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Background: Digitalization and artificial intelligence have an important impact on the way microbiology
laboratories will work in the near future. Opportunities and challenges lie ahead to digitalize the
microbiological workflows. Making efficient use of big data, machine learning, and artificial intelligence
in clinical microbiology requires a profound understanding of data handling aspects.
Objective: This review article summarizes the most important concepts of digital microbiology. The
article gives microbiologists, clinicians and data scientists a viewpoint and practical examples along the
diagnostic process.
Sources: We used peer-reviewed literature identified by a PubMed search for digitalization, machine
learning, artificial intelligence and microbiology.
Content: We describe the opportunities and challenges of digitalization in microbiological diagnostic
processes with various examples. We also provide in this context key aspects of data structure and
interoperability, as well as legal aspects. Finally, we outline the way for applications in a modern
microbiology laboratory.
Implications: We predict that digitalization and the usage of machine learning will have a profound
impact on the daily routine of laboratory staff. Along the analytical process, the most important steps
should be identified, where digital technologies can be applied and provide a benefit. The education of all
staff involved should be adapted to prepare for the advances in digital microbiology. A. Egli, Clin
Microbiol Infect 2020;26:1324
© 2020 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and

Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction healthcare costs more than doubling over the past 10 years (https://
Without doubt, digital technologies will shape our lives in the
upcoming years: from personal assistants [1], internet-connected
devices and bodies [2,3] including smart phone technologies [4],
self-driving cars and drones [5,6], to algorithms for self-
improvement [7,8]. Digitalization and artificial intelligence (see
Supplementary Table S1 for a glossary) generate high expectations
in healthcare [9]. These expectations are fuelled by an increasing
demand to optimize quality and lower costs. According to the
Organisation for Economic Co-operation and Development (OECD),
health spending in 2017 as a share of the gross domestic product
(GDP) was 8.8% on average, corresponding to USD 3857 per capita
per year. Many countries have observed a substantial increase, with
gy and Mycology, University
nd.

Ltd on behalf of European Society
g/licenses/by-nc-nd/4.0/).
data.oecd.org). Therefore, various stakeholders have great hope for
the magic bullet of digitalization to control or even lower
healthcare-associated costs. General aspects of digitalization in
medicine have been recently reviewed elsewhere [9e11]. Never-
theless, digitalization will lead to a significant optimization of
healthcare-associated processes and improvement of quality needs
to be seen. Accordingly, there will be a higher demand for high-
quality digital laboratory and specifically also microbiological
data in diagnostics [12] in order to (a) use machine learning algo-
rithms for optimization of the treatment indication and prediction
of prognosis, and (b) as information sources to monitor and docu-
ment the quality and impact of medical interventions.

The increasing need for microbiological digital data is also an op-
portunity for microbiologists and other laboratory specialists [13] to
move fromserviceproviders to leaders inpatient assessment, helping
to personalize diagnostics and treatments, improve the quality of
digital data, and thereby support reductions in healthcare costs.
Digital microbiology may also substantially impact public health and
of Clinical Microbiology and Infectious Diseases. This is an open access article under
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pathogen surveillance [14]. In order to enable digitalization, micro-
biology laboratories need to build a core expertise in digitalmedicine
e including perception, know-how, and infrastructure on all aspects
of data handling [15,16]. This review article aims to improve the
generalunderstandingof themost importantaspectsofdigitalization,
machine learning and artificial intelligence in the pre-to post-
analytical process of clinical microbiology diagnostics.

Opportunities for digitalization in the microbiology
diagnostic process

The diagnostic process in clinical microbiology is split into pre-
analytical, analytical and post-analytical steps [17] and forms a
circle of material and information flow. Table 1 highlights specific
opportunities for digitalization in this process using the example of
sepsis management.

Pre-analytics addresses the collection and quality of samples
transported to the laboratory. For example, the filling volume of
blood culture flasks, which directly correlates with positivity rates
and the analytical sensitivity of blood culture diagnostics [18].
Modern blood culture systems provide automated weighting of
blood cultures to determine the collected volumes and provide a
feedback to the laboratory information system (LIS) [19]. Additional
examples of pre-analytical quality include the detection of contam-
inated blood cultures due to skin flora such as Staphylococcus epi-
dermidis, other coagulase negative staphylococci, and Cutibacterium
acnes. Based on criteria of a systemic inflammatory response syn-
drome (SIRS) and the presence of a central venous line, the risk of
blood culture contamination can be assessed [20]. In the future, the
combination of LIS and electronic health record (EHR) data may
allow more sophisticated feedback loops and provide automated
quality assessments reports to the microbiologist and clinician.

