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Abstract
Background Working memory (WM) abilities are frequently impaired in neurological disorders affecting fronto-parietal 
cortical/sub-cortical structures. WM deficits negatively influence interventional outcomes and everyday functioning. This 
study thus aimed at the following: (a) developing and standardizing an ecologically valid task for WM assessment ( Ice Cream 
Test, ICT); (b) validating and norming a novel WM test (Digit Ordering Test, DOT), as well as providing updated norms 
for digit span (DS) tasks, in an Italian population sample; (c) introducing a novel scoring procedure for measuring WM.
Methods One-hundred and sixty-eight Italian healthy participants—73 male, 95 females; age: 48.4 ± 19.1 (18–86); edu-
cation: 12.1 ± 4.8 (4–21)—underwent a thorough WM assessment—DOT, ICT, and both forward and backward DS tasks 
(FDS, BDS). The ICT requires participants to act as waiters who have to keep track of customers’ orders. For each task, WM 
and total (T) outcomes were computed, i.e., the number of elements in the longest sequence and that of recalled sequences, 
respectively. Norms were derived via the equivalent score (ES) method.
Results DS ratios (DSRs) were computed for both WM/S and T outcomes on raw DS measures (BDS divided by FDS). Age 
and education significantly predicted all WM tasks; sex affected FDS and DSR-T scores (males > females). WM measures 
were highly internally related.
Discussion The present work provides Italian practitioners with a normatively updated, multi-component, adaptive battery 
for WM assessment (WoMAB) as well as with novel outcomes which capture different WM facets—WM capacity and 
attentive monitoring abilities.

Keywords Working memory · Executive functioning · Normative data · Validation · Ecological validity · 
Neuropsychological assessment

Introduction

Working memory (WM) comprises a set of high-order, 
non-instrumental limited-capacity cognitive functions that 
allow “temporary storage and manipulation of information 
necessary for […] complex cognitive tasks” [2].

The original multi-component model [3] identifies 
a central executive (CE) component and two modality-
specific sub-components: the phonological loop (PL) and 
the visuospatial sketchpad (VSS)—processing verbal and 
visual information, respectively. The CE is a control sys-
tem of limited capacity that supports complex cognitive 

activities by suppressing irrelevant information; it allo-
cates attentive resources and allows alternating between 
different tasks. The PL is a modular subsystem that retains 
the memory online and prevents it from decaying through 
both vocal and sub-vocal rehearsals. The VSS temporarily 
stores and processes visual and spatial information. Most 
recent formulations [31] introduce a further component, 
i.e., the episodic buffer—a multi-modal limited-capacity 
system integrating information from the other components 
into a unitary episodic representation. WM functioning 
emerges from the interaction between perceptual and 
attentive mechanisms and representations stored in the 
long-term memory system [11, 12].

Converging evidence from neuroimaging and brain 
injury studies hint at a widespread bilateral fronto-parietal  * Gabriella Bottini 
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both cortical and sub-cortical network being the neural 
substrate of WM [18, 25, 27, 33].

WM deficits are thus often associated with focal or dif-
fuse brain damages; hence, the neuropsychological assess-
ment constitutes a relevant aspect for cognitive rehabili-
tation [13, 20, 28]. Several studies have found that WM 
deficits impair the activities of daily living and affect reha-
bilitation outcomes [14, 23].

In clinical practice, the digit span (DS) [36] is one of 
the most widely used tasks to measure the capacity of the 
auditory-verbal component in WM. According to Bad-
deley’s model [31], the forward (FDS, forward DS) ver-
sion evaluates the short-term, passive retention of verbal 
stimuli, whereas the backward version (BDS, backward 
DS) requires maintaining and actively manipulating infor-
mation in order to reproduce in reverse order the sequence 
presented. Both forward and backward versions of the digit 
span have been validated and normed in Italy [24, 26].

Another instrument for assessing auditory-verbal WM is 
the Digit Ordering Test (DOT) [10, 17, 37], which requires 
clients to listen to a series of randomly ordered digits and 
then to recall items in ascending order immediately after 
their presentation. No Italian standardizations of the DOT 
are available so far.

