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While Tuberculosis (TB) infection remains a serious challenge worldwide, big data
and “omic” approaches have greatly contributed to the understanding of the disease.
Transcriptomics have been used to tackle a wide variety of queries including diagnosis,
treatment evolution, latency and reactivation, novel target discovery, vaccine response
or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in
data interpretation may hinder transcriptomics complete potential. Technology evolution
and collaborative efforts among multidisciplinary groups might be key in its exploitation.
Here, we discuss the main fields explored in TB using transcriptomics, and identify
the challenges that need to be addressed for a real implementation in TB diagnosis,
prevention and therapy.
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INTRODUCTION

The Challenge of Tuberculosis Disease
Tuberculosis (TB) remains a relentless disease caused by the bacillus Mycobacterium tuberculosis.
With more than 1.5 million deaths annually, it is one of the top causes of death worldwide and the
second leading cause from a single infectious agent, after COVID-19 (World Health Organization
[WHO], 2021). Tuberculosis disease displays a continuous spectrum. After the bacteria enters the
body, it can be rapidly eliminated by the innate immune system (“early clearance”) or it can persist,
triggering the response of the adaptive immune system. Only 5–10% of the infected people directly
progress to the active disease, whereas in most cases the mycobacteria enters into a dormant state
and persists in the organism trough years, as latent TB infection (LTBI). This latent stage can
eventually lead toward bacteria reactivation (“post-primary TB”) or the disease resolution.

LTBI has classically included those asymptomatic people that developed immune memory
against TB. It is now stablished that other scenarios might occur, including rapid (“incipient
disease,” with no evidence of active Mtb) or slow (“subclinical tuberculosis,” with radiological
abnormalities or microbiological evidence of active Mtb) progression toward the active disease,
cycling between stages, or the effective elimination of the infection after developing memory (Drain
et al., 2018). Nonetheless, most routine diagnostic tests do not differentiate among these stages. It
is estimated that about one-quarter of the world’s population has contacted with the bacilli and
developed immune memory reflected in the definition of LTBI.
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Understanding the factors that promote the diverse and
dynamic stages of the infection, including early clearance of
the pathogen and active disease, is therefore key to develop an
appropriate strategy in the fight against TB.

The economic barriers between high and low-income areas
usually affect TB diagnosis and treatment, as well as the outcome
of the patient. Moreover, the increasing rates of multidrug-
resistant (MDR-TB) and extensively drug-resistant TB (XDR-TB)
threats TB management in the future. The failure in developing
an effective vaccine for adult pulmonary TB, opens another front
in TB research and in the control of the disease.

Development of high-throughput (HT) technologies were
expected to impulse the understanding of the complexity of
this disease. They enabled the revolution of the omic sciences,
including genomics, transcriptomics, proteomics, epigenomics,
or metabolomics.

The term transcriptomics refers to the study of the complete
set of RNA transcripts produced by the genome at a specific
time or circumstance. Their studies are being used in many
areas of knowledge like toxicology, immunology, microbiology,
environmental studies or evolutionary relationships among
species. In medicine, it is a powerful tool for the understanding
of many human diseases, including infections, cancer or
autoimmune diseases.

Transcriptomics cannot predict the post-transcriptional
protein modifications that usually affect the protein’s function.
As a matter of fact, the comparison among transcriptome
and proteome commonly fails to show a good correlation
(Kumar et al., 2016). Nonetheless, the complexity of proteome
analysis limits its understanding. Therefore, gene expression
analysis are routinely accepted as a proxy for biological activity,
being more affordable and manageable than proteomics.
Furthermore, transcriptomics allows the detection of low
abundant gene transcripts, and the identification of novel
isoforms resulting from alternative splicing or single nucleotide
polymorphisms, where proteomic fails. Researchers must
understand and accept the limitations of both systems when
choosing their approach.

Given these limitations, studies that include both approaches
can provide a more complete picture of the processes that
characterize the disease. A combination of omic approaches with
immune profiling techniques, such as flow cytometry, in vitro cell
activation or measurement of cytokine secretion, etc., can help to
identify the immunological mechanisms involved in the different
stages of the disease, which is key in the development of both
diagnostic and treatment approaches.

Transcriptome Studies: Exploring the
Past. . .
Transcriptome can be partially studied using targeted expression
approaches, as real-time quantitative reverse transcription PCR
(RT-qPCR) or differential display for measuring gene expression,
or RNA interference for exploring gene function. Nonetheless,
the usage of high throughput technologies allows the unbiased
acquisition of tens of thousands of potential candidate genes
in just one step.

The first approaches for the gene expression analysis emerged
in the early 1990 ìs and were based on Sanger sequencing.
They included Expressed Sequence Tag (EST) libraries, Serial
Analysis of Gene Expression (SAGE), Cap Analysis of Gene
Expression (CAGE), and Massively Parallel Signature Sequencing
(MPSS). They had various limitations, including high costs due
to the Sanger sequencing technology, dependence on enzyme
recognition sites, and limitations in detecting isoforms (Wang
et al., 2009). Reverse-transcriptase multiplex ligation-dependent
probe amplification (RT-MLPA) is also used to quantify
expression of a predefined list of target genes, but fails in assessing
hundreds of genes simultaneously (Eldering et al., 2003).

These methods were soon replaced by hybridization-based
microarray technology which has a much better affordability
for large scale studies. Next-generation sequencing, and thus
RNA-Seq, arose later, in mid 2000s (Figure 1). Currently, high-
throughput transcriptomics (HTTr) rely on those two platforms.

For some time, RNA microarrays were nonetheless preferred
over RNA-Seq because of its reduced price. Now, the equalization
of costs of both techniques have favored the popularity of
RNA-Seq for exploratory research, as which present various
advantages over microarrays, but also have a few shortcomings
(Table 1). In TB, where the discovery of novel biomarkers is
still required, transcriptomics and RNA-Seq are considered the
most informative and cost effective assays to start with. Once
established a set of genes of interest, further exploration can be
done using a well-designed microarray or by RT-qPCR, reducing
complexity and costs.

Another major contributor to the transcriptomics success
is the development of single-cell RNA-Seq technology and
spatial transcriptomics. While single-cell proteomics is still in
its infancy, single-cell transcriptomics allows an unprecedent
analysis of gene expression and its heterogeneity amongst
different cell populations, rare cell detection or complex
interactions among tissues (Cai et al., 2020; Nathan et al., 2021;
Pisu et al., 2021). Some drawbacks are its elevated cost, with
reagents 10–20 times more expensive than conventional RNA-
Seq, and the complexity of its analysis, facing new computational
challenges such as the necessity of dimensionality reduction and
robust statistics to detect true heterogeneity (Adil et al., 2021).
Spatial transcriptomics, which combines gene expression analysis
and histology, allows for the first time the localization of mRNA
molecules within a tissue or identifying their subcellular location
(Ståhl et al., 2016). It has rapidly become a promising tool in
research and diagnostics, with special applications in assessing
tissue heterogeneity and cell interactions.

