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Abstract: Lactoferrin is an iron-binding glycoprotein with multiple functions in the body. Its activity
against a broad spectrum of both DNA and RNA viruses as well as the ability to modulate immune
responses have made it of interest in the pharmaceutical and food industries. The mechanisms
of its antiviral activity include direct binding to the viruses or its receptors or the upregulation of
antiviral responses by the immune system. Recently, much effort has been devoted to the use of
nanotechnology in the development of new antivirals. In this review, we focus on describing the
antiviral mechanisms of lactoferrin and the possible use of nanotechnology to construct safe and
effective new antiviral drugs.
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1. Introduction

Lactoferrin (LF) is a multifunctional glycoprotein present in external secretions, such
as colostrum, milk, tears, nasal and bronchial secretions, saliva, bile and pancreatic se-
cretions, urine, seminal and vaginal fluids, and has multiple functions, including as a
component of the innate immune response [1,2]. Human lactoferrin (hLF) is constitutively
synthetized and secreted by glandular epithelial cells at different epithelial surfaces [1,2].
Moreover, inflammatory processes that recruit neutrophils regulate hLF concentration,
since neutrophils secrete secondary granules containing hLF. Lactoferrin belongs to the
family of transferrins, and includes approximately 700 amino acids (80 kD) folded into two
globular lobes with an α-helix as a linker. LF binds two ferric ions with high affinity, but it
can also bind Cu2+, Zn2+ and Mn2+ ions [1,2]. LF has been shown to perform antioxidant,
anticancer and anti-inflammatory activities, together with a broad antibacterial, antifungal
and virucidal activity [1,2].

LF exists in an iron-free apo-lactoferrin (apoLF) form, while upon iron binding, LF
undergoes large conformational changes in which hololactoferrin (hoLF) transforms into ei-
ther an open or closed state [1–3]. Depending on the origin, LF can undergo glycosylation at
three sites in humans (Asn-137, Asn-478 and Asn-623) or at five (Asn-233, Asn-368, Asn-476,
Asn476, Asn545) in bovine lactoferrin (bLF), being mostly exposed on the outer surface of
the molecule [3,4]. The nature and the location of the glycosylation does not influence lacto-
ferrin’s ability to bind iron, but the specific and varied patterns of glycosylation influences
its antimicrobial and immunomodulatory activities as lactoferrin glycan modifications have
been described to be participate in different cellular pathways, including cell adhesion and
receptor activation [3,4]. Human lactoferrin (hLF) shows a high sequence similarity with
bovine lactoferrin (bLF), and displays similar biocidal activity against bacteria, viruses and
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fungi, as well as immunomodulatory and anti-inflammatory activities [2,5]. The commer-
cial preparations of bLF were recognized as a safe substance (GRAS) by the Food and Drug
Administration (FDA, Silver Spring, MD, USA) and are distributed by many companies in
large quantities; therefore, the majority of the in vitro and in vivo studies have been using
commercial bLF. Recently, recombinant human lactoferrin has also become available.

2. Lactoferrin as Immunomodulator

Some authors suggest that, in a broader sense, LF may be classified as an “alarmin”,
a small peptide released from neutrophils upon infection [6] and providing support for
further immune reactions [7]. Lactoferrin shows the ability to bind to pathogen-associated
molecular patterns (PAMPs) present various pathogens, mainly recognized by Toll-like
receptors (TLRs) [7]. Depending on the pattern of glycosylation, lactoferrin can bind to
different receptors present on both of epithelial and immune cells, including CD14 [8],
LDL receptor-related protein-1 (LRP-1/CD91) [9], Toll-like receptor 2 and 4 (TLR4) [10]
cytokine receptor 4 (CXCR4) [11], intelectin-1 (omentin-1) [12], dendritic cell-specific inter-
cellular adhesion molecule-3-grabbing non-integrin on antigen-presenting cells (APCs) [13],
Siglec-1 (CD169/sialoadhesin) [14] and nucleolin [15]. Most of these receptors bind other
ligands, but lactoferrin also possesses its “own” receptor called lactoferrin receptor/LRP-
1/CD91/apoE receptor or the chyclomicron remnant receptor [16]. ApoE is found in
many tissues and different cell types, including intestinal epithelial cell lymphocytes, fi-
broblasts, neurons, hepatocytes and endothelial cells [16]. Some of these receptors may
potentially endocyte lactoferrin and trigger cell signaling or target lactoferrin to the nucleus
where it could act as a transcriptional activator or transactivator, which further adds to the
multiplicity of roles played by LF.