Evidence regarding the influence of WM deficits on daily 
functioning highlights the relevance of ecological validity 
in cognitive testing [5]. Available tests for the assessment of 
WM may fail to detect its dysfunction in everyday life [35].

We aimed at developing a composite WM assessment 
battery (WoMAB) and more specifically at the following: 
(a) standardizing a novel task that investigates auditory-
verbal WM from an ecological perspective; (b) validating 
and norming the DOT in Italian healthy individuals; and 
(c) providing updated normative data for DS tasks. A novel 
scoring procedure will be also proposed: WM and total 
(T) outcomes, i.e., the number of elements in the longest 
sequence and that of recalled sequences, respectively. The 
underlying hypothesis is that WM scores reflect a measure 
of the auditory-verbal WM capacity, whereas T scores pro-
vide insight into attentive monitoring abilities during task 
execution.

Methods

Participants

One-hundred and seventy-three Italian native-speakers indi-
viduals were initially recruited from different regions of both 
Northern and Southern Italy, as well as from the Canton 
Ticino region of Switzerland. Sample stratification is dis-
played in Table 1.

Inclusion criteria were as follows: (a) age between 20 
and 90 years; (b) years of education between 5 and 18; (c) 
an adjusted scores on the Mini-Mental State Examination 
(MMSE) above the established cut-off [21, 22].

Participants were excluded if presenting with neu-
rological disorders, traumatic brain injury, psychiatric 
disorders, previous brain surgeries, drug abuse, learning 
disabilities, psychotropic drug treatment, and visual/audi-
tory impairments (participants with corrected-to-normal 
vision and audition were included).

After applying inclusion/exclusion criteria, N = 168 
individuals were included.

Participants provided written informed consent before 
being enrolled. The study was  approved by the Eth-
ics Committee of the University of Pavia and conducted 
in accordance with the Declaration of Helsinki.

Materials

Four auditory-verbal WM tests were administered whose 
order was counterbalanced across participants to avoid 
carry-over effects.

Each task started with warming-up trials. Mistakes 
on preliminary items could be corrected, although 
without providing execution strategies. Stimuli were 
pronounced at the rate of one per second, with neutral 
intonation. Participants were given 15 s to recall the 
items. Two lists of the same length were administered; 
the task was interrupted after two consecutive fails. No 
cues were provided but self-corrections were accepted. 
Recalled sequences containing intrusions were scored 

Table 1  Sample stratification 
for age, education, and sex

Notes: Cells show male/female ratio for each co-occurrence

Education Age

35 ≤ 36–45 46–55 56–65 66–75 76–85  ≥ 86

5 ≤ M/F 0/0 0/0 0/1 3/1 4/8 4/6 0/0
6–11 2/2 5/1 4/13 7/5 4/3 0/1 1/0
12–16 9/11 3/4 2/6 4/1 1/1 0/1 0/0
 ≥ 17 11/21 1/0 3/3 4/6 1/0 0/0 0/0
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as 0. Both WM and T outcomes were computed for 
each WM task.

The Ice Cream Test (ICT) is a novel ecologically 
valid tool investigating auditory-verbal WM. Partici-
pants were required to act as if they were waiters in 
an ice cream shop who have to keep track of custom-
ers’ orders. Each customer will order a single ice cream 
flavor; it is required to tell, within 15 s, how many ice 
creams have to be prepared for each flavor. ICT-WM 
outcome ranges 0–10 (longest sequence) and ICT-T 0–16 
(recalled sequences).

FDS and BDS tasks were adapted from Monaco 
et  al. [24]. Additionally, the present version intro-
duced one two-digit warming-up sequence. Contrarily 
to other WM outcomes, that for the FDS was named 
“Span” (FDS-S)—as not unequivocally targeting WM 
abilities. FDS-S ranges 0–9 (longest sequence) and 
FDS-T 0–16 (recalled sequences). BDS-WM ranges 
0–8 (longest sequence) and BDS-T 0–14 (recalled 
sequences).