HTTr studies have boosted the amount of available
information to levels never reached before. The large-scale
data obtained requires of bioinformatics tools to be adequately
processed and understood. Data can be stored in either private
or public storage. Most scientific publications require the
transcriptomic raw data to be available in public repositories,
where it can be freely downloaded. Some examples of public
repositories for transcriptomic data can be found in Table 2.

Nonetheless, special care must be taken when comparing data
from different sources. A meticulous annotation must be done
when sharing our data, including the experimental protocol,
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FIGURE 1 | Timeline of main milestones in technologies for gene expression. Polymerase Chain Reaction (PCR) was invented in 1984 by Mullis (1990). A decade
later, Real-Time qPCR (RT-qPCR) technology enabled the detection of PCR products in real-time (Higuchi et al., 1993). This allowed, for the first time, quantify
mRNA expression of selected genes. Simultaneous analysis of multiple genes was possible due to microarray, Expressed Sequence Tag (EST) (Okubo et al., 1992),
Serial Analysis of Gene Expression (SAGE) (Velculescu et al., 1995), Massively Parallel Signature Sequencing (MPSS) (Brenner et al., 2000), Cap Analysis of Gene
Expression (CAGE) (Shiraki et al., 2003) and Reverse-transcriptase multiplex ligation-dependent probe amplification (RT-MLPA) (Eldering et al., 2003) technologies.
Although the DNA hybridization method was described earlier, the microarray technology is considered to be firstly commercialized by Affymetrix in 1994 (Lenoir and
Giannella, 2006). It was promptly applied to measure gene expression (Schena et al., 1995). It continues to be one of the most popular methods for gene
expression, allowing the analysis of hundreds or thousands of genes. Development of Next Generation Sequencing (NGS) in the onset of 2000s supposed a
revolution for both genomics and transcriptomics (Mardis, 2011). The first publication using NGS RNA-Seq technology was in 2006 (Bainbridge et al., 2006), but it
was not until 2008 when the term RNA-seq started to be used (Lister et al., 2008; Mortazavi et al., 2008). RNA-Seq was applied to single-cell technology in 2009 for
the first time (Tang et al., 2009). Emerging applications, as spatial transcriptomics (Ståhl et al., 2016), hold the promise of new advances in transcriptomics research.

TABLE 1 | Advantages and disadvantages of microarrays and RNA-sequencing for gene expression analysis.

Microarray RNA-seq

Advantages • Standardized analysis: Easier to analyze.
• Moderately lower cost.

• Broader dynamic range (< 105) and sensitivity (Zhao et al., 2014).
• Allows modification of sequencing coverage depth to detect rare and
low-abundance transcripts.
• Allows the detection of novel transcripts, splicing variants, single
nucleotide variants, insertions, deletions and gene fusions.

Disadvantages • Lower dynamic range (103–104).
• Does not allow the detection of novel transcripts (uses pre-designed
probes).

• Large size of files: Demands considerable amount of computer
resources for storage and analysis.
• Lack of standardized protocol for analysis: Complex computational
analysis and longer analysis times.

procedure for sample isolation, relevant donor information,
microarray design or RNA-Seq technology used or selection of
either total RNA or mRNA fraction for RNA-Seq. The availability
of a complete and curated metadata will ease further in silico
analysis comparing data worldwide.

An increasing number of bioinformatics tools are developed
for the different steps of the transcriptome analysis, with many
alternatives available for each step. RNA-Seq analysis share some
common steps (Figure 2), but there is not a unique pipeline
that one can follow and the pipeline of choice depends mainly
on the biological question of interest. To take full advantage of
our data, it is desired to keep updating our knowledge of useful
and reliable software. The sustained software development also

hinders experts in the field to review and criticize how most
data is analyzed. Lastly, communication issues among biological
scientists and data analysts may also become a handicap to get the
most out of the experimental data.

TRANSCRIPTOMICS APPLIED TO
TUBERCULOSIS RESEARCH

It has been two decades since the first HTTr studies in TB
were published (Ehrt et al., 2001; Ragno et al., 2001). HTTr
have been used to explore different features, of both host and
bacteria. Work is commonly not limited to Mtb but it includes
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TABLE 2 | Public repositories for transcriptomic data in health sciences.

Repository Host institution File storage Data type

Gene Expression Omnibus (GEO) National Center for Biotechnology Information
(NCBI)

NCBI Sequence Read Archive (SRA) Functional genomics data generated
from microarray or NGS platforms

BioStudies (former ArrayExpress) European Bioinformatics Institute (EMBL-EBI) European Nucleotide Archive (ENA) Functional genomics data generated
from microarray or NGS platforms

DDBJ Sequence Read Archive (DRA) DNA Data Bank of Japan (DDBJ) DDBJ Sequence Read Archive (DRA) Functional genomics data generated
from NGS platforms.

Genomic Data Commons (GDC) National Cancer Institute (NCI) Genomic Data Commons (GDC) Functional genomics data generated
from NGS platforms in cancer.

Genome Sequence Archive (GSA) National Genomics Data Center (NGDC), China
National Center for Bioinformation (CNCB)

Genome Sequence Archive (GSA) Raw sequence reads from diverse
sequencing platforms

NGS, Next-Generation Sequencing.

FIGURE 2 | Workflow in RNA-Seq analysis. Transcriptome can be sequenced
either from messenger RNA (mRNA) fraction, or total RNA, which includes
also ribosomal RNA and transfer RNA. (1) RNA-sequencing generate a large
amount of data from the millions of sequenced fragments (reads), and
converts the information into a FASTQ file. (2) Pre-processing steps are
commonly performed including quality check, trimming, filtering or error
correction. (3) If an annotated genome is available, the sequenced reads are
mapped onto the reference genome to identify each transcript and the
correspondent gene. In this case, it is recommended to use splice-aware
aligners, that align reads across splice junctions. However, if a reference
genome is not available, then the reads will be assembled de novo by their
overlapping regions to form contigs. (4) Next, quantification determines the
number of raw reads that map to each transcript or gene and commonly
normalized them to be compared between samples. The most commonly
used normalizations are the “Reads Per Kilobase Million” (RPKM) or its
alternative “Fragments Per Kilobase Million” (FPKM) and the “Transcripts per
Kilobase” (TPM). (5) Then, differential expression (DE) analysis allows the
identification of those genes whose expression change under particular
circumstances indicates the gene expression profile associated to a certain
condition through different statistical methods. (6) The result of a differential
expression analysis is a list of DE genes that can sometimes contain hundreds
or even thousands of genes. A downstream analysis is usually needed to
interpret the results, as Gene Set Analysis (GSA) or Gene Set Enrichment
Analysis (GSEA). Besides, there are many other options for the analysis of
RNA-seq data, as the identification of Single Nucleotide Polymorphisms, or
nucleotide insertions and deletions.

the Mycobacterium tuberculosis complex (MTBC) species, the
genetically related etiologic agents of tuberculosis in humans or
other animals.