Upon infection, neutrophils release chromatin fibers, known as neutrophil extracel-
lular traps (NETs), together with high amounts of elastase, myeloperoxidase (MPO) and
lactoferrin—one million of neutrophils can release up to 15 µg of LF [17]. The role of
NETs, together with excreted enzymes and peptides, is to trap and kill mostly bacteria [15].
However, some authors showed that LF can actually suppress the release of NETs during
inflammation, thus adding to its anti-inflammatory role [18]. Additionally, lactoferrin acts
as a competitor for bacterial LPS when binding to the CD14 receptor and, in this manner, it
can attenuate the NF-κB-induced expression of various inflammatory mediators [19]. Upon
tissue response to injury or infection, LF can control the oxidative burst of macrophages
and neutrophils by iron sequestration. Thus, LF may play a role in the regulation of
acute inflammation.

In vitro studies have shown that LF may act as a chemo-attractant not only for neu-
trophils, but also for antigen presenting cells (APCs), such as monocytes and dendritic cells
(DCs), for which it also plays a role in activation and maturation [6]. Additionally, de la
Rosa et al. demonstrated that the immunization of mice with ovalbumin in the presence
of lactoferrin promoted Th1-polarized antigen-specific immune responses [6]. Lactoferrin
has been reported as being able to modulate both cell-mediated and humoral immunity
by helping in the maturation, differentiation and activation of T and B lymphocytes [2].
Therefore, we can conclude that LF participates both in the innate and adaptive immune
responses, also by providing a link between the recognition of a pathogen and mounting
the specific response.

3. Antiviral Activities of Lactoferrin

Lactoferrin can also bind to heparan sulfate proteoglycans (HSPGs), which are present
on the cell surface and within the extracellular matrix, consisting of a core protein decorated
with covalently linked glycosaminoglycan (GAG) chains [20]. HSPGs are expressed on
the surface of almost all eukaryotic cell types. The binding between viruses and HSPGs
usually occurs between closely packed basic amino acids present in viral surface proteins
and called viral attachment ligands (VALs), and the negatively charged sulfated groups
of heparan sulfate (HS), found in the glycocalix of the cell surface [21]. Heparan sulphate
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helps some viruses (for example, herpesvirus type 1, HSV-1, but also HIV) to establish
contact between the virus particle and the cell surface, followed by rolling toward the virus’
specific receptor, fusing with the host membrane and the viral entry [22]. To date, the
antiviral properties of LF have been confirmed by several in vitro studies [23]. Lactoferrin
prevents the infection of the target cell of a broad spectrum of viruses, including both RNA
and DNA viruses, enveloped as well as naked viruses (reviewed in [23]).

Lactoferrin can either interfere with heparan sulfate proteoglycans on the cell surface,
bind directly to viruses or its receptors, or upregulate the antiviral response by the im-
mune system (Figure 1). However, some authors also indicate its possible action through
interfering with the endocytic pathway of virus infection. No significant differences in
the anti-viral activity were found for both apolactoferrin and iron-bound hololactofer-
rin [23]. Interestingly, bovine lactoferrin (bLF) exhibits a higher antiviral activity than
human lactoferrin (hLF), as shown for human papilloma virus (HPV), adenoviruses and
human coronaviruses [23–27].
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Figure 1. Schematic figure describing the possible mechanisms of antiviral actions by lactoferrin and
lactoferrin-modified nanoparticles. (A) Lactoferrin can be internalized via endocytosis; the binding
of lactoferrin-modified nanoparticles requires confirmation. (B) Endocytosis of lactoferrin-modified
nanoparticles requires confirmation. (C) Lactoferrin or lactoferrin-modified nanoparticles can block
HSV-1/2 infection through binding to heparan sulphate moieties present in the glycoproteins of the
cell surface/extracellular matrix. (D) Lactoferrin or lactoferrin-modified nanoparticles can block the
binding of a virus by binding to the virus attachment ligands (VALs), thus blocking the attachment of
the virus to its specific receptor(s).
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LF exerts antiviral activity against both HSV-1 and HSV-2, although it seems that
the exact antiviral mechanism may be different, due to the difference of the viral proteins
employed by each virus to entry into the target cells [25,26]. HSV initially binds to heparan
sulfate of the host cells through the viral glycoprotein(s) gC or gB. In cells expressing either
heparan sulfate or chondroitin sulfate or both, bLF strongly inhibited HSV-1 infection,
but it was ineffective or less efficient in cells deprived of glycosaminoglycan or treated
with glycosaminoglycan-degrading enzymes. This indicates that the anti-HSV-1 activity
of lactoferrin depends on its interaction with the cell surface glycosaminoglycan chains
of heparan sulfate and chondroitin sulfate (Figure 1) [27]. Human lactoferrin was demon-
strated not only to inhibit the adsorption and entry of HSV-1 virions, but also cell-to-cell
spread mediated by gD [28]. Concerning the in vivo antiviral activity of LF, the topical
administration of 1% bLF decreased the infection of mouse cornea with HSV-1, but it did
not influence general infection [29]. For HSV-2, the mechanisms of inhibition by hLF and
bLF are slightly different [30]. The antiviral activity of bLF is independent of interaction
between glycoprotein C (gC) and HS, as there was no difference between wild-type HSV-2
and its gC-truncated form. Furthermore, bLF also inhibited plaque-forming activity in
cells devoid of GAG, which suggests that bLF interacts with HSV-2 receptor of non-GAG
nature [30].