The DOT [10, 17, 37] consists of presenting a list 
of randomly ordered digits that have to be recalled in 
ascending order. DOT-WM outcome ranges 0–8 (longest 
sequence) and DOT-T 0–12 (recalled sequences).

Test protocols will be provided to interested practition-
ers upon request to the corresponding author.

Statistical analyses

By conservatively assuming a small-to-medium size 
(f2 = 0.10) of background predictors effects (dfnumerator = 3) 
[6, 24, 26], the minimum sample size was set at N = 146 via 
a power analysis for multiple linear regression analyses [32] 
(R package pwr) [9]. α was set at 0.05 and 1-β at 0.9; N was 
yielded by dfnumerator + dfdenominator + 1.

Skewness and kurtosis statistics were regarded as sugges-
tive of a violation of the assumption of normality if >|1| and 
|3|, respectively [19].

Associations of interest between quantitative variables 
were assessed by means of either Pearson’s or Spearman’s 
coefficients. Bonferroni correction for multiple comparisons 
was applied if adequate.

Norms were drawn by adopting the equivalent score (ES) 
method [8, 34], a regression-based approach adjusting raw 
scores (RSs) for significant predictors of interest (or their 
transforms) and then allotting adjusted scores (ASs) into a 
5-level ability scale: ES = 0 ( “abnormal”); ES = 4 (“high-
end normal”); ES = 1, 2, and 3 (respectively, “borderline”, 
“low-end normal”, “normal”). Outer and inner tolerance lim-
its (oTL; iTL) were computed to provide an interval estimate 
for the cut-off (ASs < oTL fall within ES = 0). Average ESs 
(AES) [7] were computed for both T and WM/S outcomes 

in order to provide a global estimate of attentive monitoring 
and WM capacity across tasks.

R 3.6.3 [30] was used for implementing the analy-
ses. Regression studies and calculations of both TLs and 
ES threshold were implemented as described in Aiello & 
Depaoli [1].

Results

Participants’ background features and cognitive scores are 
summarized in Table 2.

In agreement with Monaco et  al.’s [24], the ratios 
between FDS and BDS tasks were computed (by dividing 
BDS measures by FDS ones) for both T al WM/S scores 
(DSR-T,DSR-WM/S).

Non-derived WM measures were highly internally related 
(0.39 ≤ r(168) ≤ 0.96; p < 0.001)—even when adjusting the 
significance threshold (αadjsusted = 0.05/28 = 0.002).

Ratios were associated with all remaining WM outcomes 
(0.23 ≤ r(168) ≤ 0.72; 0.003 ≤ p ≤ 0.001), whereas not with 
FDS measures.

All WM/S and T measures were negatively associated 
with age (range: − 0.32 ≤ r(168) ≤  − 0.59; p < 0.001) whereas 
positively with education (range: 0.2 ≤ r(168) ≤ 0.46; 
p ≤ 0.011). Males outperformed females on the BDS-
T, BDS-WM, and DSR-T (range: 2.17 ≤ t(166) ≤ 2.56; 
0.011 ≤ p ≤ 0.035); no other sex differences were detected.

When simultaneously tested, age and education trans-
forms revealed to be predictive of DOT (-T and -WM), ICT 
(-T and -WM), and FDS (-T and -S) scores (age: range: 
|.28|≤ β ≤|.37|; |3.03|≤ t ≤|4.22|; p ≤ 0.003; education: rang
e: − 0.35 ≤ β ≤  − 0.24; − 3.97 ≤ t ≤  − 2.7; p ≤ 0.008). Within 
a multiple regression model, sex, age, and transformed 

Table 2  Participants’ background features and WM measures

Notes: F, female; M, male; MMSE, Mini-Mental State Examination; 
DOT, Digit Ordering Test; ICT, Ice Cream Test; FDS, forward digit 
span; FDS, backward digit span; DSR, digit span ratio; T, Total; WM, 
working memory; S, span