In this review, we will navigate through some of the most
relevant HTTr studies performed in TB to date. We will not delve
into the posterior evaluation and validation of the postulated
biomarkers. Studies have been classified in sections according to
their contributions, although they usually served to more than
one purpose. A summary of applications and references can be
found in Table 3.

Mechanisms of Tuberculosis Infection
TB HTTr studies can be addressed from two different
perspectives: (i) one focused on the mechanisms used by the
mycobacteria to infect the host and escape the immune system,
or (ii) on the host’s immune defense itself.

Focusing on the mycobacteria mechanisms of infection,
Mtb is able to adapt to different scenarios through the
course of infection, changing its gene expression accordingly.
The characterization of the bacteria response in different
microenvironment will improve our understanding of TB
pathogenesis and how it escapes from the immune response.

In vitro culture is one of the easiest way to study the
mycobacteria. Microarray and RNA-Seq have been used to study
its growth in broth culture (either exponential or stationary
phase), or after being exposed to a variety of perturbations
that mimic the infection process. Low pH (Fisher et al., 2002;
Tan et al., 2013), low oxygen (Bacon et al., 2004; Rustad
et al., 2008), oxidative stress (Ohno et al., 2003; Mehra and
Kaushal, 2009; Voskuil et al., 2011) or other perturbations
(Stewart et al., 2002; Tan et al., 2013; Lin et al., 2016;
Saini et al., 2020) are commonly used to recreate the intra-
macrophage phagosomal environment. These studies have shown
that environmental stress triggers different survival mechanisms
in Mtb. For instance, the two-component regulator phoPR
in response to Cl- in synergy with pH (Tan et al., 2013);
genes involved in the non-ribosomal-peptide synthesis and
fatty acid metabolism in low-pH environment (Fisher et al.,
2002); the biosynthesis of cell wall precursors in response to
low oxygen (Bacon et al., 2004), sigma factors (Mehra and
Kaushal, 2009) or gene expression regulation induced by reactive
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TABLE 3 | Summary of high-throughput transcriptomic applications in TB research.

Field in TB research Applications References

Mechanisms of bacterial
infection

• Characterize Mtb growing in vitro. Fisher et al., 2002; Stewart et al., 2002; Ohno et al., 2003; Bacon et al., 2004;
Rustad et al., 2008; Mehra and Kaushal, 2009; Voskuil et al., 2011; Tan et al.,
2013; Lin et al., 2016; Saini et al., 2020

• Characterize mutant isogenic strains
and clinical isolates.

Manganelli et al., 2002; Stewart et al., 2002; Gao et al., 2005; Rose et al.,
2013; Eldholm et al., 2014; Gomez-Gonzalez et al., 2019; Saini et al., 2020

• Characterize Mtb infecting cells
in vitro.

Chaussabel et al., 2003; Schnappinger et al., 2003; Cappelli et al., 2006;
Rachman et al., 2006a; Rohde et al., 2007, 2012; Fontán et al., 2008a,b;
Zimmermann et al., 2017

• Gene expression changes during
in vivo infection.

Talaat et al., 2004; Rengarajan et al., 2005; Rachman et al., 2006b; Gautam
et al., 2015; Coppola et al., 2016; Sharma et al., 2017; Pisu et al., 2020, 2021

• Biofilm production. Flores-Valdez et al., 2020

Mechanisms of latency • Model of latency in vitro. Sherman et al., 2001; Betts et al., 2002; Park et al., 2003; Bacon et al., 2004;
Hampshire et al., 2004; Muttucumaru et al., 2004; Voskuil et al., 2004; Beste
et al., 2007; Murphy and Brown, 2007; Balázsi et al., 2008; Deb et al., 2009;
McGillivray et al., 2015; Aguilar-Ayala et al., 2017

Mechanisms of host response • Characterize the host immune
response to infection, analyzing blood
or lung tissue.

Berry et al., 2010; Jacobsen et al., 2010; Kim et al., 2010; Maertzdorf et al.,
2011a; Ottenhoff et al., 2012; Joosten et al., 2013; Arlehamn et al., 2014;
Singhania et al., 2018; Cai et al., 2020; Weiner et al., 2020

• Understand the bases of early
clearance.

Weiner et al., 2020

• Function of host non-coding
regulatory RNA.

Liu et al., 2011; Sharbati et al., 2011; Wang et al., 2011

• Dual transcriptomic analysis to
comprehend host-bacteria interaction.

Fontán et al., 2008a; Rienksma et al., 2015; Zimmermann et al., 2017; Pisu
et al., 2020, 2021

Diagnosis • Identify blood biomarkers that
differentiate active, latent TB patients or
healthy individuals.

Jacobsen et al., 2007; Mistry et al., 2007; Berry et al., 2010; Maertzdorf et al.,
2011a,b; Anderson et al., 2014; Cai et al., 2014; Zak et al., 2016; Singhania
et al., 2018; Estévez et al., 2020

• Biomarkers that differentiate TB from
other infectious diseases.

Berry et al., 2010; Maertzdorf et al., 2012; Bloom et al., 2013; Kaforou et al.,
2013; Anderson et al., 2014; Hoang et al., 2021

• Biomarkers for extrapulmonary TB. Roe et al., 2016

• Biomarkers for HIV-TB coinfection. Kaforou et al., 2013; Anderson et al., 2014

Treatment evolution • Identify biomarkers of success/failure
to anti-TB treatment.

Berry et al., 2010; Bloom et al., 2012; Ottenhoff et al., 2012; Cliff et al., 2013,
2016; Zak et al., 2016; Thompson et al., 2017; Penn-Nicholson et al., 2020;
Tabone et al., 2021

Progression to TBI • Finding biomarkers that predict
progression to active TBI.

Maertzdorf et al., 2011b; Zak et al., 2016; Scriba et al., 2017; Suliman et al.,
2018; Warsinske et al., 2019; Ahmed et al., 2020; Estévez et al., 2020; Gupta
et al., 2020; Moreira-Teixeira et al., 2020b; Roe et al., 2020; Burel et al., 2021;
Esaulova et al., 2021; Nathan et al., 2021; Tabone et al., 2021

• Characterize patients at risk of
recurrent TB.

Mistry et al., 2007

Drug resistance and search for
novel drugs

• Understand mechanisms underlying
Mtb single and multi-drug resistance
in vitro.

Keren et al., 2011; Chatterjee et al., 2013; Knegt et al., 2013;
Peñuelas-Urquides et al., 2013; Eldholm et al., 2014; Blondiaux et al., 2017;
Zheng et al., 2018

• Identify bacterial candidates for drug
targeting.