Waarts et al. used alphaviruses, adapted to interaction with HS, to test if LF can block
infection by Sindbis virus (SIN) or Semliki Forest virus (SFV) [31]. Their results indicate
that LF does not bind to the virus, but rather blocks HS on the cell surface, since bLF was
able to block the infection of BHK-21 cells only with HS-adapted strains [31]. However,
lactoferrin can inhibit viral attachment and penetration not only by binding to HS, but as for
HSV-2, it can also bind to another receptor implicated in the virus infection. For example,
Chien et al. demonstrated that bLF blocks Japanese encephalitis virus (JEV) infection by
binding to HS and low-density lipoprotein receptor (LDLR), but not by binding to virus
particles [32]. These findings further helped to find another receptor for non-HS-adapted
strains of JEV [32]. The same group showed similar results for dengue virus (DENV), whose
E protein interacts with highly sulfated glycosaminoglycans on the cell surface [33]. The
authors demonstrated in vitro that bLF blocks DENV-2 entry into the cells by binding to HS,
LDRL and dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin
(DC-SIGN), the latter being a surface receptor of dendritic cells, the antigen presenting cells
(APC) [33]. Furthermore, the intracranial infection of suckling mice with DENV-2 premixed
with bLF demonstrated a 60% reduction in mortality in comparison to mice infected only
with DENV-2 [33].

Respiratory syncytial virus (RSV) is another virus employing heparan sulfate to initiate
infection [34]. Lactoferrin directly interacted with the glycoprotein F(1) subunit of RSV
and blocked further steps of in vitro infection [34]. Similarly, two envelope proteins of
hepatitis C virus (HCV), E1 and E2, can bind both hLF and bLF in vitro [35]. The direct
interaction between E2 and lactoferrin was demonstrated in vivo, by the coimmunopre-
cipitation of anti-human lactoferrin antibody with E2 protein [35]. Both bLf and hLf were
demonstrated to inhibit adenovirus infection in a dose-dependent manner in vitro. Bovine
LF showed stronger antiviral activity only when used for preincubation with epithelial cells
or added during the attachment step [36]. The antiviral activity of bLf against adenoviruses
is believed to be linked with the ability of bLF to interact with the adenovirus penton
base (polypeptide III), the protein responsible for the virus binding to the integrin cell
receptors [36].

Considering the fact that lactoferrin is naturally present in cervicovaginal lavage
and increases upon bacterial vaginosis [37], it is not surprising that LF can block sexually
transmitted viruses, such as HSV-2 [30], but also human papilloma virus (HPV) and
HIV [24,38]. Heparan sulfate on the cell surface can also act as a receptor for HPV. HPV-16
virus-like particles (VLPs) incubated with HaCaT cells at the presence of bLF or hLF showed
a dose-dependent inhibition of HPV-16 VLP binding to the keratinocyte cell surface [24].
The role of lactoferrin in protection from HIV infection was demonstrated by the role of



Pharmaceutics 2022, 14, 1862 5 of 13

lactoferrin gene polymorphism in the susceptibility to HIV-1 transmission from mother to
newborns [38]. In vitro studies demonstrated that both bLF and hLF are potent inhibitors of
HIV infection in vitro [39]. LF was shown to bind to the GPGRAF domain of the HIV gp120
glycoprotein [40]. It is well known that the binding of gp120 to the CD4 or chemokine
receptors on the target cells is the basic mechanism responsible for the adsorption and entry
of HIV into T cells. Therefore, it is possible that the main antiviral effect of LF against HIV
is mediated in this manner (Figure 1) [40].

