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Abstract An assessment of several widely used exchange—
correlation potentials in computing charge-transfer integrals
is performed. In particular, we employ the recently
proposed Coulomb-attenuated model which was proven
by other authors to improve upon conventional functionals
in the case of charge-transfer excitations. For further
validation, two distinct approaches to compute the property
in question are compared for a phthalocyanine dimer.
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Introduction

The charge—transfer integral is an essential parameter in
several theoretical models describing charge carrier transport
in organic materials [1-7]. It is very often assumed that
charge carrier mobility is proportional to the square of the
charge—transfer integral (J) which describes the transport of a
charge between adjacent molecular sites. An inherent issue
of practical computations of charge—transfer integrals repre-
sents the choice of an approach to solve the Schrdodinger
equation. Currently, the DFT framework is commonly used
to model charge transport in organic materials [3, 8—14].
Certain exchange—correlation potentials are recognized to
predict accurately geometries of molecules and shapes of
molecular orbitals. However, it is well known, that wrong
asymptotic behavior of conventional functionals create a real
problem in calculations of some properties, especially for
molecular complexes [15, 16]. A recent systematic study of
Peach and co—workers may serve as an illustrative example
[17]. The authors showed that conventional exchange—
correlation functionals have difficulties with reliable descrip-
tion of excitation energies to charge—transfer states in
molecules and molecular complexes. The charge—transfer
integral (J) involves orbitals localized on the two adjacent
sites. For this reason, its evaluation might also present a
challenge for the conventional exchange—correlation poten-
tials commonly used nowadays. The primary goal of this
study is to shed some light on this issue by employing
recently proposed long-range corrected density functional
theory (hereafter denoted as LRC—DFT) to compute charge—
transfer integrals. The LRC-DFT is still being extensively
tested primarily with an eye toward electric dipole (hyper)
polarizabilities, linear and nonlinear optical spectra [17-29].
Here, we use two LRC functionals, namely LC-BLYP [30]
and CAM-B3LYP [31] together with their conventional
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counterparts. The LRC functionals employ the Ewald split of
’”I; operator which, in the case of the CAM-B3LYP
functional, takes the following form [31]:

L: 1—[a+,8~erf(yr12)]+a+[3~erf(,ur12) (1)

2 12 2

where the first and the second term on the rhs of the equation
account for the short— and the long-range interactions,
respectively, and « and (3 are constants. Here, we use the
models based on the above equation with 1=0.33 for CAM—
B3LYP and ;1=0.47 for LC-BLYP [32].

As a model system to evaluate the performance of
conventional exchange—correlation potentials in computing
charge—transfer integrals we have chosen metal—free
phthalocyanine dimer. Phthalocyanines are often considered
as conductive materials with potential applications in organic
electronics [33-36]. In crystalline phase phthalocyanine
molecules usually form regular columns and liquid crystals
composed of phthalocyanines are promising materials for
organic electronics [37]. The liquid crystals in question are
usually built from flat aromatic phthalocyanine center and
aliphatic side groups. Likewise, aromatic core of molecules
in liquid crystal state form regular columns with molecules
in stacked conformations and the fastest charge transport is
observed inside a column with much smaller probability of
charge transport between columns. The charge—transfer
integral between monomers in dimer can be used to describe
charge transport inside of column composed of phthalocyanine
molecules and as a first approximation of charge—transfer in
phthalocyanine based liquid crystals. In this work only charge—
transfer integrals between highest occupied molecular orbitals
(HOMOs) of adjacent monomers are considered. This repre-
sents the charge—transfer integral related to the transport of
positive charge carrier (hole transport).

Computational details

The initial structure of the dimer was composed of two
phthalocyanine monomers in stacked conformation with
rotation axis passing through the centers of mass of
monomers and perpendicular to the plane of monomer.
The structure of the phthalocyanine monomer was
optimized at the B3LYP/6-31G(d) level of theory and
was not reoptimized in dimer. The configurational space
was spanned by a set of three parameters, namely
intermolecular distance, twist angle around the symmetry
axis and lateral slide of one of the monomers in two
directions (see Fig. 1). What follows is a brief description
of techniques used to compute charge—transfer integrals
which are defined as:

Js,s’ = <'//s‘hKS‘l//s’>7 (2)
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Fig. 1 The schematic representation of three geometrical parameters

used to describe the structure of phthalocyanine dimer: o denotes twist
angle, R is intermolecular distance and L stands for lateral slide

4

where /hgg is the Kohn—Sham Hamiltonian, ¥s , Ws’
denote wave functions of the charge carrier localized on
the sites s and s’, respectively. In many organic systems
there is non—zero spatial overlap between orbitals of the
molecular sites. To account for this effect in calculations
of charge—transfer integrals, the effective charge—transfer
integral (J.;) may be introduced [4]:
1

Jej = Js,s’ - ESs,s’ (Es + Es’) (3)
S, denotes overlap integral of orbitals s and s'; €; and ey
stand for energies of the sites s and s’, respectively, and
hereafter will be referred to as site energies.

