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Abstract: Soybean allergy presents a health threat to humans and animals. The mechanism 

by which food/feed allergen β-conglycinin injures the intestinal barrier has not been well 

understood. In this study, the changes of epithelial permeability, integrity, metabolic 

activity, the tight junction (TJ) distribution and expression induced by β-conglycinin  

were evaluated using IPEC-J2 model. The results showed a significant decrease of  

trans-epithelial electrical resistance (TEER) (p < 0.001) and metabolic activity (p < 0.001) 

and a remarkable increase of alkaline phosphatase (AP) activity (p < 0.001) in a  

dose-dependent manner. The expression levels of tight junction occludin and ZO-1 were 

decreased (p < 0.05). The reduced fluorescence of targets and change of cellular 

morphology were recorded. The tight junction occludin and ZO-1 mRNA expression 

linearly declined with increasing β-conglycinin (p < 0.001). 
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1. Introduction 

The increasing consumption of various soybean products owing to their high nutritional value has 

lead to a rise in the incidence of soybean allergies [1]. Soybean β-conglycinin, the major food/feed 

allergen, is recognized by IgE antibodies present in soybean-allergic humans [2,3] and animals [4]. 

The intestinal mucosa represents a crucial border between the organism and its environment. The 

large contact surface allows efficient nutrient absorption, acts as an important barrier for pathogens and 

toxins, and participates in the innate immune response [5,6]. As recently reported, β-conglycinin may 

produce three major enzyme-hydrolyzed peptides (the molecular weight of 52, 30 and 25 kD, 

respectively) with the intact IgG and IgE binding epitopes after digestion by continuous pepsin and 

trypsin [7]. Both digested and undigested β-conglycinin can transit through the stomach and small 

intestine [8–11], and be absorbed in immunoreactive form by the gut epithelium, facilitating the 

exposition of these allergens to the immune system, which would consequently elicit an allergic 

response in a sensitized individual [12,13]. 

Piglets easily suffer from soybean-induced allergy, so the presence of allergenic components 

including intact β-conglycinin and its enzyme-hydrolyzed peptides greatly restricts their use in 

neonatal and weanling pigs. Soybean allergies usually cause inflammatory disorders in the small 

intestine, characterized by villous atrophy and hyperplasia in the crypt, as well as accelerated 

enterocyte proliferation, apoptosis and migration [14–18]. However, so far, there have been few 

studies into the effects of β-conglycinin on the intestinal barrier permeability of piglets. 

The intestinal porcine epithelial cells originated from jejunum (IPEC-J2) retained most of their 

original epithelial nature [5]. So we opted for the use of an IPEC-J2 that would maximally resemble 

the in vivo situation. Meanwhile, it could also give some related hints for soybean-allergic patients due 

to porcine physiological and immunological similarity to human beings [19,20]. In this study, the 

epithelial permeability, integrity, metabolic activity, tight junction (TJ) distribution and expression in 

IPEC-J2 respectively treated with β-conglycinin were determined, which are essential criteria to 

explore the mechanism of soybean-induced allergy. 

2. Results 

2.1. TEER 

As shown from Figure 1, 0–3 mg/mL β-conglycinin decreased the TEER after 24, 48 and 72 h 

incubation in a dose-dependent manner. The negative linear correlation existed between TEER and  

β-conglycinin (p < 0.001, R2 = 0.919) levels at 24 h. The highest concentration of β-conglycinin  

(3 mg/mL) reduced the TEER to 67% of the control after 24 h, respectively. The maximal reduction of 

TEER (versus control) was 38% after 72 h incubation, respectively. 

2.2. Cellular Metabolic Activity Detected by MTT Assay 

A significant linear reduction of cellular metabolic activity was detected after application of  

0.5–3 mg/mL β-conglycinin (R2 = 0.862, p < 0.001) at 24 h (Figure 2). The highest β-conglycinin 
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concentration (3 mg/mL) reduced the metabolic activity to the minimum 78% (versus control) after  

72 h incubation, respectively. 

Figure 1. Trans-epithelial electrical resistance (TEER) of intestinal porcine epithelial cells 

originated from jejunum (IPEC-J2) cells after 24, 48 and 72 h incubation of β-conglycinin. 

Each bar represents four independent experiments performed in triplicates ± SD. a, b, c, d, 

e, f each represent two groups for different concentrations which are statistically different 

from each other. 

 

Figure 2. Metabolic activity of IPEC-J2 cells after 24, 48 and 72 h incubation of  

β-conglycinin measured by MTT assay. Each bar represents four independent experiments 

performed in triplicates ± SD. a, b, c, d, e, f each represent two groups for different 

concentrations which are statistically different from each other. 

 

2.3. Cellular Integrity Assessed by AP Activity 

Detection of AP activity as a marker for enterocyte differentiation [21] showed a remarkable 

increase for 0.5 mg/mL β-conglycinin at 72 h (Figure 3). The AP activity had a positive linear 

relationship with the β-conglycinin levels (R2 = 0.603, p < 0.001). 
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Figure 3. Alkaline phosphatase activity of IPEC-J2 cells after 72 h incubation of  

β-conglycinin. Each bar represents four independent experiments performed in  

triplicates ± SD. a, b, c, cd, d, e each represent two groups for different concentrations 

which are statistically different from each other. 

