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Abstract: In recent years, polymer-based advanced drug delivery and tissue engineering have grown
and expanded steadily. At present, most of the polymeric research has focused on improving existing
polymers or developing new biomaterials with tunable properties. Polymers with free functional
groups offer the diverse characteristics needed for optimal tissue regeneration and controlled drug
delivery. Allyl-terminated polymers, characterized by the presence of a double bond, are a unique
class of polymers. These polymers allow the insertion of a broad diversity of architectures and
functionalities via different chemical reactions. In this review article, we shed light on various
synthesis methodologies utilized for generating allyl-terminated polymers, macromonomers, and
polymer precursors, as well as their post-synthesis modifications. In addition, the biomedical
applications of these polymers reported in the literature, such as targeted and controlled drug delivery,
improvement i aqueous solubility and stability of drugs, tissue engineering, and antimicrobial
coatings, are summarized.

Keywords: allyl-terminated polymers; post-synthesis functionalization; drug delivery; controlled
drug release; functional polymers

1. Introduction

A vast variability of polymers originating from natural and synthetic sources are
currently utilized in various biomedical applications, especially in drug delivery and
tissue engineering. Among the different polymers, polyesters [1–3], polyethers [4–7],
polyanhydrides [8–10], poly(ester-anhydride)s [11,12], and polysaccharides [5,13,14] are
the most common groups of polymers widely applied in the biomedical sector. Additionally,
polystyrene, polyethyleneimine, and polyurethane-based polymers are also investigated in
similar contexts [15–20]. Both non-biodegradable and biodegradable polymers are used in
drug delivery [21–23]. Each group of polymers or individual polymers holds great potential
and, in some cases, unique properties to be used as carriers for various types of drugs and
in other biomedical applications. Biodegradable polymers are extensively used therein
due to their biodegradability and biocompatibility. Natural and synthetic biodegradable
polymers are extensively explored in the biomedical field due to the presence of unstable
functional groups in their backbone [14,24–27]. These groups undergo hydrolytic or en-
zymatic degradation in vivo and are thus excreted from the body without inducing any
undesired effects.

Chitosan, polylactide (PLA), poly(ε-caprolactone) (PCL), poly(carboxyphenoxy hexane-
sebacic acid), poly(ethylene glycol), polymethyl methacrylate (PMMA), and poly(propylene
glycol) (PPG) are examples of polymers investigated for and used in pharmaceutical appli-
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cations. However, almost all of these polymers lack free functional or pendant groups for
further chemical and/or physical modifications.

A polymer matrix should possess a number of desirable properties, such as hydropho-
bicity, stability, toughness, flexibility, solubility in organic solvents, a low melting point, and
degradability in a constant manner over time in physiological conditions, to be considered
as a suitable matrix for drug delivery [28]. However, native forms of polymers can be
seen to suffer from lack of one, or several, of these properties. For example, the native
form of PLA is a biodegradable, biocompatible, and bioabsorbable biopolymer derived
from agricultural sources and possesses eminent transparency, good mechanical properties,
and can be processed using traditional processing technologies to make various forms of
PLA products with desired shapes. PLA’s outstanding properties, such as renewability,
biodegradability, biocompatibility, and low carbon emission during production etc., ren-
ders it one of the most popular polymers in biomaterials research. Nonetheless, it has a
lack of functionality or pendant groups for further modifications, poor surface adhesive
nature due to a fairly hydrophobic surface, insufficient barrier performance to oxygen
(O2), carbon dioxide (CO2) and nitrogen (N2), all of which limit the applicability of PLA to
many biomedical applications, such as cell adhesion and drug delivery. Due to its poor
surface properties, PLA-based drug delivery carriers often display poor drug loading,
which ultimately makes them less attractive for drug delivery application, compared to
hydrophilic polymers. Similarly, neat PCL is another biodegradable, biocompatible, non-
toxic, and bioresorbable aliphatic polyester, like PLA. It has been extensively investigated
for the development of implantable biomaterials, contraceptive devices, fixation devices,
wound dressings, and controlled release and targeted drug delivery. It can be degraded
by chemical and enzymatic hydrolysis of its ester linkages under physiological conditions
(such as in the human body) and many different environments (e.g., in pure fungal cultures,
compost, active sludge, and soil). However, PCL displays poor surface wettability and cell
attachment compared to hydrophilic materials, due to its hydrophobic surface nature. In
addition, it exhibits relatively slow degradation (2–4 years) depending on the molecular
weight [29,30] and inferior mechanical properties compared to other medical polyesters,
which limit the uses of PCL to non-load bearing and slowly resorbable scaffolds. Generally,
polymers are modified to overcome these limitations and the modification process involves
the incorporation of new specific functionality in the polymer main chains, or as pendant
groups, or by altering the surface functionality, and are brought about by copolymerization
reactions, post-reaction modifications, by reactions with the existing functional groups or
by blending with other polymers. However, several amphiphilic biodegradable copolymers
of PLA, PCL, and PGA described in the literature failed to preserve the balance between the
responsiveness of the carrier and their stability in physiological conditions, because they
do not possess appropriate functionalities to be used for controlled drug release triggered
by external stimuli (heat [31], light [32], pH [33], or redox conditions [34]).

With the advent of the modern technological era, special functions or multifunctional
and adaptive polymer materials are required, where parent forms of the routinely uti-
lized natural and synthetic polymers might not meet these specifications. For instance,
an appropriate functional group along the polymer chain is a prerequisite to facilitate the
conjugation of drugs [35], biological ligands, or medical imaging probes. Allyl-terminated
or allyl-functionalized polymers have recently found application in many fields, owing
to the tailoring of their properties as per the requirements, simply by tweaking the free
functional groups on unsaturated hydrocarbons. Over the past few decades, allyl func-
tional groups containing polymers have been the focus of intensive research for their
extensive application, primarily, in allyl resins and electronic and electrical engineering
industries because of their exceptional physical and electrical properties. Their uses within
the biomedical fields are still limited. However, the scenario has been changing in the
recent years. Allyl-terminated polymers or macromonomers are synthesized by using an
allyl-functionalized initiator or monomer, or by modifications with an allyl compound.
To date, several synthesis processes have successfully been applied for the preparations
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of allyl-terminated polymers, and several post-modification strategies have been effec-
tively utilized. The most common synthesis methods of allyl-terminated polymers are
ring-opening polymerization (ROP) [36–42], anionic ring-opening polymerization [43],
reversible addition-fragmentation chain transfer (RAFT) polymerization [44], atom transfer
radical polymerization (ATRP) [45–47], and condensation reactions [48–50]. The thiol–ene
photoinitiated, or thermal polymerization, method is the method most vastly applied for
the post-functionalization of allyl (ene) polymers. The thiol–ene reaction can be performed
together with living polymerization, such as ROP [38,40,42,51], ring-opening metathe-
sis polymerization (ROMP) [52,53], cationic polymerization [54,55], or controlled radical
polymerization [56]. Thiol-ene click-reaction, epoxidation [40,42,57], bromination [40],
dihydroxylation [57], reduction, oxidation, photo-induced crosslinking, grafting, and other
addition reactions are commonly performed techniques for post-modification of allyl
groups in polymers. These polymers are utilized in the delivery of drugs and bioactive
agents [36,43,51,58–60], bacterial therapy [61], antimicrobial coatings [37], dental cavity
restoration (thiol-ene formulations) [62–64], UV-cured coatings [65], artificial oxygen and
protein encapsulation [43], allyl resins and oligomer applications [66–69].

To the best of our knowledge, no relevant review articles are available in the liter-
ature describing the synthesis techniques, post-modification, and potential biomedical
applications of polymers with allyl functionality. Therefore, the aim of this review is to
bridge the gap by highlighting the recent progress within functional polymers derived from
“allyl” functionality and their utility in biomedical and related applications, particularly in
advanced drug delivery.

2. Synthesis, Post-Modifications and Applications of “Allyl”-Terminated Polymers
2.1. Polyesters

Several polyester-based copolymers with “allyl” functionality have been reported in
the literature via ROP and post-functionalized by either click, epoxidation, or bromination
reactions. For instance, Kost et al. [58] developed novel amorphous pH-tunable copolymers
of lactide (LA) and allyl glycidyl ether (AGE) with functionalities for the efficient delivery
of anti-cancer drugs. Poly(allyl glycidyl ether) (pAGE) was synthesized via anionic ROP
and used as a macroinitiator for the ROP of LA to generate a copolymer, poly(allyl glycidyl
ether-co-lactide) (AL), with free allyl functional groups in the backbone. To synthesize
pAGE, the authors utilized anionic ROP instead of cationic ROP, as a later method produced
a low molecular weight polymer. The synthesis process of AL copolymers was performed
at a relatively low temperature (105 ◦C) to prevent the isomerization of unsaturated bonds
on pAGE. The proton nuclear magnetic resonance (1H NMR) and size exclusion chromatog-
raphy (SEC) analyses exhibited no significant isomerization of the double bond in the AL
chains. The AL copolymers were not pH-responsive. Later, post-functionalization of the
AL copolymers was performed by thiol-ene click reaction using thioglycolic acid (tGA) and
N-acetyl-L-cysteine (ACC) to introduce pH-sensitive functional groups to the main chain
pendants (Figure 1). The resulting post-functionalized copolymers with either ACC (AL
ACC) or tGA (AL COOH) were found to be sensitive to pH changes as these compounds
serve carboxyl or amino functionalities.