Coronaviruses are RNA viruses with a homotrimeric S (spike) glycoprotein, possessing
N-linked glycans located on the envelope and comprising of two functional subunits (S1
and S2) in each spike monomer [41]. Homotrimers of S glycoproteins are involved in both
host receptors binding (S1) and membrane fusion (S2) [41,42]. The main cell receptor for
SARS-CoV is angiotensin-converting enzyme 2 (ACE2), but HSPGs have been recognized
as supplementary binding sites for SARS-CoV-2 [41–43] and could play a role in the early
attachment phase. Lang et al. demonstrated that LF could block the infection by SARS
pseudovirus through binding to HSPGs, the latter providing the preliminary docking sites
for the virus on the cell surface [43]. The study by Campione et al. demonstrated by
in vitro and in silico studies that lactoferrin can attach directly to SARS-CoV-2 (spike S
glycoprotein) and cell surface components, such as HSPGs [44]. These results were further
partially confirmed by Hu et al., who demonstrated that both bLF and hLF show promising
antiviral activity against multiple common human coronaviruses, including HCoV-OC43,
HCoV-NL63, HCoV-229E as well as SARS-CoV-2 [45]. Taken together, these results suggest
that LF can play a protective role in host defense against SARS-CoV-2 infection through
binding to HSPGs on the cell surface, thus blocking the initial tethering of SARS-CoV-2
spike protein to host cell membrane (Figure 1).

The influenza virus employs two surface glycoproteins, hemagglutinin (HA) and
neuraminidase (NA), for the successful infection of the target cells. HA binds to the cell
surface sialic acids and helps the virus to enter the target cells, while NA takes part in
releasing the progeny virus from infected cells, acting as a hydrolase cleaving the glycosidic
linkages of the sialic acid in glycoproteins and HA [46,47]. Further steps include receptor-
mediated endocytosis and transfer to acidic late endosomes, where low pH triggers the
HA-catalyzed release of viral ribonucleoprotein into the cytoplasm [46,47]. The work by
Superti et al. (2019) [46] demonstrated that bLF blocked influenza virus infection through
a specific interaction with the HA fusion peptide at a low pH. However, this effect was
observed only during the early stage of infection and disappeared if bLF was added
one hour after viral binding [46]. Lactoferrin, as the influenza virus, enters the cells by
endocytosis and is found in endosome vesicles. Therefore, this work shows a completely
different mechanism of LF antiviral action—not by interfering with the cell surface, but
rather acting inside the cells at the early stage of infection.

Furthermore, other authors suggested that the mechanism of anti-influenza activity of
bLF relies on the sialylated glycans serving as receptor analogs to block IAV attachment
to host cells at the early stage of viral infection [47]. On the other hand, Pietrantoni et al.
(2012) [48] demonstrated that bLF inhibited influenza virus infection, if added directly
after the adsorption step, independently from ion saturation or carbohydrate content [48].
Earlier work by Pietrantoni et al. (2010) [49] showed that bLF treatment inhibited apoptosis
induced by the influenza virus by interfering with the function of caspase 3, an apoptosis
effector, and bLF blocked nuclear export of viral ribonucleoproteins, thus preventing viral
assembly [49]. This indicates that LF can interact with the intracellular pathways of virus
entry; however, more research work is needed to elucidate the exact mechanism.