Equation 2 can be directly used to compute the charge—
transfer integral. In doing so, we express the Hamiltonian of
the dimer (/gs) in the basis of molecular orbitals of the
monomers [3, 38]:

hgs = SCEC™". (4)

In order to compute the charge—transfer integral one needs
to determine the eigenvalues for a dimer (E), the eigenvec-
tors in the basis of atomic orbitals (AO) for a dimer (C ),
the spatial overlap integrals in AO representation for a
dimer (Syo ) and eigenvectors for monomers in AO
representation (C,,andC),,).The eigenvector matrix for a
dimer and spatial overlap matrix was transformed from AO
representation to molecular orbital representation of mono-
mers as follows:

S = AS04", (5)

C=AC 04", (6)

where 4 denotes transformation matrix which is diagonal
block matrix with monomer eigenvector matrices
(C,pandC,,) on the diagonal and A” is transposed
transformation matrix. The off-diagonal elements of /g
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matrix in monomer orbital basis represent charge—transfer
integrals.

Another approach to compute the charge—transfer integrals,
even more frequently used than the one described above, is the
method which introduces energy splitting in dimer [39—41]. In
this approach, the eigenvalue of sth molecular orbital of the
Hamiltonian for dimer is given by:

as £ Jg

Ey = ;
L +8;

(7)

where « is the s—th site energy integral, J; and S, are the
charge—transfer and the overlap integral between orbitals
denoted by index s of two molecules forming dimer,
respectively. It is assumed that the mixing between s—th
orbital and the other molecular orbitals is not significant. The
splitting in energy of s—th molecular orbital of monomer in a
dimer can be written as:

2Js - ZSY Uy

|ES7A *ES.B‘ = ’ 1 S? (8)

In Eq. (8) E; 4 and E 5 denote eigenvalues for s—th molecular
orbital of molecules A and B, respectively. J; , &, , Sy stand
for the charge-transfer integral, site energy and overlap
integral of s—th molecular orbital of molecules A and B,
respectively. Since we consider a dimer composed of two
identical monomers, it is further assumed that o is the same
for monomers A and B. For a system composed of two
nonequivalent molecules, expressions for the eigenvalue Ej
and the charge transfer integral J; take more complicated
form [41]. Usually, it is also assumed that spatial overlap
integral is equal zero (S;=0), which is reasonable assumption
considering charge transport between two organic molecules.
In organic materials spatial overlap between orbitals of
neighboring molecules are usually <<1. Thus, Eq. (8) can be
rewritten as:

1
S Bt = ol = A2 = | ©)

In the present study we compute charge—transfer integrals
using both above described methods. Therefore, once the
splitting in energy is known, the charge-transfer integral J
can be calculated according to this relation.

Calculations were performed with the aid of several
exchange—correlation potentials using different basis
sets, including Dunning’s correlation consistent cc-
pVDZ basis set [42] as well as recently proposed
Jensen’s basis set [43]. The results of calculations
presented in this work were carried out using the
GAUSSIAN 09 program [32].

Results and discussion

Among several factors responsible for accuracy of results of
computations of charge—transfer integrals one should not
overlook the choice of the basis set. Most quantum-—
chemistry programs use the Gaussian functions, introduced
by Boys in the mid 1950s, to approximate a wave function.
Huang and Kertesz recently made an attempt to analyze the
charge—transfer integrals using various basis sets and
proved that basis set limit might be reached quite rapidly
for the property in question [40]. It should be underlined
that the smooth convergence of charge—transfer integrals
with the basis set size is observed for effective charge—
transfer integrals or in the case of negligible spatial overlap.
Since the phthalocyanine complexes studied in the present
work do not fulfill the latter criteria, we find it interesting to
explore this topic more deeply by including the spatial
overlap in computations of charge—transfer integrals. In
Fig. 2a the values of spatial overlap integrals, charge—
transfer integrals as well as effective charge—transfer
integrals for different intermonomer separations are
presented. Indeed, as seen in the figure, the values of
charge—transfer integrals are quite insensitive to the
basis set, provided the spatial overlap is taken into
account.