The main focus of Kost et al.’s study [58] was to design biocompatible pH-responsive
nanocarriers, which will not only deliver the anti-cancer drugs effectively to the desired
targets, but also preserve the balance between the responsiveness of the nanocarriers
and their stability in physiological conditions. With the aims of obtaining high drug
encapsulation efficiency (EE), narrow size dispersity, and relatively small-size nanoparticles
(NPs), the authors conducted a nanoprecipitation method to prepare blank and doxorubicin
(DOX)-loaded NPs using neat AL copolymer, post-functionalized (AL ACC) and (AL
COOH) copolymers as the matrix and poly(ethylene glycol) methyl ether-b-poly(D,L-
lactide) (PEGME-b-PDLLA) as the non-ionic surfactant. The size and dispersity of all
prepared NPs in water, PBS (pH = 7.0), and acetic acid buffer (pH = 5.0) are presented
in Figure 2. The authors obtained larger NPs from non-functionalized AL copolymers
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(size 100 nm in all three media); this has been attributed to the rigidity of the pAGE
chain due to the presence of unsaturated double bonds (which are known to prevent free
rotation of molecules). On the other hand, functionalized copolymers produced NPs with a
hydrodynamic size which was half that of their non-functionalized counterparts due to the
increase in flexibility of the copolymer, with decrease in the number of allyl groups. Partial
and full functionalization of allyl groups could be the factor in getting slightly smaller
size and lower dispersity NPs from AL COOH, and slightly bigger and higher dispersity
NPs from AL ACC copolymers, respectively. The authors assessed the change in size of
NPs with respect to pH change by incubating NPs at 37 ◦C within 24 h and noticed no
significant change in size of NPs in physiological and acidic conditions (pH = 7.0 and 5.0
respectively) with respect to the sizes in water. The stability of NPs with tGA and ACC in
acidic pH 5.0 was accounted for by the formation of stable carboxylate moieties, negatively
charged ions for both NPs with tGA and ACC, or the development of PEG corona on the
surface of NPs with ACC. The authors’ explanation of the size of NPs in three different
media was in agreement with studies in the literature [69–73]. However, the authors did
not discuss the dispersity of the prepared NPs.
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Figure 1. The scheme of synthesis of the pAGE-PLA copolymer. (a) Anionic polymerization of
AGE, (b) coordination polymerization of LA initiated by pAGE, and (c) functionalization of AL with
ACC or tGA (where R is ACC or -CH2-COOH moiety) as proposed by Kost et al. Reprinted with
permission from [58]; published by Elsevier, 2021.
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Figure 2. The size and dispersity of all prepared NPs in (a) water, (b) PBS, and (c) acetic acid buffer,
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The observed EE for DOX was ~36% and the release study suggested reduction in burst
release due to the supramolecular interactions between polymeric pedant groups and DOX.
Moreover, a slower release rate was observed at pH = 5.0 due to the strongest interaction
between the AC ACC or AC COOH functionalities with DOX. In addition, ACC is well
recognized for its high antioxidant properties; therefore, ACC containing nanocarriers
can contribute to enhancing cancer treatment during cancer therapy. A microculture
tetrazolium assay (MTT) assay was performed using murine fibroblast cell line (L929),
human breast cancer cell line (HeLa), and human gastric adenocarcinoma cancer cell line
(AGS) to evaluate the toxicity of blank and DOX-loaded NPs. A complete culture medium
and 0.03% H2O2 were considered as a positive control of cell viability (100% viable cells)
and a negative control of cell viability (100% dead inactive cells), correspondingly. The
MTT assay revealed the non-toxicity of all blank NPs against all three tested cell lines after
24 h incubation at 37 ◦C (Figure 3). The authors stated that some tested compounds, e.g.,
DAPI (40, 6-diamino-2-phenylindole), might be subjected to Collagen type I secretion by
endothelial or epithelial cells due to proregenerative activity, which eventually caused cell
viability to pass over 100% in the case of the HeLa cell line. The concentration-dependent
insignificant cytotoxicity of AL COOH and AL ACC NPs against the murine L929 fibroblasts
observed in this study accounted for the strong interaction between tGA and ACC moieties
of NPs and the cell membrane. This effect is supported by a study conducted by He [1].

In a similar study, Pound-Lana et al. [36] synthesized LA copolymer with three gly-
cidyl ethers (allyl, benzyl, and propargyl glycidyl ethers) containing either allyl or propar-
gyl groups for further modifications via ROP using tin(II)octoate or 1,5,7-triazabicyclo
[4.4.0]dec-5-ene (TBD) as catalyst (Figure 4). The authors observed that poly(lactide-co-allyl
glycidyl ether) copolymer with 4.6 allyl groups per chain can be obtained by tin(II)octoate-
catalyzed copolymerization of LA with AGE. However, the number of allyl groups per
chain was reduced to less than one, and mostly PLA homopolymer was formed when TBD
was used as the catalyst. The authors also found that a higher number of reactive groups
per chain (up to 8.7 mole% of allyl functional groups) can be incorporated into the polymer
backbone by increasing the feed ratio of AGE, but this comes with the expense of a decrease
in molar mass of the copolymer. It was suggested that the decrease in molar mass was not
due to systematic chain-termination but a chain transfer, as polydispersity values remained
less than two. The authors proposed that, upon AGE incorporation, a chain is terminated
to form a new polymer chain, which could be the main cause for the decrease in number
average molecular weight (Mn) with increasing AGE content in the feed. Nadeau et al. [41]
reported similar observations, where a decrease in molar mass from 19,700 to 3300 g mol−1
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was observed when they polymerized LA in the presence of AGE with feed content varying
from 2 to 30 mol%, using tetraphenyltin as a catalyst.
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Although Pound-Lana [36] synthesized block copolymers containing allyl groups,
only alkyne-functional PEG-b-P(LA-co-PGE) copolymer was used for the investigation of
its application. A fluorescent azidocoumarin, 3-(α-azidoacetyl)coumarin, was conjugated
to the polymer via copper-catalyzed Huisgen-1,3-dipolar cycloaddition (Figure 5). The
authors proposed that the fluorescent labeled nanospheres could potentially act as drug
carriers and imaging agents. However, the allyl-functional PEG-b-P(LA-co-AGE) copolymer
synthesized in this study was not applied in fluorescent polymer nanosphere preparation;
although, allyl groups of AGE unit in the copolymer could be tuned as per the desired
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application, or allow direct modification under “thiol-ene click” chemistry. Moreover, the
facile modifications of AGE for grafting the part and inert character of the allyl group (in
general alkene) under the polymerization conditions could be the principal advantage of
using AGE.
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Recently, Bansal et al. [59] took a smart approach and chose a commercially available
starting lactone monomer that already contains free allyl groups on its chemical structure.
The authors developed novel functional polymers from renewable feedstock jasmine lac-
tone, using methoxy(polyethylene glycol) (mPEG) as initiator and TBD as catalyst. The
post-functionalization of copolymer mPEG-block-poly(jasmine lactone), (mPEG-b-PJL) was
then successfully demonstrated via UV assisted thiol-ene click chemistry to introduce
hydroxyl, carboxyl, or amine functionality (Figure 6). Although the authors reported that
the introduction of hydroxyl and carboxyl groups to the polymer using respective thiol was
found to be very efficient, insertion of amine functionality did not yield 100% conversion.

Bansal et al. [59] utilized hydroxyl-terminated polymer (mPEG-b-PJL-OH) for the
preparation of polymer-drug conjugates (PDCs) using DOX as a model drug via redox-
responsive disulfide linkage, i.e., mPEG-b-PJL-S-S-DOX (PJL-DOX). The conjugation re-
action followed a one-pot scheme; first, DOX reacted with DTPA, then, activation of the
DTPA acid end group was followed by coupling of mPEG-b-PJL-OH. The resultant product,
PJL-DOX, self-assembled into micelles with an average hydrodynamic size of ~150 nm and
demonstrated reduction-responsive DOX release. The authors observed that the PJL-DOX
has the ability to stimulate the release of DOX due to the cleavage of disulfide linkage
facilitated by glutathione (GSH). It was suggested that these stimuli-sensitive micelles
could release the drug exclusively in cancerous cells in high amounts due to the presence of
excessive GSH, and thus can mitigate the toxicity of cancerous drugs towards normal cells.
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Le Devedec et al. [60] prepared a series of well-defined poly(valerolactone)-co-poly(allyl-
δ-valerolactone) (PVL-co-PAVL) copolymers for use in drug delivery. The authors syn-
thesized PVL-co-PAVL copolymers via metal-free ring-opening copolymerization of δ-
Valerolactone (VL) and allyl δ-valerolactone (AVL) using TBD as a catalyst. In the synthesis
process, the TBD catalyst was first placed in a flame-dried round two-neck Schlenk flask
and dried under vacuum, and then anhydrous toluene and benzyl alcohol solvents were
incorporated in the TBD-containing flask under argon and stirred for half an hour. Both VL
and AVL monomers were distilled and transferred by cannulation into the reaction flask
under positive pressure of argon. The polymerization reaction was conducted at room
temperature for 6 h under argon atmosphere. After the polymerization was completed,
the resulting slurry solution of copolymers was precipitated into cold methanol, and then
re-dissolved in tetrahydrofuran (THF) and re-precipitated to the mixture of hexane/ethyl
ether (3:7). The characteristics of copolymers are given in Table 1.

Table 1. Characteristics of the PVL-co-PAVL copolymers as studied by Le Devedec et al. Adapted
with permission from [60]; published by American Chemical Society, 2018.

Mn (g/mol)

PVL-co-PAVL a GPC b PDI 1H NMR c NB Allyl Groups d % AVL e Tm (◦C) f ∆◦Hm (J/g) g χc (%)

P7.5K 9300 1.45 7500 15 28 12.6 36 25
P15K 12,000 1.45 15,000 25 23 34/39.3 76 53
P32K 24,000 1.47 32,000 45 20 38.2 58 40
P39K 33,000 1.52 39,000 25 9 41.6/47.6 88 61

a P7.5K, P15K, P32K, and P39K refer to the different PVL-co-PAVL copolymers. b Number average molecular
weight (g/mol) obtained from GPC analysis. c Number average molecular weight (g/mol) obtained by 1H NMR
spectroscopy. d Number and e weight percentage (% M.Wt) of allyl valerolactone in the copolymer (% AVL) based
on the total molecular weight determined by 1H NMR spectroscopy. f Melting temperatures (Tm) and g enthalpy
of melting (Hm) and degree of crystallinity χc (%) were determined by DSC analysis (2nd cycle).