Background features
  N 168
  Sex (M/F) 73/95
  Age (years) 48.41 ± 19.08 (18–86)
  Education (years) 12.09 ± 4.8 (4–21)
  MMSE 28.44 ± 2.31 (17–30)

WM measures T WM/S
  DOT 7.33 ± 2.45(1–14) 6.25 ± 1.48 (2–12)
  ICT 7.29 ± 2.81 (2–16) 6.32 ± 1.81 (3–11)
  FDS 9.98 ± 2.48 (4–16) 6.45 ± 1.34 (4–9)
  BDS 7.07 ± 2.73 (2–14) 5.02 ± 1.5 (2–8)
  DSR 71 ± .21 (.22–1.27) .78 ± .18 (.18–1.25)
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education were found to be predictive of BDS-T (sex: 
β =  − 0.21; t =  − 3.48; p = 0.001; age: β =  − 0.47; t =  − 5.93; 
p < 0.001; education: β =  − 0.21; t =  − 2.71; p = 0.008) 
and BDS-WM (sex: β =  − 0.18; t =  − 2.87; p = 0.005; age: 
β =  − 0.46; t =  − 5.61; p < 0.001; education: β =  − 0.19; 
t =  − 2.38; p = 0.018). With respect to ratios, sex and trans-
formed age were found to be predictive of DSR-T scores 
(sex: β =  − 0.08; t =  − 2.49; p = 0.014; age: β =  − 0.16; 
t =  − 4.6; p < 0.001), whereas only inverse age significantly 
predicted DSR-WM/S scores (β = 4.08; t = 3.39; p = 0.001).

The mean AES scores were 3.06 ± 0.7 (0.6–4) and 
3.11 ± 0.7 (0.6–4) for WM and T outcomes, respectively. 
No association with either age or education was found 
with respect to both AESs. However, AES-T was signifi-
cantly higher (t(166) = 2.4; p = 0.018) for males than for 
males.

Correction coefficients for selected co-occurrences of 
background predictors along with equations for adjusting 
RSs are reported in Table 3 (DOT and ICT), Table 4 (FDS 
and BDS), and Table 5 (DSR). Normative values for all 
measures are reported in Table 6. For AESs, only TLS are 
provided [7].

Discussion

This work provides Italian neuropsychologists with a novel 
standardized tool for the ecological assessment of auditory-
verbal WM abilities (ICT), as well as with norms and valid-
ity evidence for the DOT. Both ICT and DOT measures 
proved to converge with widespread WM measures (FDS 
and BDS).

Table 3  Adjustment grids 
according to age and education 
for Digit Ordering Test (DOT) 
and Ice Cream Test (ICT) total 
(T) and working memory (WM) 
raw scores

DOT-T adjusted score = raw score − 1.590625 * [ln(100 − age) − 3.862482] + 16.07802 * [(1/educa-
tion) − .101788]. DOT-WM adjusted score = raw score + .000002* [(age^3) − 166,465.803571] + 8.9739 
* [(1/education) − .101788]. ICT-T adjusted score = raw score − 2.087459 * [ln(100 − age) − 3.862482] + 1
5.88892 * [(1/education) − .101788]. ICT-WM adjusted score = raw score + .000003 * [(age^3) − 166,465
.803571] + 8.691697*[(1/education) − .101788]. Significant decimals of adjustment factors are displayed. 
Adjustment factors have been extracted from the aforementioned formula and do not always reflect empiri-
cal co-occurrence

Education Age

35 40 45 50 55 60 65 70 75 80 85

DOT
  T 5 1.08 1.21  1.35 1.5 1.67 1.86 2.07 2.31 2.6 2.96 3.42

8 − .13 -    .14 .29 .46    .65 .86 1.11 1.4 1.75 2.21
11 − .67 − .54 − .41 − .25 − .09 .1 .31 .56 .85 1.2 1.66
13 − .90 − .77 − .63 − .48 − .31 − .12 .09 .33 .62 .98 1.44
16 − 1.13 − 1 − .86 − .71 − .54 − .36 − .14 .1 .39 .75 1.2
18 − 1.24 − 1.11 − .97 − .82 − .65 − .47 − .25 − .01 .28 .64 1.09