The values of the spatial overlap for different geometrical
parameters calculated with the aid of different exchange—
correlation potentials as well as using the Hartree-Fock method
are presented in Fig. 2b. As seen in the figure, the values of the
spatial overlap calculated with use of different DFT functionals
are comparable for all considered geometrical parameters. The
values of spatial overlap integral calculated using the HF
wavefunction seem to be overestimated and differ substantially
from the values determined within the DFT framework.

As seen in Fig. 3 the choice of exchange—correlation
potential is quite important as far as the magnitude of
charge—transfer integral (J) and effective charge—transfer
integral (J.p) is concerned. The commonly used conven-
tional exchange—correlation potentials such as BLYP or
B3LYP predict much smaller values of charge—transfer
integrals than the HF method. The PWO91 functional,
suggested as the best choice for computations of charge—
transfer integrals in m—conjugated systems in stacked
configurations [3, 41], gives comparable results to those
determined with the aid of the BLYP and the B3LYP
potentials. The values of charge—transfer integrals predicted
by long—range corrected functionals, namely CAM-B3LYP
and LC-BLYP, lie between HF and conventional DFT
results (see Fig. 3). It was shown by Peach and co-workers
that long—range corrected functionals improve substantially
upon their traditional counterparts as far as excitation
energies to charge—transfer states are concerned [17]. It is
a particularly notable observation for the Coulomb—attenuat-
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Fig. 2 (a) Spatial overlap integrals (S), charge—transfer integrals (J)
and effective charge-transfer integrals (J,;) computed using the
B3LYP functional. (b) Dependence of the spatial overlap on the
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Fig. 3 The dependence of the charge—transfer integral (J, left side) and the effective charge-transfer integral (/.4 right side) on the geometrical
parameters for different DFT functionals using the cc-pVDZ basis set

ed model (CAM-B3LYP). Since both quantities in principle  solid quantitative basis, we use the CAM-B3LYP potential as
might be similar in nature, the LRC potentials should give  a reference. We conclude that conventional DFT functionals
better results also in the case of charge—transfer integrals. For ~ underestimate the values of charge—transfer integrals in
this reason, with a bit of scepticism due to the lack of more  comparison with their LRC counterparts.
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One of the theories most commonly used for describing
charge transport in organic system is the one proposed by
Marcus [44, 45]. In this approach, the hopping rate constant
between sites i and j is defined as:

- 271'|J,'j}2 /4 (l + & — 5[)2
ki =—, \V2koaT “P\ ™ aiksr ) (10)

where &, kg and T are Planck constant, Boltzmann constant
and temperature, respectively. ¢; and ¢; denote energies of
the charge carrier localized on the sites i and j and A stands
for reorganization energy [4, 13, 46]. In order to estimate
the charge carrier mobility in the system without structural
disorder (assuming that each hopping rate is the same) one
can use the relation [47, 48]:

e

ﬂ:kB—Tkjj(lz, (11)

where e is elementary charge, and a denotes distance
between molecular sites. For the studied phthalo-cyanine
dimers, the internal reorganization energy calculated at the
B3LYP/cc—pVDZ level of theory is 0.043 eV, which is
similar to the results presented in literature [13, 49, 50]. For
the intermolecular distance 3.5 A, the rotation angle 0 and
lateral slide 1.5 A (this is the structure similar to the crystal
structure of the phthalocyanine) the charge—transfer
integrals calculated with B3LYP and CAM-B3LYP
functional are —0.16 eV and —0.18 eV respectively. The
charge carrier mobility values calculated from Eq. (11)
for this two charge—transfer integrals are 3.9 cm? /Vs and
4.9 cm? /Vs. Thus, one can easily see, that DFT functional
has a significant influence on the mobility value. A close
look at Fig. 2 leads to the conclusion that for certain areas
of conformational space the differences might be even
higher.

A comparison of the effective charge-transfer integrals
calculated using Eq. (3) and the charge-transfer integrals
determined from the energy splitting (Eq. (9)) is shown in
Table 1. The data show that the differences in the values of
charge—transfer integrals calculated based on the two
approaches are insignificant and do not exceed a few
thousandths of eV. At first glance, it appears that it is
sufficient to employ less accurate method, based on the
energy splitting in dimer with assumption of zero spatial
overlap, to compute J between molecules in 7t interacting
system. However, as it has already been mentioned, it is
important to include spatial overlap in calculations of
charge—transfer integrals from the definition. Otherwise,
the values of J might strongly depend on the size of the
basis set used in calculations. The other drawback of the
method based on energy splitting in dimer is the lack of
information about the sign of charge—transfer integral.