The post-synthesis modification was performed via UV-mediated crosslinking us-
ing 1,6-hexanedithiol (HDT) as crosslinker to generate solid cylindrical amorphous or
semicrystalline polymeric matrices as potential implantable drug delivery systems (IDDS)
(Figure 7). In the post-functionalization, PVL-co-PAVL copolymers (0.25 mol equivalents of
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2,2-dimethoxy-2-phenylacetophenone (DMPA)), and HDT crosslinker (0.5 functional group
molar equivalents) were fully dissolved in dry dimethyl sulfoxide (DMSO) solvent under
heating. A 1 mL syringe (inner diameter, i.d. = 4.7 mm and d = 5 cm) was used as a scaffold
to inject in the solution, and then the syringe was UV-irradiated (λ 365 nm) for 20 min
placed in an upright position. The crosslinked polymer (CP) obtained by this thiol-ene click
chemistry was syringed out and purified by solvent exchange in THF (washed extensively)
and dried at room temperature. The maximum content of AVL reported in the copolymer
was 28%.
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The conventional way of drug-loaded polymeric microparticle (MP) preparation
consists of co-dissolving polymer and drugs in the organic phase, followed by oil-in-
water emulsification. However, as the crosslinking reagent HDT and catalyst DMPA, need
to be removed after post-particle formation, the conventional way is considered as an
inappropriate technique for the preparation of drug-loaded crosslinked copolymer MPs. To
mitigate this concern, the authors adopted the “post-loading” swelling-equilibrium method
to load all drugs investigated in this study (including paclitaxel, triamcinolone acetonide
and hexacetonide, curcumin, and acetaminophen) within the crosslinked PVL-co-PAVL
MPs. For this purpose, swelling/equilibration of dried CPs in saturated drug solutions was
formulated by equilibrating around 15 mg of CPs in a 30 mg/mL drug containing 0.5 mL
of THF for 4 h, and subsequently removing the surface-adsorbed drug through a brief rinse
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in fresh THF for 10 s. Finally, the drug-loaded CPs were dried at room temperature to
evaporate the THF solvent.

The authors observed the swelling behavior of the four crosslinked copolymer matrices
(CPs), i.e., CP15K (coral-like, heterogeneous surface morphology with densely packed folds),
CP32K (smooth surface with uniform ridges) CP39K (smooth surface with uniform ridges),
and CP7.5K (smooth surface with uniform ridges), in the CH2Cl2, THF, toluene, DMSO,
and H2O solvents. The degree of swelling was predicted by using the group contribution
method (GCM), i.e., CH2Cl2 > THF > toluene > DMSO > H2O. The same trend was
witnessed for all four copolymer systems, from CP7.5K to CP39K. Though, CP39K and CP32K
implants swelled well and kept structural integrity in CH2Cl2, owing to the high molecular
weight of copolymers, CP7.5K and CP15K matrices broke into pieces after 2 h, accounted for
by the low molecular weight of these copolymers. THF was chosen as the solvent for drug
loading owing to the high degree of implant swelling without compromising structural
integrity and drug solubility in THF. The four copolymer matrices swelled more in diameter
than in length following 4 h of equilibration in THF.

From the same research group, Bao et al. [74] prepared PVL-co-PAVL MPs via an
oil-in-water emulsification method, using PVA as stabilizer, followed by a thiol-ene click
reaction, i.e., UV-assisted crosslinking of HDT reactive monomer. The objective was to
introduce thiol functionality into the copolymer MPs and tailor the diameter of the MPs. In
this formulation method, the authors prepared the oil phase by dissolving PVL-co-PAVL
copolymer, DMPA photoinitiator, and HDT crosslinker in dichloromethane (DCM). The
water phase consisted of 5 mL of deionized (DI) water containing 5% PVA (w/v). The
oil phase was then incorporated into the water phase and homogenized with the help of
a Polytron™ 2500E Homogenizer to produce a MP suspension. Next, the thiol-ene click
reaction was conducted by UV-irradiating the MP suspension to assist crosslinking of the
copolymer. After evaporating the solvent, the sample was filtrated using a cell strainer
(Fisherbrand, 40 mm mesh) to retain MPs above the size cut-off. The filtration residue
was then suspended in DI water, followed by centrifugation to remove the surfactant.
After that, MPs were washed with acetone extensively to get rid of unreacted HDT and
DMPA. The scanning electron microscopy (SEM) analysis displayed that MPs had a smooth
spherical morphology with an average diameter of 66 ± 13 µm and the differential scan-
ning calorimetry (DSC) and thermogravimetric analysis (TGA) analyses ensured that the
crosslinking of the copolymer improved the integrity and thermal stability of the MPs.

In vitro evaluation of the Le Devedec study [60] showed that the PVL-co-PAVL MPs
demonstrate sustained release of paclitaxel (PTX) for up to 19 days following first-order
release kinetics where 60% cumulative fractional release was observed after six days, while
90% release was seen at the 19th day. In vitro degradation study indicated a slow but
noticeable erosion, and thus suggested the applicability of these MPs for sustained drug
release. The in vivo release of PTX from the MPs was found to be lower than predicted by
the authors; based on the in vitro release studies, minimal tissue damage was observed
at the administration site. The authors explained the lower release in the in vivo study to
be due to the differences between the environment within the subcutaneous tissue (e.g.,
reduced aqueous volume) and in vitro release media.

Yang et al. [40] reported a scalable and facile strategy for the synthesis of an allyl
functional aliphatic polyester via the ring-opening copolymerization of ε-caprolactone (CL)
and AGE. This study also observed a similar trend report by Pound-Lana [36], i.e., an
increment of epoxide monomer in the polymerization feed ratio (with maximum incorpo-
ration of 16.7%), leading to a higher number of reactive allylic groups in the copolymer.
This study also investigated the effects of temperature on polymerization and found that
the amount of AGE in copolymer and AGE homopolymer synthesis increases with in-
creased temperature. To prepare new functionalized polyesters, the pendant allyl groups
of poly(CL-AGE) copolymer were post-functionalized by thiol-ene click, epoxidation, and
bromination reactions. For this purpose, 2-mercaptoethanol, 3-chloroperoxybenzoic acid,
and bromine were employed to insert functionalities separately (Figure 8).
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To avoid the thermodynamic stability issue related to traditional polymeric micelles,
Liang et al. [75] successfully designed and synthesized dense hyperbranched polymers
with both terminal and internal “allyl” reactive groups. These reactive groups were sub-
sequently utilized to attach hydrophilic chains at surface and interior drug conjugation
(Figure 9). Firstly, the authors synthesized a series of new B′B2-R monomers, in which
B stands for the hydrogen in primary amine, B′ stands for the hydrogen in secondary
amine, while R is either the hydroxyl, alkene, or alkyne group that will not participate in
the polymerization but will allow post-polymerization modification, by the ring-opening
reaction of N-ethylethylenediamine with 1,2-epoxybutane, AGE, and propargyl glycidyl
ether, called Hyperbranched poly(amino ester)s (HBPAE). Later, Poly(ethylene glycol)
diacrylate (PEGDA), labelled as A2 monomer, was allowed to react with B′B2-R monomers
via Michael addition polymerization. The authors relied on the higher reactivity of primary
amine in B′B2-R to selectively react A2 monomer acrylate group to synthesize AB2 type
intermediate with no gelation. Thereafter, hyperbranched star copolymers were synthe-
sized via Michael addition reaction between PEG-SH, with terminal acrylate group of A2
preserving the internal R group, thus, attaching PEG chains onto the surface of HBPAE-R.
DOX was linked to the internal R groups via an acid-labile hydrazide bond to achieve a pH-
responsive drug release. The DOX loading content for PEG-HBPAE-DOX was calculated to
be ~32.0 wt% through the 1H NMR analysis. The size obtained via transmission electron
microscopy (TEM) for PEG-HBPAE-OH and PEG-HBPAE-DOX micelles was 15.2 ± 2.1 and
14.2 ± 2.8 nm, respectively, whereas the hydrodynamic diameter measured by dynamic
light scattering (DLS) was 32.4 and 30.4 nm, respectively. The in vitro release study for PEG-
HBPAE-DOX was conducted at pHs of 7.4 and 6.0 to mimic normal extracellular pH and
tumor microenvironment pH, respectively. The release rate observed at pH = 6.0 was higher
(up to 95% after 48 h) compared to release at pH = 7.4, which reached a plateau after 6 h,
indicating high stability under physiological conditions and pH-dependent drug release.
The in vitro cytotoxicity of DOX, PEG-HBPAE-OH, and PEG-HBPAE-DOX was assessed
on HeLa cells where the free nanocarrier exhibited almost no cytotoxicity even at high con-
centration (1.0 µg mL−1), while the cell viability was only 16.0% in the PEG-HBPAE-DOX
samples, with a drug concentration of 1.0 µg mL−1.
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Bach et al. [76] reported a facile method to synthesize a polymer grafted hydroxyapatite
(HAP)-based drug delivery system for controlled and targeted drug release. Unfortunately,
HAP is not degradable in the human body, and therefore introduction of polymer moieties
to the backbone of HAP has been found to be a good strategy to improve the physicochem-
ical properties of HAP. In this study, they utilized poly(allyl methacrylate) (Poly-AMA) to
initially encapsulate HAP nanocrystals (NCs) through surface-initiated RAFT (SI-RAFT)
polymerization. Thereafter, the pendant alkene in PolyAMA polymers was utilized to intro-
duce carboxylic functionality via a thiol-ene reaction. Subsequently, PEG-HBPAE-DOX the
HAP-Poly(AMA-COOH)/Pt complex was prepared by the interaction of HAP-PolyAMA
nanohybrids with transiently generated cis-diamminediaqua platinum (II) species through
the hydrolysis of cisplatin (Figure 10). Field emission scanning electron microscopy (FE-
SEM) revealed the morphology of HAP-Poly(AMA-COOH)/Pt complex, with Pt particles
in the range of 10–50 nm decorating the surface of the HAP-Poly(AMA-COOH) nanohy-
brids. The release of the Pt species from the HAP-Poly(AMACOOH)/Pt complex in
phosphate-buffered solution (pH = 7.4) and acetate buffer solution (pH = 5.0) was found to
be pH-dependent. A faster release was observed in acidic pH, which is attributed to the
hydrolysis of the HAP-Poly(AMA-COOH)/Pt complex.
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The toxicity levels of HAP-Poly(AMA-COOH)/Pt complex and pure cisplatin were
assessed against HeLa cells and A549 cells for 24, 48 h, and 72 h using MTT assay. Cisplatin
and HAP-Poly(AMA-COOH)/Pt complex showed a dose-dependent cytotoxicity and
enhanced cytotoxicity with longer incubation times. The cytotoxicity of pure cisplatin
was higher compared to the HAP-Poly(AMA-COOH)/Pt complex against A549 cells at
24 h, and the cytotoxicity became more prominent when incubated for 48 h. Pure cisplatin
also showed a higher cytotoxicity at 24 h on HeLa cells compared to the HAP-Poly(AMA-
COOH)/Pt complex; however, the effect became nearly identical on prolonged exposure.
Hence, HAP-Poly(AMA-COOH)/Pt complex nanohybrid is a promising nanocarrier for
controlled drug delivery.