Betts et al., 2002; Talaat et al., 2004; Gao et al., 2005; Cappelli et al., 2006;
Rachman et al., 2006b; Murphy and Brown, 2007; Balázsi et al., 2008; Fontán
et al., 2008a; Rustad et al., 2008; Deb et al., 2009; Salamon et al., 2014;
Defelipe et al., 2016; Aguilar-Ayala et al., 2017; Sharma et al., 2017; Banerjee
et al., 2020; Saini et al., 2020

• Unravel the mechanism of action of
novel compounds.

Boshoff et al., 2004; Waddell et al., 2004; Manjunatha et al., 2009; Foo et al.,
2018; Zheng et al., 2018

Vaccines and correlates of
protection

• BCG vaccination effect Fletcher et al., 2009, 2016; Arts et al., 2018; Cirovic et al., 2020

• Characterization of diverse BCG
strains and effect in vaccination.

Behr et al., 1999; Brosch et al., 2007; Abdallah et al., 2015

• Profile immune response generated
by novel TB vaccine candidates.

Zárate-Bladés et al., 2009; Gengenbacher et al., 2016; Hoft et al., 2016; Loxton
et al., 2017; Hansen et al., 2018; Santoro et al., 2018; van den Berg et al.,
2018; Martínez-Pérez et al., 2021

• Search for correlates of protection for
new vaccines design or therapies.

Aranday Cortes et al., 2010; Maertzdorf et al., 2011b; Fletcher et al., 2016;
Hansen et al., 2018; Weiner et al., 2020; Martínez-Pérez et al., 2021

BCG, Bacillus Calmette-Guérin; HIV, Human Immunodeficiency Virus; Mtb, Mycobacterium tuberculosis; MTBC, Mycobacterium Tuberculosis Complex; TB, Tuberculosis.
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nitrogen species, via overlapping signal transduction pathways
(Ohno et al., 2003).

Diversity of MTBC members are used: wild-type common
research strains (Abdallah et al., 2015), mutant strains
(Manganelli et al., 2002; Stewart et al., 2002; Saini et al.,
2020), or clinical isolates to characterize them (Gao et al., 2005;
Rose et al., 2013; Eldholm et al., 2014; Gomez-Gonzalez et al.,
2019). A great part of the work done with mutants use genetically
modified isogenic strains, constructed to assess the function of
a certain gene. This input has been key to comprehend most
bacterial virulence factors, including the acr-2 gene, one of
the most prominent features of the Mtb heat-shock response
(Stewart et al., 2002).

However, in vitro bacterial growth cannot completely simulate
the host intracellular environment. Capturing the transcriptome
of mycobacteria inside macrophages or dendritic cells is
technically difficult because of the low abundance and quality
of bacterial RNAs (Hinton et al., 2004) and hence there are
limited data available. Pioneer work by Schnappinger et al.
(2003) captured for the first time the intra-phagosomal Mtb
transcriptome. They infected bone-marrow macrophages from
wild-type and mutant mice and profiled the Mtb transcriptome
in different conditions. Data revealed how Mtb upregulate
genes in the phagosome required for fatty acid degradation,
siderophore synthesis, DNA repair, cell envelope remodeling,
lead to anaerobic respiration and increase iron uptake. Other
studies followed their lead, including in vitro infection of human
(Chaussabel et al., 2003; Cappelli et al., 2006; Fontán et al.,
2008a,b; Zimmermann et al., 2017) or mouse macrophages
(Rachman et al., 2006a; Rohde et al., 2007, 2012).

It is of special interest to define the bacterial expression
changes occurring inside pulmonary tissue, the main site of
infection, and especially from human TB samples. Nevertheless,
in vivo infection has been mostly studied using animal models
(Talaat et al., 2004; Rengarajan et al., 2005; Gautam et al.,
2015; Coppola et al., 2016; Pisu et al., 2020, 2021) and have
described how the bacteria changes its transcriptome within
days of infection (Talaat et al., 2004; Coppola et al., 2016).
Only a few articles have worked directly with samples from
infected TB patients (Rachman et al., 2006b; Sharma et al., 2017).
Another area explored by HTTr is the biofilm production by
Mycobacterium species (Flores-Valdez et al., 2020).

Mycobacterial features drawn from these studies could
also be used as targets for novel TB drugs and therapies.
However, further research is required due to the plasticity
of the response depending on the infection status, the
microenvironment and the differences in methodology
among publications.

Mechanisms of Mtb Latency
One of the most remarkable Mtb features is its ability to adapt
to stress conditions generated by the host by entering into
latency. This dormant phase is characterized by growth arrest,
anaerobic respiration and antibiotic tolerance. Understanding
the mechanisms behind the latent phase and how it is switched
would help battling persistent TB. In physiological conditions,
latent bacteria will be mostly contained into granulomas,

multicellular structures comprised of macrophages, T cells, other
cell types and biomolecules.

In vitro studies have tried to recreate the conditions believed
to occur inside the granuloma. In order to do that, HTTr have
been applied to MTBC cultures in hypoxia (Sherman et al., 2001;
Bacon et al., 2004; Muttucumaru et al., 2004; Voskuil et al., 2004;
McGillivray et al., 2015), starvation (Betts et al., 2002; Hampshire
et al., 2004) or a combination of conditions (Beste et al., 2007;
Deb et al., 2009; Aguilar-Ayala et al., 2017).

Isogenic mutant strains were tested in dormancy-like
conditions to understand the role of diverse genes in latency (Park
et al., 2003; McGillivray et al., 2015). Some key genes involved in
transition to latency were discovered trough these HTTr studies,
as the DosR regulon (Park et al., 2003). A meta-analysis of Mtb
under latency-like conditions analyzed sets of genes regulated by
transcription factors, and found differences during its adaptation
(Balázsi et al., 2008). They agreed that dosR-controlled genes were
the most responsive early during infection, while nadR, sigE,
sigC, and furB regulons peaked later, after day 20. Other meta-
analysis searched promising latency targets for drug discovery
(Murphy and Brown, 2007).

Study of latent mycobacteria in vivo gets more problematic.
The most widely used laboratory mouse strains do not generate
caseous granulomas. As a consequence, specific mice strain
(C3HeB/FeJ) or other animals as guinea pigs are commonly
used, raising the experimental costs. Regarding human studies,
obtaining granulomas from living patients requires delicate
surgery, which is only recommended for patients with severe
lung disease. To the best of our knowledge, transcriptome data
from latent MTBC bacilli in vivo are not publicly available
yet. Exploring TB latency remains technically challenging, but
warrant further investigation.

Mechanisms of Host Immune Response
Along with the mycobacteria, the host response can swing the
outcome of the disease. There are many unsolved questions
about how some individuals develop the active disease while
others go through latent infection or are able to clear the
mycobacteria early.

Host transcriptional studies in human using easily collectible
samples, like blood or saliva, had helped both exploring
the immunopathogenesis of TB and identifying diagnostic
markers. A pioneer work was conducted by Berry et al. (2010),
demonstrating that blood transcriptome could reflect part of the
events taking place at the site of infection. Such study provided a
393-gene signature associated with active TB able to discriminate
between active and LTBI.