 

2.4. Tight Junction Distribution and Expression 

The tight junction proteins (occludin and zonula occluden (ZO)-1) were located at the cell-cell 

contact regions, as shown in Figure 4. After treatment with β-conglycinin, the cellular morphology was 

altered, and the cellular junction location was obscure. The staining intensity of occludin and ZO-1 

clearly decreased compared with the control. The protein expression of occludin and ZO-1 were 

clearly reduced by 46% and 15% when analyzed by western-blot (Figure 5), respectively (p < 0.05). 

Figure 4. Tight junction proteins distribution of IPEC-J2 cells after 24 h incubation of  

β-conglycinin. Representative images of immunofluorescence staining (magnification 200×) 

are shown. 
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Figure 5. Western blot of tight junction proteins of IPEC-J2 cells after 24 h incubation of 

β-conglycinin. The β-actin is housekeeping protein. Representative western blots from  

four independent experiments are shown. 

 

2.5. Tight Junction mRNA Expression 

Tight junction occludin or ZO-1 mRNA expression was assessed after 24 h exposure to  

β-conglycinin of different levels. The tight junction mRNA expression tended to linearly decline with 

increasing β-conglycinin (occludin: R2 = 0.941, p < 0.001; ZO-1, R2 = 0.956, p < 0.001) from  

0.5–3 mg/mL (Figures 6 and 7). After 24 h incubation, the maximal reduction of occludin  

(versus control) and ZO-1 (versus control) was 57% and 59% for β-conglycinin. 

Figure 6. Occludin relative mRNA expression of IPEC-J2 cells after 24 h incubation of  

β-conglycinin. Each bar represents four independent experiments performed in  

triplicates ± SD. a, b, c, d, e, f, g each represent two groups for different concentrations 

which are statistically different from each other. 

 

Figure 7. ZO-1 relative mRNA expression of IPEC-J2 cells after 24 h incubation of  

β-conglycinin. Each bar represents four independent experiments performed in  

triplicates ± SD. a, b, c, d, e, f, g each represent two groups for different concentrations 

which are statistically different from each other. 
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3. Discussion 

Food allergy is an increasing clinical problem and has been estimated to affect 5%–6% of children 

and 3%–4% of the adult population [22,23]. Egg ovalbumin, cow milk, wheat, peanuts, and soybean 

allergic proteins are commonly known as food allergens [24]. The intestinal epithelium has not only an 

absorption function for dietary factors but also a barrier function to restrict the permeation of noxious 

substances. Physiologically, most dietary proteins are digested to small peptides or amino acids, which 

are then absorbed into enterocytes. A small amount of intact allergic protein may be endocytosed into 

epithelial cells for degradation and lose their antigenic properties [25–28]. In food allergy, IgE/CD23 

mediate antigen transcellular transport in the epithelial cells prior to mast cell activation, or it crosses 

epithelial cells through the paracellular pathway and transcellular pathway after the release of mast  

cell mediators [29,30]. 

Food allergy such as induced by ovalbumin (OVA) could increase the intestinal permeability [31–34]. 

TEER is used as a parameter of epithelial barrier function, which indicates variation of integrity and 

permeability of the cell monolayer [35,36]. The present study displays that β-conglycinin induced low 

TEER of intestinal epithelium. This means that the soybean allergen can enhance the epithelial 

permeability. TEER measure is usual in toxicology but rare in food allergy. Results regarding the 

wheat germ agglutinin toxin are accordance with our results [37]. 

The MTT assay is a standard method for the detection of metabolic activity in cell culture, which 

indirectly demonstrates the damage of membrane function. The present data show that β-conglycinin 

reduces the cellular metabolic activity in a dose-dependent manner, suggesting the reduction of  

cellular activity, which is similar to Xu et al. (2010) [38] using the mouse intestinal epithelial cells  

as model. Transient hypersensitivity to soybean antigens could lead to villus atrophy, crypt 

hypertrophy [14–16,39]. In addition, β-conglycinin may accelerate the enterocyte apoptosis and the 

relative enterocyte migration rate for piglets in our previous study [18]. The above literature provides 

evidence that β-conglycinin could induce the low enterocyte activity. 

Intestinal AP has an essential function in maintaining epithelial integrity, whose loss may increase 

the permeability to inflammation and sepsis [40,41]. In our present study, the experimental results 

show that the AP activity showed a remarkable increase, so β-conglycinin has significant negative 

effects on the cellular integrity. This corresponds to the changed epithelial permeability. 