Polyglobalide (PGl) is a biocompatible and non-toxic polyester that is obtained through
ROP of globalide and retains the double bond on its main skeleton after polymerization.
Thus, the design of copolymers of CL and globalide (Gl) would add wide versatility to
the polymer’s biomedical applications as it opens doors for post-polymerization modifica-
tion via thiol-ene coupling reaction. Therefore, Guindani et al., [77] incorporated the an-
timucolytic and antioxidant, N-acetylcysteine (NAC), to poly(globalide-co-ε-caprolactone)
(PGlCL) copolymer. NAC is a hydrophilic molecule and bears a thiol group that allows
conjugation by thiol-ene reaction; moreover, the formed thio-ether linkages could enhance
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the affinity of the polymer for water and reduce its degree of crystallinity. Herein, PGlCl
was synthesized by ROP using supercritical carbon dioxide (scCO2) as solvent in a fixed
mass ratio of 1:2 (CO2:monomers) with variation of the Gl/CL mass ratios as follows:
10/90, 25/75, 50/50, 75/25, and 90/10. Thereafter, PGlCL with varying Gl/CL ratios
were reacted with NAC via thiol-ene reaction resulting in the functionalized copolymer,
PGlCL-NAC (Figure 11). The functionalization of PGlCL containing a 10/90 Gl/CL re-
sulted in lower Tm PGlCL-NAC samples; however, the degree of crystallinity (χc) did
not practically change after functionalization. It was suggested that this result could be
ascribed to weaker intermolecular forces in the crystalline arrangement of the material
due to the addition of NAC. The free volume increase due to branching, which allows
for an easier chain movement of the chains, reduces the energy needed to overcome the
secondary intermolecular forces between the chains of the crystalline phase. Generally,
amorphous polymers exhibit higher degradation rates than semi-crystalline polymers,
and hence they are promising candidates for biomedical applications. Polymer samples
with amorphous characteristics were then assessed for their water affinity through contact
angle assay. PGlCL with different Gl/CL ratios presented contact angle values around
88◦, and accordingly may be considered hydrophobic materials. However, PGlCL-NAC
demonstrated lower contact angle values, varying from ~60◦ to ~47◦. The contact angle
decrease as a result of the increased hydrophilicity via the attachment of the hydrophilic
NAC yields a polymer more suitable for cell attachment and drug delivery, and allows for a
better degradation rate. NAC is a renowned antioxidant and, consequently, after function-
alization, PGlCL-NAC also presented antioxidant activity. PGlCL-NAC with a Gl/CL ratio
of 50/50 was assessed for its antioxidant potential through 1,1-diphenyl-2-picrylhydrazil
(DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. The
non-functionalized PGlCL showed no antioxidant activity in both assays while free form
of NAC showed a strong antioxidant activity in DPPH (EC50 = 4.31 ± 0.03 µg mL−1) and
ABTS (EC50 = 137 ± 3 µg mL−1). PGlCL-NAC presented EC50 = 4065 ± 157 µg mL−1 and
EC50 = 1553 ± 22 µg mL−1 in DPPH and ABTS assays, respectively.
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Figure 11. The functionalization of Poly(globalide-co-ε-caprolactone) side-chain with N-acetylcysteine
via a thiol-ene reaction as depicted by Guindani et al. Reprinted with permission from [77]; published
by Elsevier, 2019.

2.2. Polyethers

Insertion of allyl functional (poly)glycidyl ether as building blocks in polyether- leads
to a wide range of promising applications for these materials. In this section, we have
discussed the synthesis of such polymers and its post-functionalization, if any.

Lu et al. [51] designed and synthesized amphiphilic triblock copolymer, methoxy
poly(ethylene glycol)-b-poly(allyl glycidyl ether)-b-poly(ε-caprolactone), (mPEG-b-PAGE-b-
PCL) with different hydrophobic lengths using two successive ROPs and post-functionalized
by a thiol-ene click reaction, displayed in Figure 12. The macroinitiator mPEG−OH was
employed for the deprotonation of the terminal -OH group and then subjected to the
anionic ROP of AGE to obtain mPEG-b-PAGE diblock copolymers. Later, different amounts
of CL were incorporated into the system to synthesize the triblock copolymer mPEG-b-
PAGE-b-PCL with distinct hydrophobic lengths.
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loaded CLM by “thiol-ene” reaction (b) as described by Lu et al. Adapted with permission from [51];
published by Elsevier, 2020.

Blank micelles were prepared by dissolving mPEG-b-PAGE-b-PCL triblock copolymers
in THF, followed by adding copolymer solution into pure water drop-wise at room tem-
perature with continuous stirring. The blank micelles were obtained by evaporating THF
solvent through rotary evaporation. To prepare crosslinked mPEG-b-PAGE-b-PCL triblock
copolymers micelles, 1,4-butanedithiol crosslinker was added into the micelle dispersion
solution and irradiated the dispersion by a UV lamp (λ 365 nm). The centrifugal ultrafil-
tration technique was applied to remove residual crosslinker and cut off low-molecular
weight fraction (M.W. 3500).

The triblock copolymers could self-assemble into highly stable polymeric spherical
micelles in an aqueous solution. The micelles formation depends on the hydrophobic
interactions between the drug and the hydrophobic segments of the amphiphilic polymers.
The micelles encapsulate DOX and subsequently undergo interface crosslinking by a
thio-ene reaction with 1,4-butanedithiol. The covalently crosslinked network ultimately
enhances the stability of the micelles but decreases its size to some extent, compared to
that of the non-crosslinked micelles. The authors attributed this slight decrease in size to
the shrinkage of the inner core of the micelles. The DLS results indicate that the diameter
of the DOX-loaded micelles was dependent on the hydrophobic PCL block length in the
copolymer composition. The maximum drug loading content and entrap efficiency were
calculated as 8.62% and 47.16%, respectively, for the mPEG-b-PAGE-b-PCL50/DOX micelles
with a size of 99.28 nm. The in vitro cytotoxicity was determined by MTT assay with human
oral epidermoid carcinoma (KB) and human gastric carcinoma (SGC) cell lines. The results
showed that the DOX-loaded micelles could be effectively endocytosed by cancer cells and
possessed good antitumor efficacy. In addition, pH-responsive DOX release profile was
observed for both DOX-loaded noncrosslinked micelles (NCLMs) and crosslinked micelles
(CLMs). As DOX is known for its enhanced protonation affinity and higher solubility in
acidic environments, micelles achieved a rapid drug release in a weakly acidic intracellular
environment. However, the cumulative release rate of DOX-loaded CLMs was lower than
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that of the DOX-loaded NCLMs at both pH 7.4 and 5.0 because the crosslinking layer
hindered the release of DOX from the core of the micelles. The authors also investigated the
tumor targeting efficiency of CLMs and NCLMs using in vivo fluorescence imaging in 4T1
tumor-bearing BALB/c mice; the dye used was the commercially available lipophilic dye
DiR. They observed that the CLMs rapidly accumulated in tumors and had a better passive
targeting ability than NCLMs due to their good stability, as the fluorescence intensity
of DiR-loaded CLMs in the tumor (13.3%) was 1.67-fold higher than that of the NCLMs
(9.3%). The authors summarized that the interface crosslinking strategy from the triblock
copolymer mPEG-b-PAGE-b-PCL could improve the stability of the micelles in vivo and
holds great promising applications in future cancer therapy.

Clamor et al. [78] reported a well-controlled ROP of ε-allyl caprolactone using Mg(BHT)2
(THF)2 to yield an allyl-functionalized lactone, ε-allyl-ε-caprolactone (AεPCL), suitable
for post-polymerization modification with a 95% monomer conversion (Figure 13). The
synthesized PCL was subsequently post-functionalized by photo-initiated thiol-ene ad-
dition on the pendant allyl-functionality using various alkyl thiols to produce lipophilic
polyesters with tuned lipophilicity and crystallinity. An increasing solubility in n-dodecane
was observed with increased alkyl chain length on the PCL backbone. Furthermore, crys-
tallinity increased with alkyl chain length; a change in crystallinity from amorphous to
semicrystalline was observed when the alkyl length reached 10 carbon atoms in length,
likely due to effective chain interaction among the alkyl pendant groups. The authors
demonstrated that the physical and thermal properties of PCL can be altered by varying
the alkyl functionality. The tailoring of the polymer microstructure and solubility could be
advantageous in exploring PCL in new nanostructures and (bio)material applications.
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819, alkyl-thiol, chloroform, UV light (315–400 nm), RT as designed by Clamor et al. [78].