Another importantpre-analytical aspect isdiagnosticstewardship.
Diagnostic stewardship incorporates the concept of recommending
the best diagnostic approach for a given situation [21e23]. Digital
solutions inthisfieldmayrange fromdigital twins[24,25] tomachine-
learning-based algorithms in smartphone apps [26] or chatbots
[27,28]. Recently, chatbots have been developed to support the diag-
nostic evaluation and to recommend immediate measures, when
patients are exposed to SARS-CoV-2 [27]. Similar to a microbiologist
Table 1
Aspects of digital microbiology in the diagnostic process

Process Aspect Example

Pre-analytics Quality control What is the sample quality?
e Automated measurement and fe
e Automated assessment of sampl

Diagnostic stewardship Which additional diagnostic test sh
e Suggestion based on a digital tw

Analytics Quality control How reliable is the analytical perfo
e Surveillance of reagent lots per

reporting in connection to speci
Imaging Are there bacteria on the microsco

e Automated image acquisition w
category

Plate reading Is there bacterial growth on the pla
e Automated image acquisition

(telebacteriology)
Expert system Does the detected resistance profil

e Medical validation of antibiotic
Public Health Is there a potential outbreak?

e Automated screening for pa
bioinformatics

Post-analytics Highlight important
data

Is there a potential bacterial pheno
e Detection of resistance by analy

Sepsis treatment What is the best treatment for the
e Prediction of sepsis, and best tre
consultant, a chatbotmay provide helpful diagnostic information and
advice,e.g.,onthecorrecttransportmediaforasample,assaycosts, the
expected turn-around time, and test performance in specific sample
types. Such an interactive toolmay be a first source of information for
routine and repetitive questions, and could support thepre-analytical
qualitymanagement. Inourvision, thedigital twinworkssimilarly toa
smart shopping list, suggesting additional laboratory tests, which
were previously ordered in the presence of similar patient character-
istics. Thereby, sucha toolmayutilize theexperienceofotherusers.As
anexample, ina critically ill immunosuppressedpatientwith sepsis, a
panel PCR directly from positive blood culture may speed up the
species identification and result in an adaptation of the antibiotic
treatment given [29], whereas in an otherwise healthy younger pa-
tient, standard culture based identificationmay be sufficient.

Test performance and data generation within the laboratory are
parts of analytics. As an example, automated microscopy allows
high-resolution images to be acquired of smears frompositive blood
cultures and can categorize Gram staining with high sensitivity and
specificity [30,31]. Besides state-of-the-art automatedmicroscopes,
smartphones can also be used for image analysis ofmicroscopy data
[32,33]. Automated plate reading systems act similarly on pattern
recognition and can reliably recognize bacterial growth on an agar
plate and could be used to pre-screen culture plates [34e38]. Such
automated plate reading systems are currently established in many
European laboratories as part of the ongoing automation process.
Reading of E-tests and inhibition zone diameters around antibiotic-
impregnated discs can also be automatized with well-developed
reading software [39,40]. Expert systems to interpret antimicrobial
resistance profiles have already been in use for many years. Usually
medical validation of phenotypic resistance profiles are performed
to check whether there are unusual resistances, which prompts
additional testing or confirmation, e.g., detection of a potential
extended spectrum beta-lactamase (ESBL) or carbapenemase-
producing bacteria due to suspicious MICs levels. This would
trigger subsequent phenotypic or genotypic analysis [41,42]. Addi-
tional examples in the analytical step include the identification of
bacterial and fungal species using matrix-assisted laser desorption/
ionization time of flight (MALDI-TOF) mass spectrometry. Machine
learning based algorithms can link mass spectral profiles to specific
clinical phenotypes such as antibiotic resistance [43,44].
References
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Data visualization, communication, and clinical decisionmaking
are parts of post-analytics. Dashboards are an increasingly common
way to visualize and summarize data. More complex applications
include clinical decision support systems, e.g., for antibiotic stew-
ardship. Empiric antibiotic treatment is dependent on knowledge
of local antibiotic susceptibilities in each specific bacterial strain.
Based on specific clinical information, such as patient de-
mographics (age or gender) or specific wards, the empiric treat-
ment may be further adapted [45]. In the near future, we may
expect clinical decision support systems based onmachine learning
to provide automated feedback regarding empiric antibiotic pre-
scription adapted to specific patient groups [46]. As a next step,
more complex datasets will also be analysed. As physiology and
laboratory parameters can rapidly change during an infection,
time-series data greatly impact the predictive values of such algo-
rithms e similar to a doctor, who observes the patient during dis-
ease progression e machine learning algorithms will also follow
the patient's data stream. Recently, a series of studies has shown
the impact of high-frequency physiological parameters in ICUs on
the prediction of sepsis [47e49] or meningitis [50,51]. These
studies are retrospective analyses and prospective controlled vali-
dation studies are largely missing in the field. Therefore, although
our expectations for digital microbiology may be high, we should
remain critical and carefully address the associated challenges.