Concerning pleiotropic activities of lactoferrin, it is worth remembering that this pro-
tein can chelate ferric ions, so it can thus influence both bacterial and viral replication
and inhibit the formation of reactive oxygen species [26]. The disorders of iron home-
ostasis, induced by inflammation, increase intracellular iron concentration and favor viral
replication [50]. The replication of viruses or infection-related activity of the innate cells
(neutrophils and inflammatory macrophages) can lead to necrotic cell death, accompanied
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by the release of intracellular substances leading to the further development of inflamma-
tion [50,51]. Excessive inflammation at the site of infection can hinder the development of
the immune response to pathogens, as observed in SARS-CoV-2 infection [52] but also in
herpes simplex encephalitis [53]. Cutone et al. [54] demonstrated that bLF can cause a shift
of polarized, pro-inflammatory M1 macrophages to anti-inflammatory M2 phenotype [54].
Activated M1 macrophages increase IL-6 production and downregulate proteins involved
in iron metabolism [54]. bLF can downregulate IL-6 synthesis and upregulate ferropontin
expression to regulate cell-to-blood iron export [54]. The ability of lactoferrin to reduce
inflammatory reaction was also demonstrated in vivo for bacterial infections [55].

4. Nanoparticles Modified with Lactoferrin as Potent Antivirals

Nanomaterials are a diverse class of small-scale (<100 nm) objects (spheres, sheets and
tubes), formed by physical or chemical methods and designed to offer unique physical
and chemical properties. Recently, more and more data have been collected to describe
possible biomedical applications of nanoparticles as microbicides. The use of nanoparticles
as antiviral agents offers several advantages. Nanoparticles have the characteristics of a
high surface-to-volume ratios, which enables to pack multiple antiviral agents onto the
surface of nanoparticles. Therefore, it is possible to target specific biological sites in an
active or passive manner by means of controlling hydrophobicity/lipophilicity, or the
modification of nanocarrier surfaces with desired compounds. Furthermore, nanoparticles
as nanocarriers are easily recognized and engulfed by immune cells, thus providing an
opportunity to design vaccines that can mediate the targeted delivery of various antigens
and adjuvants or immune regulatory agents in problematic cases encountered in classical
vaccination approaches.

Metallic nanoparticles (MeNPs) are relatively non-biodegradable, have rigid structures,
and possess simple synthesis methodology. Based on its antimicrobial activity, silver has
become one of the most prominent nanomaterials. Silver particles (AgNPs), having a
long history of general use as an antiseptic and disinfectant, have been shown to be
able to interact with the disulfide bonds of the glycoprotein/protein of microorganisms,
such as viruses, bacteria and fungi [56]. However, the antiviral activity of unmodified
AgNPs is none or very low—silver nanoparticles have to be modified in a manner that
allows for interaction with the virus surfaces so that external double electric layer provides
negative net charge. Baram-Pinto et al. (2009) [57] developed silver nanoparticles that
were modified with mercaptoethane sulfonate (Ag-MES) [57]. The MES-modified AgNPs
of 4 nm mimicked well the heparan sulfate present on the host cell and blocked HSV-1
attachment to the cells [57]. In the same manner, sulfonate-modified AuNPs inhibited the
entry of the virus into the cells and prevented the cell-to-cell spread of HSV-1 [58]. While
gold nanoparticles are inert and non-toxic, AgNPs are known to release silver ions, which
can further influence cellular metabolism [59,60]. Although the release of silver ions adds
to antiviral activities, it has to be taken into account during the development of modified
AgNPs. Furthermore, the toxicity of AgNPs and, to a lesser extent, that of AuNPs, depend
on their size with small nanoparticles < 10 nm, being able to directly cross the cellular
membrane. On the other hand, nanoparticles sized >20 nm are actively internalized by
cells in the process of endocytosis [61]. Park et al. postulated the so-called the Trojan Horse
mechanism of AgNP cytotoxicity, involving the release of silver ions from the surface of
NPs in acidified compartments. The released ions induced reactive oxygen species (ROS)
production in mitochondria, further triggering the activation of immune cells through
stress signals and secreted cytokines (i.e., TNF-α) [62].

Our group described the anti-HSV activity of tannic-acid-modified AgNPs (TA-AgNPs)
by using both in vitro and in vivo models of HSV-1 and HSV-2 infections [63,64]. The mech-
anisms of the antiviral action of TA-AgNPs included the blocking of virus attachment, entry
as well as the induction of anti-viral cytokine and chemokine production. Additionally,
TA-AgNPs turned out to be good activators of immune response, since they were also
able to overcome the inhibition of DC maturation by live or inactivated HSV-2, normally
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observed in this model of infection [61,64]. Therefore, we showed that tannic-acid-modified
AgNPs can act both as an effective microbicide and a novel class of nano-adjuvants.