Su et al. [37] successfully designed and synthesized allyl-terminated polyethylene
glycol-polyhexamethylene guanidine block copolymer, APEG-PHMG, consisting of antimi-
crobial, antifouling, and surface-tethering segments in a facile, up-scalable, and inexpensive
way. Later, APEG-PHMG oligomers were grafted on polydimethylsiloxane (PDMS) silicone
rubber substrates by a facile plasma/autoclave-induced surface grafting polymerization
method to form a permanently bonded bottlebrush-like surface coating. The authors
basically modified the –NH2 end-group of polyhexamethylene guanidine (PHMG) with
AGE and, ultimately, obtained allyl-functionalized oligomers. The authors first prepared
hetero-bifunctional PEG with allyl and tosyl groups (APEG-OTs) using PEGs with 1200
and 2400 Da molecular weights, where end hydroxyl group of APEG was reacted with
4-toluene sulfonyl chloride (TsCl) to produce APEG-OTs. After that, thermally and chemi-
cally stable broad-spectrum antimicrobial agent polyhexamethylene guanidine (PHMG)
was conjugated with APEG-OTs to produce the block copolymer (APEG-PHMG). Sepa-
rately, an allyl-terminated PHMG was synthesized by reaction with AGE. The synthesis
process of oligomers and schematic of plasma/autoclave-assisted grafting is depicted in
Figure 14. Argon plasma (13.56 MHz, 40 W, and 25 sccm) was applied on the PDMS surface
for 5 min to generate reactive free radicals and, subsequently, plasma-treated PDMS was
exposed to air for 15 min to produce relatively stable peroxide or hydroperoxide groups on
the treated surface via reaction between reactive free radicals on the PDMS surface, and
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oxygen and water in the air. The activated PDMS surfaces were then immersed in 5 wt% of
A-PHMG or APEG-PHMG oligomer solution in vials, separately. After that, sample vials
were autoclaved at 121 ◦C for 15 min. In this autoclaving process, reactive free radicals were
generated again on the PDMS surface through decomposition of peroxide/hydroperoxide
groups on the silicone surface under high autoclaving temperature. These newly generated
free radicals initiated the polymerization of the allyl groups. The main function of allyl
functionality of A-PHMG/APEG-PHMG oligomers was the formation of a permanent cova-
lent bond between oligomers and the plasma-activated silicone surfaces, using allyl group
as this group is very reactive to peroxide/hydroperoxide groups generated on silicone
substrate via plasma activation and the reaction is very fast.
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The antimicrobial activity of AGE and APEG modified PHMG oligomers were ex-
amined both in solution and coating form against gram-negative, gram-positive bacteria,
and fungus. In this study, Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus
(ATCC 2921), and Fusarium solani (ATCC 36031) were considered as gram-negative, gram-
positive bacteria, and fungus, correspondingly. In solution form, a broth microdilution
minimum inhibitory concentration (MIC) assay was performed to determine the antimi-
crobial activity; results are shown in Table 2. The authors observed that both A-PHMG
and APEG1200/2400-PHMG coatings displayed potent broad-spectrum and reusable an-
timicrobial activity against gram-positive bacterium (S. aureus), gram-negative bacterium
(P. aeruginosa), and fungus (F. solani), whereas APEG1200/2400-PHMG coatings exhibited
superior antifouling activity and long-term reusability to A-PHMG coating. Contrar-
ily, APEG2400-PHMG coating demonstrates the most effective in vitro anti-biofilm and
protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. In ad-
dition, APEG2400-PHMG showed high efficacy towards the inhabitation of the bacteria
growth, significantly, and prevented implant-associated infection caused by P. aeruginosa in
a rodent subcutaneous infection model.

Table 2. Minimum inhibitory concentration (MIC) of AGE and APEG modified PHMG oligomers, as
studied by Su et al. Reprinted with permission from [37]; published by Wiley, 2017.

MIC [µg mL−1] Gram-Negative (G−) Gram-Positive (G+) Fungus

P. aeruginosa S. aureus F. solani

PHMG 5.0 2.5 2.5

A-PHMG 5.0 2.5 2.5

APEG1200-PHMG 5.0 5.0 5.0

APEG2400-PHMG 10.0 10.0 10.0

The outcomes of the study indicated that antimicrobial and antifouling APEG-PHMG
dual-functional diblock copolymer coating has great potential to prevent bacterial colo-
nization and biofilm formation on biomedical implants, and subsequently in combating
biomedical devices/implant-associated infections.

2.3. Poly(Ester-Anhydride)s

Poly(ester-anhydride) copolymers are frequently synthesized to combine the individ-
ual properties of polyester and polyanhydride polymers in a single polymer, with various
applications. Polyesters display mostly bulk erosion mechanisms and polyanhydrides
exhibit surface erosion mechanisms during hydrolytic degradation, whereas poly(ester-
anhydride)s demonstrate a two-stage degradation mechanism. In poly(ester-anhydride)s,
first, a rapid degradation in molecular weight of the polymer occurred through polymer
chain breaks at the hydrolytically labile anhydride linkage, and then, a slower degradation
of remaining oligomers took place. The rate of the second stage, the degradation of the
remaining oligomers, is determined by the composition of polyester prepolymers [79]. Nu-
merous studies have been conducted to prepare functional poly(ester-anhydride)s bearing
allyl pendant groups to combine the individual properties of polyesters and polyanhy-
drides, and to control the degradation rate and mode of degradation by manipulating the
polymer composition.

Jaszcz et al. published three separate studies discussing the synthesis and post-
functionalization of functional poly(ester-anhydride)s, based on succinic acid [48], on
oligosuccinate, and aliphatic diacids. Furthermore, they studied the hydrolytic degradation
behavior [49] and epoxidation of pendant allyl groups in poly(ester-anhydride)s, proposed
for application in drug delivery [50]. The purpose of introducing allyl groups to poly(ester-
anhydride)s was that the allyl groups could be converted into epoxide groups through
epoxidation reaction, and the epoxide functionality in poly(ester-anhydride)s could create
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an interesting perspective for chemical coupling of drugs to poly(ester-anhydride)s carrier,
e.g., via microspheres.

The authors described a three-step synthesis of succinic acid-based functional poly(ester-
anhydride)s bearing allyl groups in the side chains, as shown in Figure 15. The steps include
(1) preparation of carboxyl-terminated functional oligoesters (OSAGE) by melt condensa-
tion of AGE with an excess of diacid (DA), succinic acid, or carbonic acid; (2) conversion of
carboxyl end groups of the macromer to mixed anhydride groups by refluxing in acetic an-
hydride; and (3) preparation of poly(ester-anhydride)s from ester-anhydride prepolymers
by melt polycondensation.
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Figure 15. Polycondensation of succinic acid and allyl glycidyl ether, conversion of carboxyl end
groups of the macromer to anhydride groups, and preparation of poly(ester-anhydride)s by melt
polycondensation. Adapted with permission from [48]; published by Elsevier, 2008.

The authors post-functionalized poly(ester-anhydride) with allyl groups to epoxy
groups via oxidation using m-chloroperbenzoic acid (MCPBA) with 100% conversion
(Figure 16) [50]. However, it was observed that the conversion of allyl groups into glycidyl
was greatly dependent on the content of pendant allyl groups in poly(ester-anhydride)
(OSAGE to DA ratio), the concentration of a polymer in the reaction solution, the amount
of MCPBA, and the reaction time.
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Figure 16. Preparation of microspheres with surface epoxy groups as described by Jaszcz et al.
Adapted with permission from [50]; published by Elsevier, 2012.

The microspheres were fabricated by emulsion solvent evaporation method using
parent and oxidized polymers. The microparticles obtained in this study were stable
and spherical in shape (with diameter 4.7–9.2 µm in size distribution Dv/Dn = 1.2–1.4)
and no holes or pores were observed on their surfaces. Microspheres obtained from
allyl functional polymers were smoother, bigger, and had a broader size distribution
in comparison with microspheres prepared with epoxy-functional polymers (Figure 17).
Authors also suggested that, owing to the higher polarity of epoxide groups with respect
to allyl groups, the epoxy-functionalized microspheres did not show agglomerations and
coalescence in an aqueous medium. Moreover, the epoxide groups can be covalently
bonded with the functionalities of drugs, such as amines, and can be potentially utilized
as polymeric drug carriers [50]. In the preliminary trials, the authors conducted several
reactions between amine-containing model compounds, such as isopropylamine, a-amino-
x-methoxy-poly(ethylene glycol)s, spermine, and spermidine, and the epoxy-functionalized
poly(ester-anhydride) microspheres. It was observed that the model amine compounds
can covalently bond to the surfaces of the microspheres, which was confirmed by the 1H
NMR or ATR-IR spectra as epoxy groups peaks disappeared. However, the consumption
of anhydride bonds was also observed simultaneously. The two factors which determined
the ratio of epoxide groups to anhydride bonds consumption were the basic character of
amine compounds and the reaction conditions.
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Both initial and oxidized poly(ester-anhydride)s microspheres were subjected to hy-
drolytic degradation in phosphate buffer (pH = 7.4) at 37 ◦C for 10 days, followed by weight
loss determination due to hydrolytic degradation as a function of immersion time in buffer
solution by gel permeation chromatography (GPC). Two general trends were identified
from GPC results: (1) among the microspheres prepared from unoxidized and oxidized
poly(ester-anhydride)s, the unoxidized microspheres degraded somewhat faster than the
respective oxidized ones, and (2) microspheres obtained from poly(ester-anhydride) con-
taining sebacic acid (SBA) degraded faster compared to poly(ester-anhydride) containing
dodecanedicarboxylic acid (DDC) microspheres. After 7 days of hydrolytic degradation,
the weight loss was calculated. For the unoxidized and oxidized PSAGE20SBA80 micro-
spheres, approximately 90% and 60% weight loss was observed, respectively. Whereas a
weight loss of 54% and 45% was determined for unoxidized and oxidized PSAGE20DDC80
microspheres, respectively. Both oxidized SAGE20DDC80 and PSAGE20SBA80 micro-
spheres produced water soluble products by hydrolytic degradation. However, oxidized
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SAGE20DDC80 microspheres took longer to degrade entirely (more than a month) in
comparison to oxidized SAGE20DDC80 microspheres (over three weeks).