@ Springer

Table 1 The absolute values of effective charge transfer integrals
(e, given in eV) computed with the aid of Egs. (3)—(6) and the
charge transfer integrals calculated using energy splitting in dimer
approach (|A/2]). The cc-pVDZ basis set was employed in all
calculations. R is the intermolecular distance

B3LYP BLYP HF

Vol A2 gl AR Vol AR
R [A]
3.1 0.5809 0.5859 0.5327 0.5372 0.7820 0.7898
33 0.4235 0.4254 0.3870 0.3887 0.5820 0.5850
35 0.3061 0.3068 0.2787 0.2793 0.4297 0.4309
3.7 02198 02200  0.1995  0.1996  0.3161 0.3165
39 01572 0.1571  0.1421  0.1420  0.2320  0.2320
41 01125  0.1124  0.1015  0.1014  0.1701  0.1699

CAM-B3LYP LC-BLYP B3PW 91

Wegt A2 Wegt A2 Wegt A2
R [A]
3.1 0.6344 0.6399 0.6944 0.7006 0.5836 0.5886
33 0.4667 0.4689 0.5149 0.5174 0.4226 0.4245
35 0.3404 0.3412 0.3785 0.3796 0.3030 0.3037
3.7 0.2467 0.2469 0.2763 0.2767 0.2153 0.2155
39 0.1781 0.1781 0.2005 0.2007 0.1523 0.1522
4.1 0.1284 0.1283 0.1451 0.1452 0.1076 0.1075

However, if the knowledge of the sign is important, it can
be subsequently determined from the bonding—antibonding
character of the interaction between the corresponding
orbitals [51].

Conclusions

The primary aim of the present study was to evaluate
the performance of commonly employed conventional
exchange—correlation potentials that are used to compute
charge—transfer integrals. In doing so, we apply the recently
proposed Coulomb-attenuated model as a reference as this
approach is proven to be very successful in predicting
excitation energies to charge—transfer states. It is shown that
for certain areas of conformational space in phthalocyanine
dimer the differences in values of charge-transfer integrals
between the conventional schemes and the CAM-B3LYP
functional in values of charge—transfer integrals might be
quite significant. The same is revealed for triphenylene dimer
[52]. As a result, the values of charge carrier mobilities
estimated using Marcus formula might differ by 20% and
more. Likewise, theoretical predictions of peaks intensity in
electro-absorption spectrum of molecular crystals and
molecular aggregates [53, 54] might be determined to a
large extent by the accuracy of charge-transfer integrals
(Kulig W, Petelenz P, (2010). Private communication). We
have also confirmed the findings reported by other authors
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[41] that the size of the basis set used in calculations of
charge—transfer integrals plays only a minor role provided
the spatial overlap is included in the theoretical model.

Acknowledgments This work was supported by computational
grants from Wroclaw Center for Networking and Supercom- puting
(WCSS) and ACK Cyfronet. Work in the USA was supported by the
HRD-0833178 grant. One of the authors (RZ) would like to
acknowledge support from a grant from Iceland, Liechtenstein and
Norway through the EEA Financial Mechanism - Scholarship and
Training Fund. Financial support from Wroclaw University of
Technology and the Czech Science Foundation (Project No. P205/
10/2280) and the European Commission through the Human Potential
Programme (Marie-Curie RTN BIMORE, Project No. MRTN-CT-
2006-035859) is also acknowledged.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) PNAS
99(9):5804
2. Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Chem
Soc Rev 39:423
3. Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA
(2003) J Chem Phys 119:9809
4. Newton MD (1991) Chem Rev 91:767
5. Cheung DL, Troisi A (2008) Phys Chem Chem Phys 10:5941
6. Bassler H (1993) Phys Stat Sol (b) 175:15
7. Toman P, Nespurek S, Bartkowiak W (2009) Mater Sci Poland
27:797
8. Hreha RD, George CP, Haldi A, Domercq B, Malagoli M, Barlow S,
Brédas J-L, Kippelen B, Marder SR (2003) Adv Funct Mater 13:967
9. Yang B, Kim S-K, Xu H, Park Y-I, Zhang H, Gu C, Shen F, Wang
C, Liu D, Liu X, Hanif M, Tang S, Li W, Li F, Shen J, Park J-W,
Ma Y (2008) Chem Phys Chem 9:2601
10. Gao H, Zhang H, Mo R, Sun S, Su Z-M, Wang Y (2009) Synth
Met 159:1767
11. Zbiri M, Johnson MR, Kearley GJ, Mulder FM (2010) Theor
Chem Acc 125:445
12. Delgado MCR, Kim EG, da DA, Filho S, Brédas JL (2010) J] Am
Chem Soc 132:3375
13. Lee C, Sohlberg K (2010) Chem Phys 367:7
14. Chen S, Ma J (2009) J Comp Chem 30:1959
15. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383
16. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L
(1999) Mol Phys 97:859
17. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem
Phys 128:044118
18. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys
122:234111
19. Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto
H, Sekino H (2008) J Chem Phys 128:114108