Following their steps, posterior studies have searched for
specific features of active and/or latent TB disease (Berry
et al., 2010; Maertzdorf et al., 2011a; Ottenhoff et al., 2012;
Singhania et al., 2018) that have provided a greater insight
into the host immune mechanisms that take place during
the infection. Crucial TB biomarkers were derived from these
works, including the first evidence of the importance of type I
interferon in the pathogenesis of human tuberculosis (Berry et al.,
2010); alteration of pathways related to regulation of immune
responses; signal transduction and activation of leukocyte
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populations; intracellular protein trafficking; cell structure and
motility changes; cell cycle control, phagocytosis, endocytosis
and activation of the complement cascade. The diagnostic
applications of these and other studies are further detailed in the
TB diagnosis section.

Integration of results from independent studies can offer a
new vision, such as the suggestion of a strong dominant role
for myeloid cells in TB inflammation (Joosten et al., 2013).
Additionally, application of single-cell transcriptomics enabled
the identification of novel biomarkers and cell populations
participating in TB previously undescribed, such as the depletion
of the natural killer cell subset CD3−CD7+GMZMB+in TB
(Cai et al., 2020).

Further efforts profiled the host response by isolating
certain cell subtypes from blood and analyzing their specific
transcriptional response (Jacobsen et al., 2010; Arlehamn et al.,
2014). The bases of early clearance have also been investigated,
being able to predict conversion to tuberculin skin test positive of
household contacts, prior to any signs of infection (Weiner et al.,
2020). Nonetheless, blood profiling may miss factors of biological
relevance only present in the real environment of infection.

Transcriptomic studies using cells from the site of infection
from real TB patients remain scarce, mainly owing to the
difficulty of obtaining samples. Kim et al. (2010) successfully
isolated caseous granulomas from TB patients, finding abundant
transcripts involved in various destructive tissue pathologies
and upregulated genes for lipid sequestration and metabolism.
Importantly, the granuloma transcriptome did not entirely
correlate with published TB blood signatures. Despite the
difficulty, a proteomic human granuloma signature has also been
accomplished (Marakalala et al., 2016). Future work deciphering
the granuloma environment will have to deal with the enormous
heterogeneity of granulomas within the host. Other approaches
have captured the transcriptional response of cells after in vitro
Mtb infection, using either human (Chaussabel et al., 2003;
Volpe et al., 2006; Fontán et al., 2008a; Salamon et al., 2014;
Zimmermann et al., 2017) or animal cells (Ehrt et al., 2001;
Schnappinger et al., 2003; Shi et al., 2003; Roy et al., 2018).

In these settings, in vivo infection in animal models are crucial.
They allow not only to harvest a higher amount of sample than
in patients, but also grant control and decision over infection
conditions. Transcriptome analysis has been commonly done in
blood (Moreira-Teixeira et al., 2020a,b) or lungs (Seiler et al.,
2003; Mehra et al., 2010, 2015; Huang et al., 2018; Ahmed
et al., 2020; Moreira-Teixeira et al., 2020b; Pisu et al., 2020)
from mice or macaques. Some of these works beautifully isolated
alveolar (AM) and interstitial macrophages (IM) from lung,
obtaining their unique signatures after infection (Huang et al.,
2018; Pisu et al., 2020). Other projects made progress toward
the correlation of the TB signature among human and animal
models. Ahmed et al. (2020) identified common transcriptional
immune correlates of TB across lung from animal models and
human blood. Moreira-Teixeira et al. (2020b) identified a blood
signature in TB-susceptible C3HeB/FeJ mice infected with Mtb
HN878 that is compatible with the human signature, whereas it
is minimally altered in blood from TB-resistant C57BL/6J mice
infected with Mtb H37Rv.

Again, single-cell RNA-Seq technology also provided novel
insights in the field. Pisu et al. (2021) described the functional
heterogeneity in AM and IM populations in mouse infected
lungs. An outstanding work by Khan et al. (2020) using bulk
and single-cell RNA-seq, demonstrated that Mtb is able to
reprogram hematopoietic stem cells in the bone marrow, limiting
myelopoiesis and impairing trained macrophage immunity.
HTTr can also be used to analyze changes in the microRNA
fraction (Liu et al., 2011; Sharbati et al., 2011; Wang et al., 2011)
during mycobacteria infections.

Lastly, the usage of dual transcriptomic analysis, analyzing
in parallel both the host and the bacteria transcriptomes,
is an interesting approach with growing presence (Fontán
et al., 2008a; Rienksma et al., 2015; Zimmermann et al., 2017;
Pisu et al., 2020, 2021). This method provides a complete
vision of how both organisms interact within each other at
a precise time. For instance, it was found a link between
bacterial stress, induction of drug tolerance and the expression
levels of CD11c in macrophages (Pisu et al., 2021). In other
work, Mtb growing inside AMs (their favorite niche) were
reported to upregulate genes of oxidative phosphorylation,
mitochondrial function, iron storage, cell division and growth
(Pisu et al., 2020). Contrarily, Mtb inside IMs expressed more
genes of bacterial stress, concurring with the upregulation of
the host pro-inflammatory response by those macrophages.
Other studies linked the bacterial SigE regulon with the
modulation of the inflammatory response (Fontán et al.,
2008a); or decipher the pathogen’s diet inside the macrophages
(Zimmermann et al., 2017) by combining dual sequencing
and metabolomics.

Tuberculosis Diagnosis
TB diagnosis remain challenging. The current available tests
present diverse shortcomings; i.e., microscopy has poor
sensibility with low bacteria abundance; culture of Mtb
requires weeks to grow; ex vivo Mtb gene amplification test
Xpert MTB/RIF is expensive and fails to discriminate cleared
infections; etc. Besides, it is common to mislead TB with other
diseases due to its variable clinical signs. An accurate diagnosis
would translate into a more effective use of drug resources and to
the identification of individuals that will benefit from preventive
treatment. The advances in transcriptomic studies hold the
promise of finding new biomarkers that will serve to accurately
diagnose the different stages of TB infection.

The first ever published HTTr work in human TB diagnostic
was performed by Mistry et al. (2007). They compared whole-
blood from a reduced number of patients with active tuberculosis,
latently infected, cured TB or recurrent TB. Ensuing works
followed their lead, while the technological progress allowed a
better characterization of the disease, with higher number of
target genes and larger number of samples.

Although slight differences can be found in several studies, the
majority characterizes the TB response comparing between active
TB patients (TBI) with uninfected individuals (NoTBI) and latent
healthy patients (LTBI) (Jacobsen et al., 2007; Berry et al., 2010;
Maertzdorf et al., 2011a,b; Anderson et al., 2014; Cai et al., 2014;
Singhania et al., 2018; Estévez et al., 2020). In most published
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studies, the differential expression of a group of genes is usually
sufficient to classify these groups. Some highlighted genes or
pathways include an interferon-inducible neutrophil-driven gene
signature (Berry et al., 2010), lactoferrin, CD64, Ras-associated
GTPase 33A (Jacobsen et al., 2007), changes in FCGR1B signaling
(Maertzdorf et al., 2011b), or complement pathways (Cai et al.,
2014). MicroRNAs (Fu et al., 2011; Zhang et al., 2013) have also
been screened for TB diagnostic purposes.