Aliphatic polycarbonates are degradable materials with low toxicity and high compat-
ibility, and thus are an important class of polymers in biomedical applications. Designing
and polymerizing cyclic carbonates carrying allyl pendants that could be easily modified
with thiol–ene reaction is a dominant approach in post-polymerization functionalization
for polymers based on cyclic carbonates. The method is selective, facile, and yields high
conversions and high reaction rates; however, the long reaction time needed for the allyl
functional monomer to yield high conversions while maintaining its end-group fidelity
remains a challenge. Therefore, Yuen et al. [80] incorporated allyl functionalities into
N-substituted eight-membered cyclic carbonates, renowned for being more reactive than
six-membered cyclic carbonates, to improve the reactivity of cyclic carbonate monomers
that contain allyl functionality. The authors further utilized the allyl groups in the polymer
by enabling modification of the polymer and, hence, widening the extent of the versatility of
the carbonate-based polymers. Firstly, the authors synthesized two different allyl-bearing
N-substituted eight-membered cyclic carbonates, 6-allyl-1,3,6-dioxazocan-2-one (8-ACl)
and allyl 2-oxo-1,3,6-dioxazocane-6-carboxylate (8-ACfm), in yields of 84% and 42%, respec-
tively, as shown in Figure 18A. Thereafter, homopolymerization of the monomers 8-ACl
and 8-ACfm was explored using the organocatalyst 1,8-di- azabicyclo[5 .4.0]undec-7-ene
(DBU) (Figure 18B). They used 10% DBU for catalysis and monitored the polymerization
and conversion through 1H NMR, in which 8-ACfm was able to achieve 97% monomer
conversion in 10 min; on the other hand, 8-ACl reached only 14% monomer conversion
after 1 h. The observed variability in reactivity between 8-ACl and 8-ACfm was attributed
to the different reactivity of the N-substituent pendant group of the cyclic carbonate be-
tween the two monomers. Later, the allyl bearing polymer was then modified with four
thiols, 1-butanethiol, 1-hexanethiol, 3-mercaptopropionic acid, and 2-mercaptoethanol, as
presented in Figure 18C. The efficiency of the modifications was very high with ≥90%
conversion for all cases, as calculated by 1H NMR spectroscopy. Moreover, the authors
managed to successfully form a gel through reacting allyl-bearing polycarbonates, with
HDT as a crosslinker. Importantly, the superior polymerization kinetics of 8-ACfm allows
its copolymerization with other cyclic monomers in a reasonable amount of time. The
N-substituted monomer, 8-ACfm, was copolymerized with the commercially available
trimethylene carbonate (TMC) with ≥97% within 1 h. The thiol–ene radical additions with
1-butanethiol were performed successfully for the prepared co-polymer, which suggested
that N-substituted eight-membered cyclic carbonates chemistry is an attractive approach
for producing functional biodegradable aliphatic polycarbonates.

2.4. Polysaccharides

Polysaccharides derived from natural resources are renewable, inexpensive, often
biodegradable, biocompatible, generally nontoxic, and demonstrate excellent properties,
including aqueous solubility, stability, and excellent swelling ability. Owing to these out-
standing characteristics, polysaccharides are being utilized as suitable biomaterials in many
biomedical applications, such as the delivery of drugs and therapeutics, protein encapsula-
tion, wound healing, tissue regeneration, and bioimaging. Among many widely-known
polysaccharides, chitosan (CS), derived from chitin via de-acetylation, primarily composed
of D-glucosamine and N-acetyl glucosamine units with a β-(1–4)-linkage, is the second most
abundant natural polysaccharide, after cellulose. Its biodegradable, biocompatible, non-
toxic, and non-allergenic properties, as well as its antimicrobial, antioxidant, anti-tumor,
and anti-inflammatory activities, make chitosan one of the most studied and frequently
investigated biomaterials for a wide range of biomedical applications. Owing to its impor-
tant biological properties, chitosan is considered an immunoadjuvant, anti-thrombogenic,
and anti-cholesteric agent [81–84]. It is a very popular excipient in the pharmaceutical
industry. Several research innovations have been made on chitosan as a polymer matrix
for drug delivery [81,85], tissue engineering, and regenerative medicines. On account of
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its high versatility, chitosan can be processed into many physical forms, such as micro or
nano-sized particles, fibers, gels, beads, films, sponges, scaffolds etc., for oral and parenteral
drug delivery, and tissue engineering [86,87]. End group functionalization of chitosan by
inserting allyl (ene) functionality opens new doors for promising applications of these
materials. In this section, we have discussed the synthesis of such allyl-functionalized
chitosan-based polymers.
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Ding et al. [88] engineered a pH-responsive UV-crosslinkable C6 O-allyl chitosan
(OAL-CS) polymer hydrogel. The authors synthesized OAL-CS via a three-step reaction:
(1) a Schiff’s base reaction of C2-NH2 with benzaldehyde to suppress the activity of the
amino group, (2) a ring-opening reaction of epoxy group of AGE with C6-OH of CS to
graft UV-crosslinkable allyl groups on CS, and (3) removal of protective groups in dilute
hydrochloric acid, as depicted in Figure 19. The authors adopted the protection of amino
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groups to preserve the pH responsiveness of the native CS and to ensure that the epoxy
groups reacted solely with the hydroxyl groups (C6-OH) (Figure 20a). The authors post-
functionalized OAL-CS via UV-induced “thiol-ene” click chemistry to demonstrate the
drug delivery capability of the polymer (Figure 20b).
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Figure 20. Schematic synthesis of (a) pH-responsive UV-crosslinkable C6 O-allyl chitosan (OAL-
CS) via protection/deprotection of amino groups and (b) the OAL-CS hydrogel via UV-triggered
“thiol-ene” click chemistry in which 4-arm PEG-SH served as crosslinker, as designed by Ding et al.
Reprinted with permission from [88]; published by Elsevier, 2020.

Hydrogel of OAL-CS was prepared by dissolving the polymer in PBS containing four-
arm PEG-SH as crosslinker. The final mixture solution was turned into gel within 30 s under
low-dose UV irradiation. Later, the pH-responsive swelling and shrinkage for modulating
the small molecular drug, DOX, and macromolecular drug, bovine serum albumin (BSA)
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release, were investigated in PBS buffer solutions at pH = 5.0, 6.8, and 8.0. The authors
found that the release behavior of the two drugs was different, and significantly dependent
on the pH of the solution, while the release of the drugs occurred mainly by their free
diffusion from the hydrogel. In the case of DOX, about 96% of the DOX load was released
within 4 h in basic pH (pH = 8.0 PBS) and this value was 53% more than the DOX released
within the same duration in neutral pH (pH = 6.8 PBS). On the other hand, after three
days, the cumulative release of BSA at pH = 8.0 was only 27%, while 53% and 62% releases
were observed at pH = 6.8 and 5.0, respectively. The pH-responsive shrinkage behavior
of hydrogel delayed the release of BSA by 49%, whereas the free diffusion, together with
extrusion of hydrogel, surprisingly promoted the release of DOX by 81%. It is noted that,
due to the degradation of hydrogel in acidic pH = 5.0, a quick release of BSA was observed
after 6 days. The product developed in this study has the properties of being worked as
a patterned microgel and rapid transdermal curing hydrogel in vivo, with potential for
pH-responsive drug delivery and other biomedical applications.

Yi [89] utilized a thiol-ene photoclick strategy to efficiently synthesize multifunctional
initiators based on cyclodextrine (CD) cores (Figure 21). The synthesized α-, β-, and γ-
CD cores were successfully employed in a “core-first” approach to produce well-defined
multiarm star polymers via atom transfer radical polymerization (ATRP), which has been
demonstrated as one of the most versatile polymerization techniques for building archi-
tecturally complex polymers. Multiarm star polymers are a unique class of branched
polymers with a large number of linear arms jointly connected to a central core. Their
unique solid and solution properties, due to compact globular architecture and high arm
density, make them attractive for a wide range of applications. The author produced the
multifunctional core initiator 21BR-S-β-CD by a general procedure of thiol-ene photoclick
chemistry, dissolving perallylated β-CD (allyl-β-CD) and DMPA in thiol 2-mercaptoethyl-
2-bromo-2-methylpropanoate (HS-EBiB) with a yield of above 90%. In a similar manner,
18Br-S-α-CD and 24Br-S-γ-CD core initiators were synthesized from allyl-α-CD and allyl-γ-
CD, respectively, in high yields. Yi also synthesized a new functional thiol 2-mercaptoethyl-
2-chloropropanoate (HS-ECP), and in a photoclick reaction with allyl-β-CD, 21Cl-S-β-CD
was successfully synthesized. Using 21Br-S-β-CD as the multifunctional core initiator, 21-
arm star polymers based on poly(tert-butyl acrylate) (PtBA), polystyrene (PS) and PMMA
were successfully prepared. 21-arm poly(N-isopropylacrylamide) (PNIPAM) stars were
made from 21Cl-S-β-CD. 18-Arm and 24-arm PtBA stars were produced from 18Br-S-β-CD
and 24Br-S-β-CD, respectively. The author expects that the approach could be applied in
growing patterned polymer brushes on planar substrates, such as silicon chips and glass
slides surfaces.