  WM 5 .63 .68    .73 .8 .88 .98 1.1 1.23 1.39 1.57 1.78
8 − .04 -    .06 .13 .21 .31 .42 .56 .72 .9 1.1
11 − .34 − .3 − .25 − .18 − .1 − .12 .26 .41 .59 .8
13 − .47 − .43 − .37 − .31 − .22 − .12 − .01 .13 .29 .47 .67
16 − .6 − .56 − .5 − .44 − .35 − .25 − .14 - .16 .34 .54
18 − .66 − .62 − .57 − .5 − .42 − .32 − .2 − .1 .1 .28 .48

ICT
  T 5 .91 1.08   1.26 1.46 1.68 1.92 2.2 2.52 2.9 3.37 3.97

8 − .28 − .12     .07 .27 .49 .73 1.01 1.33 1.71 2.18 2.78
11 − .82 − .66 − .48 − .28 − .06 .19 .47 .79 1.17 1.64 2.24
13 − 1.05 − .88 − .7 − .5 − .28 − .03 .25 .57 .95 1.41 2.01
16 − 1.28 − 1.11 − .93 − .73 − .51 − .26 .02 .34 .72 1.19 1.79
18 − 1.39 − 1.22 − 1.04 − .84 − .62 − .37 − .09 .23 .61 1.07 1.68

  WM 5 .48 .55     .63 .73 .85 1 1.18 1.38 1.62 1.89 2.2
8 − .17 − .11 − .02 .08 .2 .35 .53 .73 .97 1.24 1.54
11 − .47 − .4 − .32 − .22 − .09 .05 .23 .44 .67 .94 1.25
13 − .59 − .52 − .44 − .34 − .22 − .07 .11 .31 .55 .82 1.13
16 − .71 − .65 − .57 − .47 − .34 − .19 − .02 .19 .42 .7 1
18 − .77 − .71 − .63 − .53 − .4 − .25 − .08 .13 .36 .63 .94
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Moreover, updated normative data are provided for both 
the FDS and the DBS. Cut-offs here reported are substan-
tially comparable to those found by Monaco et al. [24] 
(FDS: 2.78 vs. 2.65,BDS: 4.46 vs. 4.26). Inconsistently 

with previous normative studies [24, 26], as well as with 
contributions on sex differences in WM abilities [16], 
males scored higher than females on BDS and DSR meas-
ures. The present findings thus counterbalance those 

Table 4  Adjustment grids 
according to age and education 
for forward and backward digit 
span (F/BDS) total (T) and span/
working memory (S/WM) raw 
scores

Education Age

35 40 45 50 55 60 65 70 75 80 85

FDS
T 5 .6 .77 .95 1.15 1.37 1.61 1.89 2.21 2.59 3.05 3.65

8  − .35  − .19  − .01 .19 .41 .66 .93 1.26 1.64 2.1 2.7
11  − .79  − .62  − .44  − .24  − .02 .22 .5 .82 1.2 1.67 2.27
13  − .97  − .8  − .62  − .42  − .2 .05 .32 .64 1.02 1.49 2.09
16  − 1.15  − .98  − .8  − .6  − .38  − .14 .14 .46 .84 1.31 1.9
18  − 1.24  − 1.07  − .89  − .69  − .47  − .23 .05 .37 .75 1.22 1.82

S 5 .23 .29 .37 .47 .6 .75 .92 1.13 1.37 1.64 1.94
8  − .23  − .17  − .08 .02 .14 .29 .47 .67 .91 1.18 1.48
11  − .44  − .37  − .29  − .19  − .07 .08 .26 .46 .7 .97 1.28
13  − .52  − .46  − .38  − .28  − .15 - .17 .38 .61 .88 1.19
16  − .61  − .55  − .47  − .36  − .24  − .09 .08 .29 .53 .8 1.1
18  − .65  − .59  − .51  − .41  − .28  − .13 .04 .25 .48 .75 1.06