The scientific community has made efforts in discriminating
the TB gene signature from extrapulmonary TB (Roe et al.,
2016) and other diseases (Berry et al., 2010; Maertzdorf et al.,
2012; Bloom et al., 2013), specially other pulmonary diseases or
co-infecting diseases that are highly prevalent in TB endemic
areas. Multicenter studies (Kaforou et al., 2013; Anderson et al.,
2014; Hoang et al., 2021) included a superior number of patients
suffering from TB and other diseases, including HIV-coinfection.

Despite efforts, human TB biomarkers have shown little
overlap between studies. An endless variety of factors may
contribute to the signature diversity: differences in cohorts,
variations in study design, diagnostic method for confirming
TB, misclassified or undetected pathologies, missing data, BCG
vaccination, transcriptomics platforms or analysis pipeline.
Metadata analysis have exploited available data sets in an attempt
to conceal existing studies (Sweeney et al., 2016; Warsinske et al.,
2019; Gupta et al., 2020). A three-gene set (GBP5, DUSP3, and
KLF2) defined by Sweeney et al. (2016), ascertain later in an
independent study (Warsinske et al., 2019), was robust enough
to diagnose active tuberculosis among their data.

Nonetheless, there is still a need for TB diagnostic biomarkers
to be used in a heterogeneous population. Most successful studies
were based on cohorts of hundreds of cases, with standardized
sample processing methods and correct identification of the
patients. The use of a validation cohort from another ethnicity
and TB endemicity seems to be key to test the robustness of the
transcriptomic signature. It is also highly desirable to compare
to diseases closely related to TB in order to ensure the specificity
of the infection. Moreover, the usage of samples different from
blood, such as sputum or bronchoalveolar lavage, could reflect
better what is happening at the site of disease, as they might
expose useful biomarkers that are not so evident in blood.
However, the difficulty in obtaining those samples and its limited
reproducibility are major drawbacks.

Biomarkers of Treatment Evolution
HTTr have also been applied to screen blood biomarkers
that correlate with the response to anti-TB treatment. Those
biomarkers would permit a rapid assessment of the treatment’s
success or failure and detect patients that require a change in the
treatment regimen. Implementation of the treatment monitoring
in clinical practice will have a beneficial impact on patient
wellness and health care costs.

Changes in the blood transcriptome of TB patients have
been detected during different stages of the treatment or
after treatment completion (Berry et al., 2010; Bloom et al.,
2012; Ottenhoff et al., 2012; Cliff et al., 2013; Tabone et al.,
2021). Generally, authors found a down-regulation of immune
or inflammation-related genes coinciding with the disease

resolution. A set of differentially expressed genes previously
identified as TB progression biomarkers (Zak et al., 2016)
also proved to be successful in treatment monitoring (Penn-
Nicholson et al., 2020). Furthermore, an appealing study
highlighted a signature of treatment failure before treatment
initiation (Thompson et al., 2017), while other work presented
a signature for detecting relapse after successful treatment
(Cliff et al., 2016).

Progression to Tuberculosis Infection
Although there are many evidences that suggest a continuous
spectrum of TB infection (Drain et al., 2018), its diagnosis is
currently divided into two different stages: latent or active TB.
A major drawback of the fight against TB is the inability to
differentiate between latently infected patients that are at a higher
risk of transitioning to an active disease.

Many efforts have been made into understanding and
predicting progression to active TBI, both amongst latently
infected population (Maertzdorf et al., 2011b; Zak et al., 2016;
Scriba et al., 2017; Burel et al., 2021), contacts of TB patients
(Suliman et al., 2018; Estévez et al., 2020; Roe et al., 2020; Nathan
et al., 2021), or combined cohorts in a meta-analysis of published
data (Warsinske et al., 2019; Gupta et al., 2020; Moreira-Teixeira
et al., 2020b). These studies differentiate TBI progressors and
non-progressors. Some results suggest that people at risk of
progression show an inflammatory profile that include Type
I/II interferon and complement genes in early stages before
progression to active TB, and a higher expression of lymphoid,
monocyte and neutrophil genes proximal to the disease onset
(Scriba et al., 2017).

One of the most cited works identified and validated a 16
gene-signature that differentiate people at risk of developing
the active disease (Zak et al., 2016). Warsinske et al. (2019)
compared 16 published gene signatures and assessed that the
three-gene set selected by Sweeney et al. (2016) for TB diagnosis
also served to accurately identify individuals at high risk of
progression. Comparison of TB risk across species showed that
the mentioned 16-gene signature is enriched in progressors
across animal models, and specified the genes that mediate
protective (as Stat1 and Tap1) or detrimental (Batf2, Fcgr1,
and Scarf1) responses in mouse model (Ahmed et al., 2020).
The study of Esaulova et al. (2021) used single-cell RNA-
seq and CyTOF technology to study TB in macaques. They
reported an augment of CD27+ NK cells in lungs during
latency Mtb-control, whereas progression was characterized by
plasmacytoid dendritic cells and T cells producing IFN responses.
Our group applied a machine-learning prediction model to
identify a subset of LTBI contacts whose transcriptional profile
are suggestive of having a higher probability of developing
active TB (Estévez et al., 2020). Tabone et al. (2021) have
recently published a unique study of blood signatures across
the TB spectrum, including incipient, subclinical, and active TB.
Changes in blood gene expression were minimal in incipient TB,
increased in patients with subclinical TB and became maximal
when clinical TB was diagnosed. They also assessed the effect
of anti-TB treatment, obtaining differential responses among
the defined TB subgroups. Other related studies included the
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characterization of patients at risk for recurrent tuberculosis
(Mistry et al., 2007).

Predicting potential progression to active TB using biomarkers
could be usefully translated into clinical care, by treating latent
infected cases prior to develop the disease or augmenting
medical monitoring.

Drug Resistance and Search for Novel
Drugs
The emergence of MDR and XDR Mtb strains severely
compromises TB treatment, and urges the discovery of
new therapeutic anti-mycobacterial compounds. We previously
assessed how comprehension of the bacterial transcriptome
helped in identifying potential drug candidates against both
active and dormant tuberculosis. Comparative analysis of
Mtb transcriptome treated with different drugs has also been
used to elucidate the mode of action of uncharacterized
anti-mycobacterial compounds, to identify new mycobacterial
targets, or to predict effective drug combinations. Besides, gene
expression comparison of resistant vs. sensitive strains can be
used to discern mechanisms of antibiotic resistance.