2.5. Polymers of Diazoacetates

Due to the abuse of antibiotics, many treatable illnesses have become incurable. There-
fore, bacterial infections caused by drug-resistant bacteria are increasing more and more
and the list of (multi)drug-resistant bacteria is becoming longer and longer. As a result, a
demand for biomaterials with high potential for suppressing bacterial growth and killing
bacteria is increasing tremendously. Diazo compounds are of high interest among re-
searchers, as diazo compounds can act as a precursor for obtaining polymers with polar
functional groups. Multiple functional diazo polymers with diazo groups in the back-
bone and polar functional groups in the side chains can, themselves, be useful materials,
and also regarded as templates for predetermined applications after further design and
facile modification.
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She et al. [61] synthesized a unique ternary fluorescent copolymer, poly(allyl diazoacetate-
co-acrolein), or (PADAAC), by copolymerization of allyl diazoacetate (ADA) and α,β-
unsaturated aldehyde acrolein (AC) in a one-pot, one-step, and catalyst-free reaction (also
known as C1N2/C2/C1 copolymerization) for effective bacteria therapy. In this synthesis
process, a 1,5-diradical intermediate is formed in the chain initiation step, as a result of
fast chain initiation reaction between the double bond of AC and the diradical of ADA. In
the chain propagation step, ADA, AC, and CAC (generated from ADA by the loss of N2)
are inserted. The addition of a hydrogen radical terminates the chain. A brief synthesis
procedure was implemented. First, a three-necked round-bottomed flask, equipped with a
reflux condensation tube (the other end connected with a safety bottle containing silicone oil
to insulate the air), was flushed with Ar gas and charged with ADA in CHCl3. Then, the AC
solution in CHCl3 was incorporated into the flask, drop-wise, through a pressure-equalizing
dropping funnel sealed with a glass plug. Subsequently, the polymerization reaction was
carried out by heating the reaction mixture at 50 ◦C with continuous stirring for 8 h. After
the polymerization reaction, the polymer products were precipitated in ether and then
dried in a vacuum oven to obtain the final product, PADAAC. The PADAAC copolymer
contains azo groups in the backbone, which is responsible for its green fluorescent light
and contains both allyl and aldehyde groups (at a ratio of 2:1) in the side chain. The
authors fabricated a series of acrylamide (AM)-based hydrogels with various amounts of
neutral PADAAC as a comonomer with respect to AM monomer by the copolymerization
of hydrophilic AM monomer and N, N′-methylene bis(acrylamide) (MBAA) crosslinker
(Figure 22). The authors performed post-modification of PADAAC (20 mol%, versus
AM monomer) copolymer via a simple imine reaction, where the aldehyde groups of
this copolymer were protected with amino groups of 2,2′-(ethylenedioxy)bis(ethylamine)
(EBEA). The purpose of this imine reaction is to obtain a hydrogel, whose antimicrobial
property can be turned on or off by adjusting the pH.
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The authors found that the unusual allyl diazoacetate/acrolein copolymer-based
hydrogels with a three-dimensional network structure can suppress bacterial growth
and kill the gram-positive Staphylococcus aureus, gram-negative Escherichia coli, and
gram-positive methicillin-resistant Staphylococcus aureus, with a killing efficiency of more
than 95%. The cytotoxicity of the hydrogels evaluated by the MTT assay was nontoxic
towards the fibroblast 3T3-E1 cell. The authors found that the amine-protected PADAAC
copolymer displayed no antimicrobial activities on the bacteria due to the hindrance of
aldehyde groups; however, the deprotected PADAAC recovered its antimicrobial activities.
Furthermore, PADAAC can be readily coated on the glass substrate to get an antimicrobial
coating via the solution-immersion coating process. The authors suggested that this new
multifunctional PADAAC copolymer with abundant aldehyde and polymerizable allyl-
functional groups can be used as a “monomer” to be incorporated into a polymer network or
surface coating in any proportion by crosslinking the allyl groups. In addition, the authors
considered that the PADAAC copolymer-based hydrogels can be applied as promising
antimicrobial agents to combat drug-resistant bacteria in bacteria therapy, and also in many
chemical engineering and biomedical fields, as aldehyde functionality is well-recognized
for its high chemical activities and bioactivities.

2.6. Polystyrene

Polystyrene (plastic products, functionalized polystyrene nanoparticles, fluorescent
polystyrene latex beads etc.) has a number of uses in biomedical applications. It is cost-
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effective, lightweight, transparent, easy to sterilize, and resistant to bacterial growth and
moisture. This paved the way for its extensive use in tissue culture trays, diagnostic
components, sterile test tubes, petri dishes and other test kits, medical devices, and in
medical applications. In this section, we have discussed the synthesis of allyl-functionalized
polystyrene polymers and, in some cases, their post-functionalization.

In a study, Zhang et al. [44] prepared well-defined allyl-functionalized telechelic PS
and PtBA homopolymers with predetermined molecular weight and narrow polydispersity.
RAFT polymerization of styrene was performed using symmetric allyl-functionalized bisal-
lyl trithiocarbonate (BATTC) as a chain transfer agent (CTA) at 110 ◦C. The polymerization
of tert-butyl acrylate (tBA) was achieved using AIBN as an initiator and BATTC as a CTA
at 60 ◦C. The allyl-functionalized BATTC was synthesized from alkyl halides and carbon
disulfide in the presence of anion-exchange resin Amberlyst A-26. The authors chose the
controlled radical polymerization (CRP) technique over the ionic polymerization, conven-
tional radical polymerization, and polycondensation reactions, mainly to obtain polymers
of controlled molecular weight and to perform reactions in the presence of monomers,
initiators, or CTA agents containing many functional groups. The authors found that
the RAFT thermal polymerization followed first-order kinetics, and the number average
molecular weight increased linearly with an increase of monomer conversion (up to ca.
68% conversion).

To examine the reactivity of the allyl groups of telechelic PS, the authors performed a
bromine addition reaction to convert allyl groups into 1,2-dibromopropyl groups, quan-
titatively. The resultant bromo-terminated PS was further converted to azido-terminated
PS [i.e., bis(1,2-diazidopropyl)-capped telechelic PS] by a nucleophilic substitution of
the halogen atom. The authors also prepared triblock telechelic copolymers, bisallyl
functionalized polystyrene-b-poly(n-butyl acrylate)-b-polystyrene, (PS-b-PnBA-b-PS) and
poly(tert-butyl acrylate)-b-polystyrene-b-poly(tert-butyl acrylate), (PtBA-b-PS-b-PtBA), with
the bisallyl functions located at two ends of the triblock copolymers, and star PS with
allyl-end-functionalized arms (Figure 23). Later, the star polymer was converted into a
difunctionalized star polymer with a thiol-functionalized core by aminolysis reaction using
ethylenediamine, which was used as a stabilizer for the formation of gold nanoparticles.

2.7. Polyethyleneimine

Polyethyleneimine (PEI) is a synthetic, linear, or branched cationic polymer. It is well
recognized for its biocidal potentials, high gene transfection efficiency (referred to as the
gold standard for non-viral gene transfection), and ability to build a complex with DNA
and proton sponge effect and to facilitate the intracellular transport into nucleus. Due to its
exceptional properties, it is used as an attachment promoter (in tissue culture), transfection
reagent, permeabilizer of gram-negative bacteria, gene delivery vehicle, and a suitable
material for antimicrobial coatings, magnetic NPs coating and targeted therapy (in vitro
cell transfection with nucleotides of siRNA or DNA). In this section, we have described the
synthesis of allyl functional group containing PEI polymers and, where appropriate, its
application.

Acebo et al. [66] synthesized a new allyl-terminated hyperbranched polyethyleneimine
(PEIene) by reacting PEI with AGE in isopropanol solvent, utilizing the benefits of the
nucleophilicity of amines of PEI, which react with the oxirane ring (Figure 24).
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To cure different formulations of PEIene/diglycidylether of bisphenol A (DGEBA)
with pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), the authors [66] performed
a two-stage curing process composed of two click reactions: first, a photoinduced thiol–
ene addition, followed by a thermal thiol–epoxy reaction. The thiol-ene reaction of allyl
functionality is an extremely rapid reaction (completing within a few seconds) and is
tolerant to the presence of air/oxygen and moisture. The advantages of allyl groups in
multifunctional PEIene are that allyl groups can be readily crosslinked with unsaturated
double bond-containing monomers or polymers in a resin formulation, and form a tighter
network structure, as the presence of high allyl functionality of hyperbranched polymers
increases the glass transition temperature of the product higher than expected. To catalyze
both processes, a photoinitiator, DMPA, and a base, 1-methylimidazole (1-MI), were ap-
plied, respectively. The authors found that both processes overlapped and the thermal
thiol–epoxy process prematurely began during the photoirradiation because the presence
of amines in the PEI structure accelerated this process. The thiol–epoxy reaction is ac-
counted for as a simple nucleophilic ring-opening reaction by a thiolate anion formed by
H-abstraction with an amine. The alkoxide anion formed is protonated by proton transfer
from a quaternary ammonium salt, formed in the activation of thiol or by the thiol itself.
Thiol–DGEBA polymerization leads to a network structure with a high molecular weight
between crosslinking points.

2.8. Allyl Functional Multiene Monomers

It is well-known that methacrylate and thiol-ene resin-based composites are commonly
used as alternatives to dental amalgams for dental cavity restoration. However, both the
methacrylate and thiol-ene systems suffer from significant shortcomings; for example,
methacrylate resins show high volumetric shrinkage during photoinitiated polymerization,
high polymerization stress, and low functional group conversion. Although thiol-ene
systems exhibit a considerable reduction in shrinkage stress due to the delayed gelation,
they display significant lower flexural strength and modulus. To solve the problems
associated with methacrylate and thiol-ene resin systems, researchers are focused on
thiol-ene-methacrylate ternary systems that combine thiol-ene systems with methacrylate
systems. Therefore, Fu et al. [62] synthesized fluorine containing urethane-based allyl
ether multi-ene monomer (FUAE) and used it to prepare a thiol-ene-methacrylate ternary
resin system for dental resin composites with the aim of reducing shrinkage stress. Due to
the high viscosity of resins, a reactive diluent, usually triethylene glycol dimethacrylate
(TEGDMA), is frequently added to the formulation. To synthesize the FUAE monomer, the
authors first synthesized an isocyanate-terminated prepolymer by a condensation reaction
of isophorone diisocyanate (IPDI) and 1H,1H,6H,6H-perfluorodecane-1,6-diol (PFDOL)
in a stoichiometric ratio of isocyanate and hydroxyl functional groups, using THF and
dibutyltin dilaurate (DBTDL) as solvent and catalyst, respectively (Figure 25).