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.

33.
34.

35.

36.
37.

38.

39.

40.
41.
42.
43.
44.
45.

46.

47.
48.

49.

50.
S1.
52.

53.
54.

Jacquemin D, Perpéte EA, Scalmani G, Frisch MJ, Kobayashi R,
Adamo C (2007) J Chem Phys 126:144105

Loboda O, Zalesny R, Avramopoulos A, Luis JM, Kirtman B,
Tagmatarchis N, Reis H, Papadopoulos MG (2009) J Phys Chem
A 113:1159

Jacquemin D, Perpéte EA, Medved M, Scalmani G, Frisch MJ,
Kobayashi R, Adamo C (2007) J Chem Phys 126:191108
Hammond JR, Kowalski K (2009) J Chem Phys 130:194108
Limacher PA, Mikkelsen KV, Liithi HP (2009) J Chem Phys
130:194114

Zalesny R, Wojcik G, Mossakowska I, Bartkowiak W, Avramo-
poulos A, Papadopoulos MG (2009) J Mol Struct THEOCHEM
901:46

Casida ME, Salahub DR (2000) J Chem Phys 113:8918

Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD
(2006) J Phys Chem B 110:15624

Silva D, Krawczyk P, Bartkowiak W, Mendonca CR (2009) J
Chem Phys 131:244516

Rostov 1V, Amos RD, Kobayashi R, Scalmani G, Frisch MJ
(2010) J Phys Chem B 114:5547

likura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys
115:3540

Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51
Frisch MJ et al (2009) Gaussian 09 Revision A.l. Gaussian Inc.
Wallingford CT

Facchetti A (2007) Mater Today 10(3):28

Newman CR, Frisbie CD, da Silva Filho DA, Brédas JL, Ewbank
PC, Mann KR (2004) Chem Mater 16:4436

Toman P, Nespurek S, Yakushi K (2002) J Porphyr Phthalocyanines
6:556

Shirota Y, Kageyama H (2007) Chem Rev 107:953

Sergeyev S, Pisula W, Geerts YH (2007) Chem Soc Rev
36:1902

Mikolajezyk MM, Toman P, Bartkowiak W (2010) Chem Phys
Lett 485:253

Cornil J, Beljonne D, Calbert JP, Brédas JL (2001) Adv Mater 13
(14):1053

Huang J, Kertesz M (2004) Chem Phys Lett 390:110

Huang J, Kertesz M (2005) J Chem Phys 122:234707

Dunning TH (1989) J Chem Phys 90:1007

Jensen F (2001) J Chem Phys 115:9113

Marcus RA (1993) Rev Mod Phys 65:599

Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem
100:13148

Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc
127:2339

Grozema FC, Siebbeles LDA (2008) Int Rev Phys Chem 27:87
Berlin YA, Grozema FC, Siebbeles LDA, Ratner MA (2008) J
Phys Chem C 112:10988

Tant J, Geerts YH, Lehmann M, Cupere VD, Zucchi G, Laursen
BW, Bjornholm T, Lemaur V, Marcq V, Burquel A, Hennebicq E,
Gardebien F, Viville P, Beljonne D, Lazzaroni R, Cornil J (2005) J
Chem Phys B 109:20315

Chang YC, Chao I (2010) J Phys Chem Lett 1:116

Seo D, Hoffmann R (1999) Theor Chem Acc 102:23
Mikolajezyk M, Zale$ny R, Czyzihikowska Z, Bartkowiak W,
Toman P, Leszczynski J (2009). Unpublished results

Stradomska A, Petelenz P (2006) Mol Phys 104:2063

Petelenz P (2004) Org Electron 5:115

@ Springer



	Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes
	Abstract
	Introduction
	Computational details
	Results and discussion
	Conclusions
	References