BDS
T ♂ 5  − .39  − .06 .26 .59 .92 1.25 1.58 1.91 2.24 2.56 2.89

8  − 1.21  − .89  − .56  − .23 .1 .43 .76 1.09 1.41 1.74 2.07
11  − 1.59  − 1.26  − .93  − .6  − .27 .06 .38 .71 1.04 1.37 1.7
13  − 1.74  − 1.41  − 1.08  − .76  − .43  − .1 .23 .56 .89 1.22 1.54
16  − 1.9  − 1.57  − 1.24  − .91  − .58  − .26 .07 .4 .73 1.06 1.39
18  − 1.97  − 1.65  − 1.32  − .99  − .66  − .33 - .32 .65 .98 1.31

♀ 5 .78 1.11 1.44 1.77 2.1 2.42 2.75 3.08 3.41 3.74 4.07
8  − .04 .29 .62 .95 1.27 1.6 1.93 2.26 2.59 2.92 3.24
11  − .41  − .08 .24 .57 .9 1.23 1.56 1.89 2.21 2.54 2.87
13  − .57  − .24 .09 .42 .75 1.08 1.4 1.73 2.06 2.39 2.72
16  − .72  − .4  − .07 .26 .59 .92 1.25 1.58 1.9 2.23 2.56
18  − .8  − .47  − .14 .19 .51 .84 1.17 1.5 1.83 2.16 2.48

WM ♂ 5    − .21  − .04 .14     .32     .49     .67 .84 1.02 1.2 1.37 1.55

8    − .62  − .45  − .27  − .1     .08     .26 .43   .61   .79   .96 1.14

11    − .81  − .63  − .46  − .28  − .11     .07 .25   .42   .6   .78   .95

13    − .89  − .71  − .53  − .36  − .18  − .01 .17   .35   .52   .7   .88

16    − .97  − .79  − .61  − .44  − .26  − .08 .09   .27   .44   .62   .8

18  − 1  − .83  − .65  − .48  − .3  − .12 .05   .23   .41   .58   .76

♀ 5   .34     .52     .7     .87   1.05   1.22 1.4 1.58 1.75 1.93 2.11

8    − .07     .11     .29     .46     .64     .81 .99 1.17 1.34 1.52 1.7

11    − .25  − .08     .1     .27     .45     .63 .8   .98 1.16 1.33 1.51

13    − .33  − .15     .02     .2     .37     .55 .73   .9 1.08 1.26 1.43

16    − .41  − .23  − .06     .12     .3     .47 .65   .82 1 1.18 1.35

18    − .45  − .27  − .09     .08     .26     .43 .61   .79   .96 1.14 1.32

Notes: M, male; F, female; FDS-T-adjusted score = raw score − 2.082331*[ln(100 − age) − 3.862482] + 12.7
1517*[(1/education) − .101788]. FDS-S adjusted score = raw score + .000003*[(age^3) − 166,465.803571] 
+ 6.09889*[(1/education) − .101788]. BDS-T adjusted score = raw score + .065689*(age − 48.41071) + 10.9
5221*[(1/education) − .101788] + .587136 if female; − .587136 if male. BDS-WM adjusted score = raw scor
e + .035249*(age − 48.41071) + 5.473036*[(1/education) − .101788] + .278456 if female; − .278456 if male. 
Significant decimals of adjustment factors are displayed. Adjustment factors have been extracted from the 
aforementioned formula and do not always reflect empirical co-occurrences
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hinting at a prominent male–female difference being 
detectable on visuospatial but not in phonological WM 
tasks [29].

It is also worth noting that the DSR in the present study 
differs from that of Monaco et al. [24] since it was com-
puted on raw rather than adjusted scores.

This work also introduced a novel scoring procedure 
that provides insights about different facets of phonological 
WM-WM capacity (WM/S) and attentive monitoring abili-
ties during task execution (T) [4, 15].