Nanoparticles can interact with proteins, forming the so-called interfacial protein
corona, which imparts specific biological activity to nanoparticles. The work by Nayak et al.
demonstrated that bLF can be absorbed onto the AgNP surface by van der Waals interac-
tions and hydrogen bonds, without influencing the protein conformation and stability [65].
BLf also helped to decrease the AgNPs-mediated cytotoxicity [65]. We also demonstrated
that pretreatment with human lactoferrin functionalized gold and silver nanoparticles
sized 10 or 30 nm prevented HSV-2 infection by the direct inhibition of virus attachment
and the penetration and blocking of infection (Figure 1) [66]. Lactoferrin used in the same
concentrations did not show significant antiviral effects, particularly when used in vitro.
We propose that lactoferrin in nanometal conjugates binds to HSPGs on the cell surface in a
much more effective manner, creating in this manner a barrier preventing HSV-2 infection.
The results of in vivo experiments showed that, while all tested lactoferrin conjugates
were very effective in decreasing HSV-2 titers during vaginal infection in comparison to
lactoferrin itself (though only early during infection), the LF conjugates showed an addi-
tional immunomodulatory effect [66]. All LF nanoparticles induced a significant increase
in antiviral cytokines and chemokines in the vaginal tissue [66], followed by the influx of
antigens presenting cells (dendritic cells). As previously shown for tannic-acid-modified
NPs, LF conjugates provided additional adjuvant-like activity most probably induced by
nanoparticles themselves [61,64,66]. Since the adjuvant activity of nanoparticles depends
strongly on their physical and chemical properties, certain caution should be taken when
planning in vivo treatment with AgNPs sized <10 nm. In our experiments, the vaginal tis-
sued treated with 10 nm LF-AgNPs showed a significant increase in TNF-α and IL-1β [66].
While these two cytokines are important for mounting antiviral response to HSV-2, they are
also pro-inflammatory cytokines. The excessive production of proinflammatory cytokines
can lead to the amplification of the inflammation induced by the virally infected cells and
further result in a delayed or ineffective antiviral response [67].

Additionally, we tested hLF-modified gold and silver nanoparticles sized 10 or 30 nm
against human coronavirus—HCoV-229e in vitro in MRC-5 cells (Figure 2). We mixed
modified nanoparticles at non-toxic concentrations, determined earlier, incubated for 1 h,
then applied to MRC-5 cells and incubated for 48 h. After this time, cells were harvested
and the titers of HCov-229e were accessed using commercial qPCR probe Vi06439671_s1
(Thermo Fisher Scientific, Waltham, MA, USA). Our results demonstrated that the inhibition
of HCoV-229e infection was metal and size-dependent with LF-modified 30 nm AgNPs
showing the most promising anti-viral activity (Figure 2).

In conclusion, our experiments prove that lactoferrin-modified nanoparticles of noble
metals (silver and gold) can be considerate as very promising new class of antivirals
(Figure 1).
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Figure 2. Human epithelial MRC-5 cells (A) uninfected and (B) infected with HCoV-229e at 48 h post
infection. (C) HCoV-229e titers in MRC-5 cells at 48 h, treated with 7.5 µg/mL of lactoferrin modified
5 nm AuNPs, 5 nm AgNPs or 30 nm AgNPs. Data represent means ± SEM (Own unpublished data).

5. Lactoferrin and Nanotechnology

Lactoferrin, as other biologically active compounds, is being combined with nanoparti-
cles as new carriers or new formulation. The combination of lactoferrin with nanoparticles
is usually used to prepare a new combination of highly toxic drugs. On the other hand, we
can observe this type of lactoferrin connections for use in functional foods, supplements
and of course in medicine. We can recognize some kinds of combination and formulations.

5.1. Lipid-Based Nanocarriers (Emulsion)

The sol–oil or emulsion (water-in-oil) method is one of those methods in which
lactoferrin in aqueous solution is combined with olive oil. The process takes place under
conditions of 4 ◦C with sonication and then freezing in liquid nitrogen. This process
was used to prepare anti-cancer substances in order to obtain a formulation with a lower
toxicity [68,69]. Another type of emulsion was encapsulation lactoferrin with antiviral
particles (Zidovudine) [70]. Similar results were obtained with comparable encapsulation
conditions. The nanoparticles were prepared at the size of 50–60 nm with a yield of 67%
and a good physical stability at room temperature and 4 ◦C. Oral-use Zidovudine and its
lactoferrin complex showed similar activity against HIV-1 [70]. In addition, the new drug
formulation displayed an improved pharmacokinetic profile and a lower organ toxicity [70].
Methodologically, it is possible to prepare various forms and degrees of encapsulation, size
and stability. Single-, double- and triple-loaded drugs with nanoparticles with lactoferrin
can be produced. In this case, lactoferrin acts as an emulsifier.