Once the highly reactive isocyanate groups (–N=C=O) reached half of the initial
content, the authors added an unsaturated allyl ether, trimethylolpropane diallyl ether
(TMPDE) into the reactor, and the reaction was continued until all –N=C=O groups re-
acted and finally obtained diallyl ether- terminated FAUE monomer as a colorless vis-
cous liquid. The FAUE monomers were mixed with commercial pentaerythritol tetra
(3-mercaptopropionate) (PETMA) to prepare a thiol-ene resin system. After that, the
thiol-ene resin system was incorporated in a methacrylate-based resin system, 2,2-bis [4-(2-
hydroxy-3-methacry-loxyprop-1-oxy)phenyl]propane (Bis-GMA)/TEGDMA, synthesized
by Cramer [64] to increase the mass fraction of thiol-ene in the thiol-ene-methacrylate
ternary resin system. Camphorquinone photoinitiator (CQ) and 2-dimethylaminoethyl
methacrylate co-initiator (DMAEMA) were added into the thiol-ene-methacrylate resin
system during the photo-curing process. The ultimate product showed that the presence
of FUAE in the ternary resin system increases the degree of conversion of methacrylate
functional group and decreases volumetric shrinkage and water sorption and solubility in
comparison with neat methacrylate resin-based dental composite. However, the authors



Pharmaceutics 2022, 14, 798 31 of 38

conclude that the mass fraction of thiol-ene resin in the ternary resin system must be a
maximum of 30 wt% to observe such effects.
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Beigi et al. [63] studied another ternary thiol–ene–methacrylate system as a resin matrix
for potential dental restorative composites, synthesizing urethane terta allyl ether monomer
(UTAE) as ‘ene’ monomer (Figure 26), and incorporating it into a 2,2-Bis-(2-hydroxy-3-
methacryloxypropoxy) phenyl] propane (Bis-GMA)/TEGDMA resin system. The thiol–ene
moieties provided lower crosslinked density, more homogeneous microstructure, and
displayed higher fracture toughness. The fracture toughness determines the capacity of
a dental material to resist brittle fracture and improvement of fracture toughness of a
dental material eventually increases longevity and performance. The advantage of allyl
functionality in the ternary thiol–ene–methacrylate system is that thiol or ene functional
groups react only once with another complementary functional group during thiol–ene
step-growth polymerization reaction, which leads to longer spaces between crosslinking
sites. In turn, this leads to lower crosslink density, network flexibility, high free volume,
and more homogeneity, resulting in higher fracture toughness. The allyl monomer UTAE
appears to be promising, but was not explored for any potential application.

Konuray et al. [90] synthesized a set of clickable allyl functional catalytic comonomers
for sequential thiol-Michael and radical thiol-ene reactions in preparation of poly(thioether)
thermosets. Foix et al. [91] synthesized and characterized a new terminated hyperbranched
polyester (HBP), containing thioether and esters in the backbone and hydroxyl groups
as chain ends, via an iterative synthetic procedure (a combination of esterification and
thiol-ene click reaction), using it successfully as a latent multifunctional macroinitia-
tor for the dual curing of the commercially available bis-cycloaliphatic diepoxide, 3,4-
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epoxycyclohexylmethyl-30,40-epoxycyclohexyl carboxylate epoxy resin. Flores [92] syn-
thesized and applied an allyl-terminated HBP for the curing of the cycloaliphatic epoxy
resin used by Foix [91], 3,4-epoxycyclohexylmethyl-30,40- epoxycyclohexyl carboxylate
formulation (a two-stage photoinitiated-thermal dual curing system, consisting of allyl
modified hyperbranched polyester and a trithiol compound), and successfully converted
the thioether network in a multifunctional thermal macroinitiator to produce a flexible
thioether network.
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2.9. Miscellaneous Polymers

1,1-disubstituted-2-vinylcyclopropane monomers can undergo ROP forming poly(1,1-
disubstituted-2-vinylcyclopropanes) that have five carbon atoms and an ethylenic bond in
their repeating points. Ntoukam et al. [93] explored the potential of post-polymerization
modifications of poly(1,1-disubstituted-2-vinylcyclopropanes). Firstly, they prepared
two poly(vinylcyclopropanes) (P1 and P2) with ethylene and ester groups. Aminoly-
sis was performed on activated ester precursor polymer (P2) with isopropyl amine or
2-ethylhexylamine, respectively, giving two readily soluble polymers (P3a and P3b), re-
spectively. Bromination, epoxidation, and thiol-ene addition of the ethylenic moiety were
performed as three different functionalization routes. Thiol-ene functionalization was con-
ducted on P1 via a radically driven thiol addition, initiated by AIBN thermal decomposition
yielding a polymer product of two regioisomers mixture (P4 and P5) (Figure 27). Further-
more, a ring-opening reaction of the formed oxirane group was performed successfully,
yielding polymers P9a and P9b.
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3. Toxicity Aspect of the “Allyl” Functional Polymers

Kost et al. [58] evaluated that the blank NPs prepared from the tGA and ACC-
functionalized copolymers experienced no cytotoxicity against all tested cell lines (normal
L929, HeLa, and AGA cell lines) in the MTT assay after 24 h of incubation at 37 ◦C. Incu-
bation of MDA-MB-231 cells with mPEG-b-PJL-OH polymer showed that more than 90%
of cells were found to be viable after 48 h of incubation time for polymer concentrations
up to 2 mg/mL, in the study by Bansal et al. [59]. Le Devedec et al. [60] investigated
the cytotoxicities of the crosslinked polymer matrices (CP39K and CP15K) prepared from
PVL-co-PAVL copolymers against L929 mouse fibroblast cells by the extraction dilution
method. Both CP39K and CP15K cylindrical matrices exhibited excellent in vitro biocom-
patibility (more than 80% L929 cell viability evaluated using the MTS assay) at all extract
dilution percentages (100, 50, 25, 12.5, 6.25, and 3.125%) and time points considered for
the experiment (24, 48, and 72 h). Liang et al. [75] reported that, after 48 h incubation, the
free nanocarrier, PEG-HBPAE-OH unimolecular micelles, exhibited nearly no cytotoxicity
against HeLa cells, even at high polymer concentration (1.0 µg/mL) in the MTT assay. The
toxicity levels of HAP-poly(AMA-COOH) nanohybrids were evaluated against HeLa cells
and A549 cells at three concentrations of nanohybrids (0.1, 0.5, and 1 mg/mL) for 24, 48,
and 72 h using MTT assay by Bach et al. [76]. The results revealed that about 80% of cells
(both HeLa and A549 cells) were found to be viable, even after 72 h of incubation with
0.1 mg/mL nanohybrids concentration. Though the percentage of cell viability decreased
with the increase in nanohybrids concentration, nonetheless, above 60% of cells were still
measured to be viable at a nanohybrids concentration of 1 mg/mL. Lu et al. [51] reported
that the mPEG-b-PAGE-b-PCL micelles showed excellent biocompatibility and low cyto-
toxicity to both human oral epidermoid carcinoma (KB) and human gastric carcinoma
(SGC) cell lines. The authors assessed the cytotoxicity of the blank micelles against KB
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and SGC cell lines using MTT assay, and found that the cell viability after 48 h incubation
was more than 90%, at a micelles concentration of 0.1 mg/mL. Su et al. [37] determined
the cytotoxicity of PDMS-g-APEG2400-PHMG to human aorta smooth muscle cells (SMCs)
by the MTT and LIVE/DEAD cell viability assays. The authors observed no significant
difference in the cell viability among cells cultured with PDMS-g-APEG2400-PHMG, pristine
PDMS, and on tissue culture polystyrene plates in the MTT assay. They also found that
PDMS-g-APEG2400-PHMG and pristine PDMS had no effect on the cell growth for up to
5 d in the LIVE/DEAD assay. Ding et al. [88] evaluated the in vitro cytotoxicity of pH-
responsive UV-crosslinkable C6 O-allyl chitosan (OAL-CS) solution (injectable hydrogel,
with concentration 0.1–1.0 mg/mL) and of the hydrogel extract. The cell counting kit-8
(CCK-8) assay of L929 fibroblast cells was used in this experiment. The authors observed
that more than 95% relative cell viabilities were accounted for in all OAL-CS solutions
(concentration 0.1–1.0 mg/mL within 24 h and 48 h) and more than 100% relative cell
viabilities were calculated for by the hydrogel sample extract. She et al. [61] evaluated the
cytotoxicity of unusual allyl diazoacetate/acrolein copolymer-based hydrogels by MTT
assay. All the hydrogels were found to be nontoxic to the 3T3-E1 cell. The cell viability of
the tested hydrogels was calculated to be more than 75%; for the amine-protected hydrogel,
viability reached above 85%.

The important toxicity aspect of poly(CL-AGE) [40], PEG-b-P(LA-co-AGE) [36], PGlCL [77],
poly(ε-allyl-ε-caprolactone) [78], poly(ester-anhydride)s [48,50], polycarbonates [80], poly(1,1-
disubstituted-2-vinylcyclopropanes) [93], multiarm star polymers [89], bisallyl-functionalized
telechelic polymers and star polymer [44], PEIene [66], and urethane-based allyl ether multi-
ene monomers [62,63], which are discussed in this study, has not yet been evaluated, or at
least not reported, in the reviewed articles.

4. Conclusions and Outlook

This review summarizes recent advances in the synthesis of allyl-terminated polymers,
including post-modifications and applications, especially in the biomedical field. Along-
side conventional polycondensation reactions, ROPs, C1N2/C2/C1 polymerization, and
reversible addition-fragmentation chain transfer (RAFT) polymerization methods are now
performed to synthesize allyl polymers or macromonomers. Several allyl-terminated poly-
mers reported in this study have demonstrated promising results towards their biomedical
applicability, especially in drug delivery and dental applications. Allyl-functionalized
polymers, whose synthesis and post-modification techniques are only described, but their
potential application not yet explored, can be investigated further to understand their
utility in drug delivery and tissue engineering. Nevertheless, not all the allyl-terminated
polymers or polymers functionalized with allyl groups described in Section 2 are explored
in biomedicine. Some polymers were tested for other technical applications, whereas the
applications of other potential polymers have not yet been explored. Thus, there is still
much room for future tailored approaches of polymers with “allyl” functionality within
the pharmaceutical and biomedical fields.
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