AESs here reported further contribute to the adaptive 
nature of this composite battery. Indeed, the WoMAB 
allows an in-depth profiling of WM abilities by yielding 
both single-task-level (ESs) and global (AESs) standard-
ized scores with respect to considered outcomes (T and 
WM/S). Although both AESs proved to be independent 
of age and education [7], practitioners should nonetheless 
exert caution when interpreting AES-T measures due to 
sex differences.

A limitation has to be finally acknowledged regarding 
sample stratification: certain co-occurrences of age and 

education levels indeed happened to be poorly represented 
(e.g., highly educated individuals aged ≥ 75 years)—possi-
bly due to sampling biases. This should lead to exercising 
attention when adjusting RSs of individuals with these back-
ground features. However, it is believed that the soundness 
of regression analyses as far as statistical power is concerned 
allows sufficiently adequate predictions of adjustment factors 
for the aforementioned co-occurrences too.

In conclusion, this study validated and normed the 
WoMAB, a multi-component, flexible battery for WM 
assessment in adult neurological populations. Its novel scor-
ing procedure allows assessing both WM capacity (longest 
sequence) and task-related attentive processes (number of 
recalled sequences). Moreover, the WoMAB encompasses 
ecologically valid measures that can help practitioners evalu-
ate the impact of WM deficits in patients’ daily activities.
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Table 5  Adjustment grids 
according to age, education, and 
sex for the backward digit span 
(BDS) total (T) and Working 
Memory (WM) raw scores

Notes. DSR-T adjusted score = raw score + .156681*(ln(age) − 3.791483) − .037286 if M + .037286 if F. 
DSR-WM/S adjusted score = raw score − 4.081518*((1/age) − .024893). Significant decimals of adjustment 
factors are displayed. Adjustment factors have been extracted from the aforementioned formula and do not 
always reflect empirical co-occurrences

DSR Age

35 40 45 50 55 60 65 70 75 80 85

T ♂  − .074  − .053  − .035  − .018  − .003 .01 .023 .034 .045 .055 .065
♀ - .021 .04 .056 .071 .085 .097 .109 .12 .13 .139

WM/S  − .015 - .011 .02 .027 .034 .039 .043 .047 .051 .054

Table 6  Equivalent scores for 
DOT, ICT, FDS, BDS and RDS 
adjusted scores

T=total; WM=Working Memory; S=Span; DOT=Digit Ordering Test; ICT=Icre Cream Test; 
FDS=Forward Digit Span; BDS=Backward Digit Span; DSR=Digit Span Ratio; AES=average Equivalent 
Score; oTL=outer tolerance limit; iTL=inner tolerance limit.

oTL iTL Equivalent scores

0 1 2 3 4

DOT-T 3.27 4.72 ≤ 3.27 3.28–4.72 4.73–5.76 5.77–7.35 ≥ 7.36
DOT-WM 4.05 4.5 ≤ 4.05 4.064.57 4.58–5.42 5.43–6.31 ≥ 6.32
ICT-T 2.48 3.7 ≤ 2.48 2.49–4.14 4.15–5.7 5.71–7.03 ≥ 7.04
ICT-WM 3.69 4.17 ≤ 3.69 3.7–4.22 4.23–5.19 5.2–6.19 ≥ 6.2
FDS-T 6.42 7.35 ≤ 6.42 6.43–7.4 7.41–8.49 8.5–9.88 ≥ 9.89
FDS-S 4.45 5.17 ≤ 4.45 4.46–5.22 5.23–5.58 5.59–6.31 ≥ 6.32
BDS-T 3.35 4.26 ≤ 3.35 3.36–4.38 4.39–5.67 5.68–7.16 ≥ 7.17
BDS-WM 2.77 3.41 ≤ 2.77 2.78–3.45 3.46–4.26 4.27–4.88 ≥ 4.89
DSR-T .393 .486 ≤ .393 .394–.502 .503–.638 .639–.735 ≥ .736
DSR-WM/S .461 .541 ≤ .461 .462–.55 .551–.659 .66–.786 ≥ .787
AES-T 1.4 2.2 ≤ .1.4 - - - -
AES-WM/S 1.2 2.2 ≤ .1.2 - - - -
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