Challenges of digitalization in the microbiology diagnostic
process

The collection, quality control and cleaning, storage, security
and protection, stewardship and governance, interoperability and
interconnection, reporting and visualization, versioning, and
sharing of data pose considerable challenges for big data in
microbiology diagnostic laboratories. Some of these data handling
aspects may be managed with a profound understanding of the
laboratory and data workflows and clinical microbiology infor-
matics [52]. However, rapidly developing computer technologies
and increasing availability of storage space pose an important
challenge itself for microbiologists and infectious disease experts:
the amount of data with a deep medical context will explode over
the next few years. Three trends currently explain this explosion of
information: (a) larger number of fields are being collected, (b) the
replacement of aggregate by person-specific data, and (c) the start
of collecting new person-specific data [53]. In 2010, the global
stored information amount already exceeded 1000 exabytes of data
(i.e.10e21). Moreover, Densen and colleagues postulated a dramatic
reduction in the half-life of life-science knowledge to only 73 days
in 2020 [54]. In clinical microbiology laboratories, there is a similar
exponential accumulation of routine data, e.g., MALDI-TOF mass
spectra, photo-documented microscopy slides, pictures of agar
plates (telebacteriology), sequencing data (microbial genomics,
microbiota analysis), results of real-time PCR, and serological as-
says. Gigabytes of data are already produced every day and are
stored for quality control, accreditation, legal reasons, and research.

Due to the increasingquantityofdata (explosionof information), it
will soon become almost impossible for a human to keep a clear view
and interconnect the most important and relevant pieces of infor-
mation [16[. Today, clinical colleagues have to access several com-
puter programmes to collect information from various sources. The
large amount of opaque data results in a demand to report the most
critical results directly to the clinician, e.g., via phone calls of bacter-
aemia cases [55] [e therebyflaggingmost critical results. Digital tools
will need to efficiently facilitate the raw-data-to-knowledge process
[56]. Laboratory specialists, lab technicians, physicians, nurses, and
information technology (IT) experts will clearly be challenged to
handle this rapidly approaching information tsunami. New
communicationandvisualization strategieswill be important and the
interface between laboratory and clinics has to evolve and adapt. As
examples, dashboards summarize the most critical clinical informa-
tion and help to communicate complex data [57,58] or pop-up win-
dowsof automated alerting systems indicate critical results in specific
patient groups [59] in a targeted fashion.