The transcriptome response of sensitive mycobacteria strains
to diverse drugs has been explored, including isoniazid (Wilson
et al., 1999; Betts et al., 2003; Boshoff et al., 2004; Waddell
et al., 2004), rifampicin (Boshoff et al., 2004), ciprofloxacin
(Sullivan et al., 2008), capreomycin (Fu and Shinnick, 2007), or
vancomycin (Provvedi et al., 2009). It has also been applied to
unravel the mechanisms of novel compounds that demonstrated
good antimycobacterial activity in vitro (Manjunatha et al., 2009;
Foo et al., 2018).

Some mechanisms of Mycobacterium antibiotic resistance are
already known, while others remain undiscovered. To inspect
further into those tolerance mechanisms, the transcriptome
response of mutant-resistant and sensitive-wild type Mtb strains
were compared in diverse studies. They included single-drug
(Knegt et al., 2013; Zheng et al., 2018), or multiple drug resistance
(Keren et al., 2011; Chatterjee et al., 2013; Peñuelas-Urquides
et al., 2013; Eldholm et al., 2014). Some of the main findings
of these studies included a possible role of genes Rv0559c
and Rv0560c (Knegt et al., 2013) in rifampicine resistance;
they also found a set of genes upregulated in Mtb persisters,
including UspA, SigF, or dnaE2 (Keren et al., 2011); described the
downregulation of diverse genes in multidrug resistant isolates
(Chatterjee et al., 2013), and the differential expression drug
efflux and mycolic acid synthesis pathways (Eldholm et al.,
2014). One work assessed the transcriptional changes triggered
by SMARt-420, a molecule that reverses ethionamide-acquired
resistance in Mtb (Blondiaux et al., 2017).

The majority of published studies were performed under
in vitro laboratory growth condition. Few works have explored
the transcriptional response of Mtb from clinical samples or
in vivo models during treatment (Karakousis et al., 2008; Shaikh
et al., 2021). Furthermore, latent bacteria are largely tolerant to
antibiotics, mostly because common antibiotics target proteins
expressed in replicating bacilli. It has been described an altered
transcriptional response to antibiotics in the dormant stage

(Karakousis et al., 2008; Keren et al., 2011). In this setting,
Mtb genes expressed during latency are obvious candidates for
drug targeting. Various studies addressed this issue (Defelipe
et al., 2016; Aguilar-Ayala et al., 2017; Banerjee et al., 2020)
and identified potential candidates, as phosphate synthase I3PS
or specific proteins Rv1994c, Rv2780, and Rv3515c. However,
when drawing conclusions, we must bear in mind that most data
are collected during Mtb transition into dormancy, rather than
during the rigorous latency stage.

In sum, discoveries in the field have helped to predict
the mechanism of action of previously uncharacterized
compounds, identifying potential drugs, novel drug targets,
or understanding resistance. One of the difficulties of the analysis
remains in differentiating the expression changes directly
corresponding to the drug target, from those derived, including
compensatory effects.

Immune Response to Novel Vaccines
and Correlates of Protection
The vaccine containing the Bacille Calmette-Gueìrin (BCG) is
currently the only approved TB vaccine, but it shows a highly
variable efficacy against pulmonary TB in adults. It consists in
a live-attenuated form of Mycobacterium bovis. As the classical
dogma of TB protection, attributed to interferon-γ and CD4
T cells, has partially failed (Kagina et al., 2010), new reliable
biomarkers of protection are searched to direct the development
of novel vaccines or therapies for TB.

Gene expression profiling of blood from BCG-vaccinated
donors revealed interesting findings, as a decrease in the
expression of cell adhesion molecules (Fletcher et al., 2009)
or the upregulation of several immune-related genes (Fletcher
et al., 2016). Currently, it is highly accepted that BCG triggers
epigenetic changes in the immune cells, inducing trained innate
memory (Kaufmann et al., 2018). A couple of publications
have addressed the changes in both the transcriptome and the
epigenome induced by the vaccine in humans (Arts et al., 2018;
Cirovic et al., 2020).

Pulmonary transcriptome after BCG vaccination has been
analyzed in various animal models, mostly in mice and macaques
(Mollenkopf et al., 2006; Aranday Cortes et al., 2010; Mehra
et al., 2013; Kunnath-Velayudhan et al., 2017). A singular study
analyzing the granuloma lesions in BCG-vaccinated macaques
found the upregulation of various cytokines and chemokines in
the vaccinated individuals (Mehra et al., 2013).

Importantly, distinct BCG strains may generate different
transcriptomic profiles in the host, which seems in line with
the high heterogeneity of the BCG vaccine efficacy. Numerous
publications focused on comparing the bacterial transcriptomes
of the diverse BCG variants in order to understand their
differences (Behr et al., 1999; Brosch et al., 2007; Abdallah et al.,
2015).

Novel vaccine candidates are continuously being developed
to substitute or boost BCG, and commonly the protective
results are compared to BCG itself. A common approach
has been developing mutants of BCG, which also helps in
the understanding of the mechanisms of BCG functioning.

Frontiers in Microbiology | www.frontiersin.org 9 February 2022 | Volume 13 | Article 835620

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-835620 February 18, 2022 Time: 16:17 # 10

Martínez-Pérez et al. High-Throughput Transcriptomics in Tuberculosis

Both the BCG bacterial transcriptome (Flores-Valdez et al.,
2018) or the host transcriptional response (Gengenbacher
et al., 2016; Hoft et al., 2016) are studied to characterize
those new BCG-based vaccines. Other novel vaccine strategies
included peptide/protein-based (Santoro et al., 2018; Martínez-
Pérez et al., 2021), viral vectors (Hansen et al., 2018) or
DNA vaccines (Zárate-Bladés et al., 2009). The transcriptome
analysis usually find a reduced TB disease-associated signature,
upregulation of antigen presenting pathways, and suggest
potential biomarkers of protection.

The human transcriptomic profile to novel TB vaccines is
scarce. Valuable lessons may be drawn from the most advanced
candidates: M72/AS01E (van den Berg et al., 2018) and VPM1002
(Loxton et al., 2017).

Discoveries of protective mechanisms can also be drawn from
therapeutic or early protection studies, discussed in previous
sections. Host-directed therapies is a new and emerging concept
in the treatment of TB, where the host response can be
boosted using diverse biological compounds, with or without
adjunct antibiotics.

Although HTTr studies can prioritize some candidate
biomarkers, further testing must be done to validate their true
effectiveness. Powerful correlates of TB protection will accelerate
the progress of new TB vaccine development and therapies.

DISCUSSION

To Shape the Future
The future of transcriptomics seems bright. Comparing
with what has happened with genome sequencing, we will
expect that new equipment, cheaper reagents, specialized
groups and better software, will come in the next years.
Hopefully, those advances will continue addressing the
complexity of TB disease.

