that was recently identified, the information regarding
this infectious agent remains obscure. Nonetheless, recent genome sequencing data may
shed more light with regards to the pathogenesis of SARS-CoV-2, which will prove useful
in the development of effective treatments against it. On the other hand, thanks to the
accelerated track in vaccine development, which has resulted in the development and
approval of several COVID-19 vaccines to date. Furthermore, due to the large number
of trials that are in progress currently, there will be more vaccines to be approved in the
near future. Notably, due to the emergence of new SARS-CoV-2 variant strains, vaccine
candidates showing effectiveness on all variants are urgently needed.

6. Opinion

The situation of the COVID-19 pandemic is constantly changing, and there are constant
updates regarding SARS-CoV-2 and its disease pathology, as well as the information
on vaccines developed against the virus. The cases of COVID-19 are constantly on the
rise in several countries, which has become unavoidable. If unchecked, the global viral
infectivity rates may prove catastrophic. This has led to the urgent need to fully vaccinate
society against the COVID-19 pathogen. Currently, the available vaccines are under slow
progression for mass immunization, as the supply has been largely limited. Therefore,
effective measures and suitable interventions are needed to further accelerate the vaccine
development to eradicate the COVID-19 infection.

7. Key Findings

• SARS-CoV-2 has been the causative viral pathogen responsible for the COVID-19 outbreak;
• Vaccination against SARS-CoV-2 has now become the main therapeutic strategy for

eradicating COVID-19 from the community;
• Numerous vaccine candidates have been introduced, of which mRNA 1273, BNT162,

AZD1222, CoronaVac, Sputnik V, EpiVaCorona, and Covaxin have been the leading
vaccine candidates against SARS-CoV-2.
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