Data accumulation and complexity will further amplify, as we
use more advanced technologies to achieve a detailed and struc-
tured description of the microbiological data (e.g., the Microbiology
Investigation Criteria for Reporting Objectively (MICRO) criteria
[60]). In clinical microbiology, the introduction of panel PCRs was
only a first step. Molecular diagnostics will move towards meta-
genomics applications [61,62] in the next years. Thereby, the in-
formation will become more complex including pathogen and host
genetic data. The problem is that (a) in non-primary sterile sites,
multiple organisms can be detected e potential pathogens and
colonizers e with sometimes unknown significance, and (b) not all
antibiotic resistance genes can be linked to a specific species. For
example, coagulase-negative staphylococci with oxacillin resis-
tance in a sputum sample, along with Staphylococcus aureusmay be
misinterpreted as presence of methicillin-resistant S. aureus
(MRSA) [63]. It will be crucial to identify those pathogens that are
relevant and know which resistance mechanisms are linked to a
specific pathogen. Simply providing an (endless) list of bacteria and
resistance genes may result in non-reflected antibiotic usage and
the treatment of a lab result and not of the patient. Future software
algorithms could antibiotic resistance genes and Operational
Taxonomic Units (OTUs) in bacterial networks of acute or chronic
infectious diseases [64]. In addition, long-read sequencing meta-
genomics may overcome the problem of linking resistance genes to
a specific species [65,66]. In this situation, machine learning could
offer to analyse the complex interactions of bacterial networks
within the host and help to better understand the data [67,68], for
example understanding treatment failure by analysing mixed
bacterial samples in the context of enzymatic inactivation by
commensal species associated with a pathogen. Evenmore detailed
data is expected frommetabolomics, proteomic and transcriptomic
analysis during infections in the next 10e15 years.

Besides the rapid increase of data and its associated problems,
the changes anticipated with the new technologies may be very
profound for laboratory personnel. Change management on various
levels will be essential to manage expectations and fears linked to
digitalization [69e71]. Whereas many classical tasks such as
manual culture plate reading and microscopy may disappear over
the next years, new aspects will fill these gaps for laboratory
technicians and microbiologists including dry-lab tasks such as
data handling and analysis for diagnostics, research and develop-
ment. The educational portfolio of all laboratory personnel e clin-
ical microbiologists and lab technicians e has to adapt to meet the
new requirements of digital microbiology.

A first step: data structure and interoperability

Datasets collected in the clinical data warehouse will ideally
allow more detailed analysis of infectious diseases (Fig. 1) [72e74].
Machine learning algorithms require large, structured, interoper-
able, and interconnected datasets. Healthcare data must be further
standardized and annotated with internationally recognized defi-
nitions [75,76]. Ontologies help to structure data in such a way by
using a common vocabulary, and allow the determination of re-
lations of variables within a data model [77]. As an example, anti-
biotic susceptibility testing may be performed with various
technical methods providing different sensitivities, error margins,
and interpretation guidelines of breakpoints e the ontology term
allows the specific description of the method in a machine-



Fig. 1. Concept of data handling within and across institutions. Local data warehouses with local cluster computers transfer interconnected and interoperable data for diagnostics,
research and development to larger clusters allowing the enrichment of datasets. Clinical Data Warehouse (CDWH), Clinical Information System (CIS), Laboratory Information
System (LIS), Radiology Information System (RIS).
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readable format and helps to compare results across different
datasets. Various ontologies exist for clinical, laboratory and
microbiological data such as the WHOs International Classification
of Diseases (ICD), Systematized Nomenclature of Human and Vet-
erinary Medicine Clinical Terms (SNOMED CT; http://www.
snomed.org/; [78]), Logical Observation Identifiers Names and
Codes (LOINC; https://loinc.org/; [79]), or the Integrated Rapid In-
fectious Diseases Analysis (IRIDA; https://www.irida.ca/).

Besides the clear requirements for structure and interoperability
of data, also data security and protection, and the versioning of
datasets are important. Sensitive healthcare data should only be
transferred if anonymized or encoded and simultaneously
encrypted [80,81]. For this, specific data security standards and
scripts are necessary [82e84]. Data safety breaches may have se-
vere consequences, with more than 70% of recent hospital data
breaches including sensitive demographic or financial info that
could lead to identity theft [85]. For certain databases, the block-
chain technology provides interesting solutions regarding data
safety and could be particularly well suited to public health sur-
veillance or clinical trial management [86e88].