Another type of encapsulation depends mainly on the presence of an oily phase in
which the drug is soluble (with the organic solvent). In the next step, the oily phase is
slowly added to the lactoferrin-containing water phase. The core of the emulsion is formed
by subjecting this mixture to shear forces at a low homogenization rate. The mixture can
then be sonicated for approximately 2 min. The end product can be obtained by removing
the residual organic solvent on a rotary evaporator [71]. In the same way, an insoluble
drug can be prepared with nanoparticles bound to albumin and lactoferrin, for example,
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paclitaxel [72]. This is a very good case for encapsulating delivery systems highly lipophilic
drugs in protein nanoparticles [73].

5.2. Inorganic Nanoparticles

A very important use of lactoferrin is its conjugation to inorganic nanoparticles. The
conjugates have special features: higher loading, easiness of connection with ligands and
biocompatibility. LF-coated magnetic nanocarriers can be used for cancer diagnosis and
therapy, acting as contrast agents in magnetic resonance imaging (MRI) [74–76]. The
most interesting are superparamagnetic iron oxide nanocarriers (Fe3O4-LF). Iron oxides
are prepared by the coprecipitation of Fe2+ and Fe3+ in the presence of a base. The size,
shape and composition of iron NPs depend on the type of the salt used, Fe2+ to Fe3+ ratio,
pH and ionic strength [77,78]. Magnetic nanocarriers can be combined with lactoferrin
and some co-ligands, e.g., via 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC),
N-hydroxysuccinimide (NHS), polyvinyl alcohol (PVA) and polyacrylic acid (PAA) [79].
Upon mixing, the LF and co-ligand nanoparticles can form an amide bond between the
primary amine and the carboxyl group of the second coupling reagent. The formation of
a stable amide bond relies on the activation of the LF carboxyl groups by the coupling
reagent [80,81]. Another group of nanocarriers includes silica NPs composed of silicon
dioxide of a vast range of sizes. SiNPs were approved by the FDA because they are
considered safe [82]. Silica nanoparticles can be a very useful smart brain delivery system
and they have been used for the efficient delivery of drugs without damaging the BBB
(blood–brain barrier) function. The lactoferrin-based system was based on covalently
binding LF to silica nanoparticles (SiNPs). In the next step, LF-SiNPs were PEGylated to
prolong their blood circulation [83].

5.3. Polyamidoamine PAMAM Dendrimers

Dendrimers are highly branched radially symmetrical three-dimensional structures
with many functional groups that make it easy to conjugate with ligands, such as LF. The
most popular dendrimers are fabricated from polyamidoamine (PAMAM) [84]. Due to
the possibility of aggregation of platelets, the most beneficial in medicine are first, second
and third generations. The most common combination of lactoferrin with dendrimers
is PAMAM dendrimer, polyethylene glycol (PEG) and lactoferrin (PAMAM—PEG—LF).
In this formula, PEG was used as a spacer for targeted brain delivery [85,86]. In another
study, LF was covalently coupled to PAMAM-PEG. The purpose of designing such a use
for lactoferrin was a non-viral gene therapy in Parkinson’s disease. On the other hand,
the preparation of this type of dendrimer combinations is focused on the preparation of
nanoparticles in the form of an emulsion and consists of mixing the appropriate amounts
of substrates [87,88].

6. Conclusions

The use of lactoferrin conjugates with nanoparticles seems to offer new solutions for
the improvement of the anti-viral activity of lactoferrin itself (Figure 1). We can speculate
that the 3D structure of lactoferrin conjugates with nanoparticles facilitates the interaction
with both cellular targets—HSPGs as well as with VALs. The exact mechanism of the
interaction of virus/cells and lactoferrin functionalized nanoparticles requires further
research with the use of techniques allowing the visualization of this interaction, such as
TEM and cryoTEM. Furthermore, tests employing different viruses interacting with HSPGs
are also required to be performed both in vitro and in vivo in animal models. Last, but
not least, pharmacological formulations need to be developed and tested for their efficacy,
safety and stability.
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