RNA-Seq and microarrays are yet prohibitive for routine
clinical use or even some research projects, because of their costs
and expertise required. Commonly, RT-qPCR is used instead at
large scale studies to measure a limited signature of candidate
genes. This procedure is faster, cheaper, easier to use, and requires
minimal electric power. Nonetheless, it is expected that technical
progress will end up reducing prize and complexity. Currently,
the five platforms most commonly used for RNA-seq include
Illumina, SOLiD, Ion Torrent, PacBio and 454 Life sciences, with
differences in read length and accuracy. It is likely that, in the
near future, more companies will appear in the market, with new
reagents and kits available.

The standardization of the process, including preparation
of samples and analysis pipelines, would allow a better
comparison between laboratories. The goal is to obtain a
robust workflow requiring minimal resources to ensure feasibility
and data reproducibility amongst the highly variable clinical
infrastructures worldwide.

It is also crucial to count on reliable databases. Metadata must
be meticulously filled when uploading our results to a public
database. They must include a detailed experimental procedure,
cellular composition, RNA extraction details and sequencing

methods. Better integration among databases will also contribute
to easily find gene sets of interest.

There is a growing need of specialists in bioinformatic
infrastructures, as Supercomputing Centers, to process and store
data. A large combination of bioinformatics software tools and
resources is required to process the large volume of raw sequences
and the multiple steps in data analysis.

Education in Biocomputing at different levels (university,
master, doctorate), will increase the number of persons with
expertise in this field. Furthermore, translating big data into
simple and useful biological conclusions is usually challenging.
The expansion of knowledge in the biological context will help
finding interactions among differentially expressed (DE) genes or
pathways of biological significance.

One of the most promising approaches to boost the HTTr
data utilities is the application of machine learning technology.
Machine learning methods benefit from large datasets in order to
identify complex relationships between gene candidates. It allows
the integration of different datasets into one single analysis,
helping to overcome the limitations of typically small sample
sizes. Using this approach, one can benefit from all data available
in public repositories to learn from large, heterogeneous datasets
and build class-prediction models that help on the classification
of any sample, regardless of its origin. This is particularly
important in TB, where it is of special interest to find a gene
combination that could be used for diagnosis in multiple TB-
burden settings.

As it has happened with DNA sequencing, emerging
technologies will update the current transcriptomic platforms.
New technologies that could be more reliable, faster, requiring
less amount of sample, and able to detect low abundant
transcripts, are expected to come in the next years. As an
example, a new generation of sensing technology that uses
nanopore, developed by Oxford Nanopore, is suitable for
sequencing RNA without conversion to cDNA. Furthermore,
gene expression technology can be combined with other
platforms, as is the case of spatial transcriptomics. It uses
spatially barcoded mRNA-binding oligonucleotides, to obtain a
2D picture of gene expression within a histological section of
tissue. Nevertheless, this technology does not allow yet the study
of the complete transcriptome.

Integration of information coming from different sources
(clinical, immunological) and other omics data (genomic,
transcriptomic, epigenomics, proteomic, metabolomics,
glycomics, glycoproteomics) will provide an integrative
analysis of the factors involved in disease, embryology,
evolution or other processes. This field of study, termed
systems biology, may improve with the help of new sophisticated
computational tools. In recent years, researchers tried to
integrate transcriptomic and proteomic data in TB, finding
usually a poor correlation. It is expected for systems biology to
explain the complex regulatory mechanism that control RNA
and protein levels.

As we have seen along this review, HTTr has proven to be an
important tool to reveal interesting biological pathways in TB.
Nonetheless, forthcoming studies must take into consideration
some critical points:
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FIGURE 3 | Variables when designing high-throughput transcriptomic studies. Diverse parameters must be taken into account when designing new TB studies
involving HTTr. Some of them include: (1) the infection model: in vitro (cell infection) or in vivo (animals or TB patients) (2) type of bacteria (i.e., strain, mutated or
wild-type) and culture conditions; (3) samples to be collected (saliva, sputum, blood, etc.), including analysis of immune cells or subpopulations, at basal level or after
stimulation; (4) the stage of the disease (i.e., active disease, latency, early clearance); (5) target element: bacteria, host or both, and (6) the HTTr platform most
adequate for the study.

• Many external factors can affect the transcriptional
results. They include the nature of the sample collection
(bronchoalveolar lavage, lung parenchyma, saliva, blood),
sample processing (whole sample, cell subset isolation,
cell subset-depletion) or sequencing platform. Mtb strains,
ethnically diverse cohorts and misclassification of patient,
will also affect in the transcriptomic signature. Findings in a
cohort might not be effectively translated into global clinical
use. Researchers must be aware of the variables when
interpreting results and designing experiments (Figure 3).
• There must be a partial reliability of the blood

transcriptome, as it may not truly represent the processes
occurring within the lungs. On the other hand, animal
models may not be the best way to study the human
TB disease. Some models recreate better the pathology
of human TB (guinea pig, macaques) than others
(mice). Differences regarding number of exposures,
bacterial concentration, challenge route, kinetics, type of
lesions produced or illness severity, should also be taken
into consideration.
• Further biological studies and clinical validation must be

pursued to elucidate the role of the product of DE candidate
genes. Moreover, gene expression methods cannot predict
the final protein existence, nor their post-translational
modifications or evaluate the presence other molecules
like polysaccharides, lipopolysaccharides and glycolipids.

Complementary studies are required in order to confirm
the role of candidate molecules.
• Lastly, special adaptations of the transcriptomic technology

are opening new horizons: Single-cell RNA sequencing is a
promising technique to explore cell heterogeneity within a
population and reveal novel signatures and cell subsets. T
cell receptor (TCR) and B cell receptor (BCR) sequencing
can use bulk or single-cell methods to characterize complex
T and B cell responses, respectively. These techniques allow
the identification of all potential clonotypes in a diverse
repertoire of TCRs and BCRs, and it is a powerful tool for
studying the distribution of lymphocyte repertoires.

CONCLUSION

Once accepted the extraordinary plasticity of mechanisms
involved in Mycobacterium tuberculosis-host interactions, a lot
of work remains. HTTr have been immensely valuable in
advancing on TB research. It can be applied to a variety of
samples and experimental conditions depending on the question
asked. Unfortunately, differences in experimental procedures,
sequencing platforms, or incomplete metadata usually hamper
further exploitation of public-available data.

Currently, RNA-Seq offers key advantages over the rest of
existing technologies of HTTr, although it might be replaced
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in the near future. There is a growing need of bioinformatics
specialists and infrastructures that must be met to fully exploit
the generated HT data. Lastly, we encourage the creation of
interdisciplinary projects that integrates HTTr with the rest of
omic sciences.

SEARCH STRATEGY AND SELECTION
CRITERIA

References were searched through PubMed by use of the
terms “Tuberculosis,” “Transcriptomics,” “Microarray,” and
“RNA-Sequencing,” for articles published from 1980 to
November 2021. Then, articles were ascertain to use high-
throughput transcriptomics methods. A selection of most
relevant publications was performed based on number of
citations, quality and impact of publication journal or
relevance in the field.
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