An underestimated challenge is the versioning of ontologies,
guidelines, and recommendations. Maintenance and curation of
databases are costly, but this remains a highly critical element
directly linked to the quality of a database [89]. As an example, with
every annual updated antibiotic resistance interpretation by the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) or Clinical and Laboratory Standards Institute (CLSI)
antibiotic breakpoints may change and comparability across years
is jeopardized [90]. The new breakpoints in EUCAST v10 for Pseu-
domonas aeruginosa resulted in an increased rate of the interme-
diate category for most penicillin antibiotics, but at the same time,
the clinical meaning of the intermediate category was also changed
(www.eucast.org). Comparing only the categorical trends, without
further knowledge of the version used, harbours the risk for false
interpretations. Therefore, changes in databases must be well
documented and tracked, otherwise temporal trends cannot be
reliably analysed. A way around extensive versioning may be the
storage of raw data. In the given example, this would be the storage
of minimal inhibitory concentrations, which could be re-used using
different breakpoints. Storage of raw data also has specific chal-
lenges such as storage space, changes in data formats, and can be
more demanding regarding data protection.

The previously mentioned concepts for data handling have been
used for a series of large healthcare data repositories, e.g., the
Medical Information Mart for Intensive Care (MIMIC)-III (https://
mimic.physionet.org/; [91]) dataset or the eICU collaborative
research database (https://eicu-crd.mit.edu/; [92]). MIMIC-III and
eICU are large databases supporting sepsis research. Similarly, the
Swiss Personalized Health Network (SPHN; www.sphn.ch)
currently supports digitalization projects throughout Switzerland
enabling a national data infrastructure, ensuring data interopera-
bility of local and regional information systems, with special
emphasis on clinical data management systems allowing effective
exchange of patient data. The SPHN driver project ‘Personalized
Swiss Sepsis Study’ integrates data from clinical microbiology, in-
fectious diseases and intensive care medicine of all University
Hospitals. The goal is to discover digital biomarkers for early sepsis
recognition and prediction of mortality using machine learning
algorithms (www.sphn.ch/).

Epidemiological databases can also benefit from structured data.
For example, Pulsenet is a large sequencing repositorywith its main
focus on food-borne pathogens (www.cdc.gov/pulsenet; [93]).
Other platforms such as microreact ([94]) or nextstrain (https://
nextstrain.org/; [95]) visualize sequencing data either on a proj-
ect basis or as semi-automated surveillance tools, which access
public sources such as GISAID (https://www.gisaid.org/) in the case
of influenza or SARS-CoV-2. Similarly, the Swiss Pathogen Surveil-
lance Platform (www.spsp.ch), aims to establish one health
network for sharing of whole genome sequencing (WGS) data of
pathogens for public health surveillance and epidemiological
research [96]. Within the SPSP platform, demographic, epidemio-
logical and microbiological metadata is interconnected and inter-
operable to add spatio-temporal, clinical and veterinary contexts. A
prototype is currently being tested for the transmission of
methicillin-resistant S. aureus between veterinary and human
sources. Additional databases allow the exploration and cross-
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analysis of host-associated data in infectious diseases [97,98] or the
environment integrating the previously mentioned one health
approach, e.g., the Earth Microbiome Project [99] or the China
National Gene Bank (db.cngb.org).

A second step: legal framework

Data collection, analysis and exchange must follow legal and
regulatory requirements. Therefore, an ethical evaluation is
mandatory as well as a patient consent, e.g., via a study-specific or
general consent [100e102]. At present, general consents are not
authorized in some countries to prevent further data usage in other
studies than that explained to the patient. The evolution of these
ethical rules appears mandatory as collected data will not become
exploitable, and this will probably raise numerous additional
ethical issues as well. Shared datasets can be tremendously useful
to improve, e.g., public health surveillance [103e107] and not
sharing the data in emergencies may be unethical as well [96].
Globally, different data protection, human research and epidemi-
ological laws exist. In Europe, the General Data Protection Regula-
tion (GDPR) 2016/679 is enforced and has to be followed for
European citizens (eur-lex.europa.eu). Non-genetic anonymized
data is often excluded from regulation. However, there is an
ongoing debate as to what anonymization means. The interface of
research/surveillance and data protection generates additional
challenges [108]. If larger datasets are shared between centres,
ethical committees usually ask for a detailed data-management
plan as part of a data transfer and use agreement (DTUA). In such
a context, it is also often advisable to generate a collaboration or
consortium agreement (CA) between research institutions, regu-
lating the way of data collection, storage, access rights and pro-
tection, duties, responsibilities, publications, and intellectual
properties.

In research, there is an increasing trend for data sharing
[107,109,110]. Whereas traditionally, research groups were silos of
innovation and technologies, nowadays cutting-edge research
often happens in international teams. Across institutions, a
framework should be generated enabling research with pragmatic
solutions which will help patients, physicians and society. Data
sharing allows us to drive innovation. In public funded projects the
Findability, Accessibility, Interoperability and Reusability (FAIR)
principles (https://libereurope.eu) are often used and multiple
scientific journals follow these important guidelines. These prin-
ciples cover: (a) data and supplementary materials having suffi-
ciently rich metadata and a unique and persistent identifier, (b)
metadata and data being understandable to humans and machines,
(c) data is deposited in a trusted repository, (d) metadata using a
formal, accessible, shared, and broadly applicable language for
knowledge representation, and (e) data and collections having a
clear usage licenses and provide accurate information on their
provenance [111].

Ways to applications: use of machine learning in the modern
microbiology laboratory

Machine learning is based on sample data (a training or dis-
covery dataset) in order to make predictions or decisions without
being explicitly programmed to perform that task [9,112]. Machine
learning algorithmsmay be used at each step of the microbiological
diagnostic process from pre-to post-analytics, helping us to deal
with the increasing quantities and complexity of data [113,114]
(Table 1). Human analytical capacity has reached its limits to (a)
grasp the huge amount of available complex data, (b) interconnect
data in single patients, groups and across the population, and (c)
draw meaningful conclusions from this. Machine learning
algorithms can overcome these limits, by using structured data and
by helping to recognize patterns with supervised and unsupervised
methods [115e117].

Besides the diagnostic process, a series of research studies have
been performed focusing on machine learning of infectious dis-
eases: prediction of infection on hospital admission [118], detection
of urinary tract infections [119], self-reported influenza-like illness
[120], prediction of complications in Clostridioides difficile infection
[121], identification of antibiotic drug resistance in Mycobacterium
tuberculosis [122], detection of ventilator-associated pneumonia
with P. aeruginosa on intensive care units [123], estimation of
outcomes of shigellosis [124], drug discovery for new antibiotics
[125], prediction of side effects [126,127], and pharmacokinetic/
pharmacodynamic (PK/PD) models of antibiotics [128], and many
more.

The establishment of machine learning algorithms in microbi-
ological routine workflows requires a profound system under-
standing of the pre-to post-analytical steps and data handling
knowledge. Where are the most important interfaces in the
workflow? What are the current gaps in communication? Where
and how could the quality of the process(es) be improved with
digital technologies? The answers require a local in-depth analysis
of the diagnostic process and digital environment. The develop-
ment of digital microbiology should be closely monitored by the
microbiologist as (a) understanding and access of the pre-
analytical, analytical and post-analytical process management is
key, (b) data handling is easiest at the point where the data is
actually produced, and (c) laboratory personnel is familiar with
standardization and regulatory aspects of diagnostic tests. In gen-
eral, incentives are needed to further support all aspects of data
handling in laboratory medicine e including standardization data
structures and machine learning algorithms.

Conclusion

Digitalization in healthcare already shows a profound impact on
patients. It is expected that the developments started will further
gain momentum. Machine learning radically changes the way we
handle healthcare-related data e including data on clinical micro-
biology and infectious diseases. We will probably move from the
internet-of-things environment (interconnected datasets in a pa-
tient with a disease) to the internet-of-bodies with (implanted)
devices, providing detailed healthcare data also in a disease-free
time. In addition, developments of molecular diagnostics such as
metagenomics will increase the data complexity. Current trends
indicate that the importance of laboratory diagnostics will further
increase over the next decade. This means that the clinical micro-
biologist of today needs to (a) get familiar with the concepts of
digital microbiology, (ii) get educated on data handling and (iii)
anticipate the low hanging fruits such as microbiology dashboards,
expert systems, and image analysis of microscopy slides and plate
reading. Now is the time for clinical microbiology laboratories to
evaluate their data handling processes and available in-
frastructures, including storage and data transfer workflows. We
need to develop strategies for the next 5e10 years to face the op-
portunities and challenges ahead of us. Our community should
anticipate the advances in digitalization and develop concepts
including machine-readable formats and interoperability across
centres to further improve patient care.
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