TJ, a major mode of cell-to-cell adhesion, is a key determinant of intestinal barrier function 

preventing bacteria, endotoxin and toxicity macromolecule from crossing an epithelial sheet between 

adjacent cells. It is organized by specific interactions between various intracellular proteins (ZO-1, 

ZO-2, ZO-3, MUPP-1) and transmembrane proteins (occludin, claudin, and junctional adhesion 

molecules) [42]. The reduction of occludin [43] and ZO-1 [44] can enhance the epithelial permeability 

in a number of cell systems. After a challenge with food allergen, the increased permeability has been 

shown to initially amplify allergen ingestion and translocation through the transcellular route, and 

subsequently enlarge the paracellular permeability associated with a disruption of TJ after sensitization 

depending on activated mast cells [29,45]. However, literature regarding soybean allergen and 

epithelial integrity and permeability are rare. It has been found in our study that the β-conglycinin 

decreased occludin and ZO-1 in IPEC-J2, which also demonstrates that the soybean β-conglycinin 

destroys the epithelial barrier owing to the reduced TJ expression. 
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The regression analysis suggests that β-conglycinin has a linear relationship with the cellular 

permeability, metabolic activity, integrity, and TJ gene expression. This means that the increasing 

soybean allergens induce the tight junction to loosen, and then augment the epithelial permeability. 

Moreover, from observation, it seems that indexes of the current study change seriously with the 

extension of incubation time. 

4. Methods and Materials 

4.1. Preparation of β-Conglycinin 

β-Conglycinin was isolated from defatted soy flour by the method of Setsuko et al. (1987) [46].  

The globulins sample contained over 95% β-conglycinin determined by the Kjeldahl method and  

SDS-PAGE analysis. 

4.2. Cells and Culture Conditions 

The porcine intestinal epithelial cells from jejunum (IPEC-J2) were kindly donated by  

Guoyao Wu of China Agricultural University. The IPEC-J2 were seeded in cell culture flasks and 

cultured in DMEM/F12 medium (Gibco, Carlsbad, NM, USA), supplemented with 10% fetal bovine 

serum (FBS, Gibco, Carlsbad, NM, USA), 1% Penicillin-Streptomycin (Sigma, St. Louis, MO, USA), 

and 1% glutamine (Amersco, Solon, Tucson, AZ, USA) at 37 °C in a humidified atmosphere of 5% 

CO2 (Selecta, Barcelona, Spain). The culture medium was changed every other day. 

4.3. Trans-Epithelial Electrical Resistance (TEER) Measurement 

IPEC-J2 were seeded on the millicell membrance (Millipore, Billerica, MA, USA, 0.3 μm pore size) 

cell culture inserts (Costar, Corning Inc., New York, NY, USA) at a density of 5 × 104/cm2. When 

monolayer of cells was completely differentiated, cells were treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5,  

3.0 mg/mL of β-conglycinin. The TEER was measured using the millicell-ERS resistance system 

(Millipore, Billerica, MA, USA) after incubation for 24, 48, and 72 h, respectively. 

4.4. MTT Assay 

Metabolic activity was measured by MTT assay. IPEC-J2 were then treated with 0, 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0 mg/mL β-conglycinin for 24, 48, and 72 h, respectively. Exactly 20 μL of MTT solutions 

(Sigma, Aldrich Inc., St. Louis, MO, USA) was added to each well and incubated for 4 h at 37 °C. The 

mixture reaction was carefully taken out and 150 μL dimethyl sulfoxide (DMSO, Solarbio, Shanghai, 

China) was added to each well, which was allowed to stand 10 min to allow it to completely mix. After 

the crystals were fully dissolved, the optical density was measured at 570 nm by Microplate Reader 

(Bio-Rad, Hercules, CA, USA). 

4.5. Alkaline Phosphatase Activity Assay 

Cellular membrane integrity was assessed by measurement of alkaline phosphatase (AP) activity in 

the supernatant. Cells were grown in a 96-well microplate and treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5,  
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3.0 mg/mL β-conglycinin for 72 h, respectively. The AP activity of the incubation medium was 

measured by the AP Test kit (Jiancheng, Nanjing, China). 

4.6. Analysis of Tight Junction Proteins Structure by Immunofluorescence 

IPEC-J2, grown on cover glass within six well plates (Nest, Beijing, China) for complete confluence, 

were treated with 0.5 mg/mL β-conglycinin media for 24 h. After rinsing in PBS three times, samples 

were fixed with cold acetone for 15 min at room temperature. Next, cells were permeabilized with 

0.5% Triton X-100 for 5 min and blocked with 5% Bovine Serum Albumin (BSA) for 30 min at 37 °C. 

After washing, samples were incubated with rabbit-anti-occludin or rabbit-anti-ZO-1 (diluted 1:100 or 

1:100 in 1% of BSA respectively, Bios, Beijing, China) as the primary antibody for 30 min at 37 °C 

then with FITC-conjugated goat-anti-rabbit (diluted 1:50, CWBIO, Beijing, China) as the second 

antibody for 2 h at room temperature. The views for each sample were captured using laser scanning 

confocal microscope (Nikon, Tokyo, Japan) and representative images were presented. 

4.7. Western Blot Analysis 

IPEC seeded in cell culture flasks were treated with 0.5 mg/mL β-conglycinin media for 24 h, then 

cells were washed with PBS (0.01 M). Every flask of samples was lysed on ice with a 500 µL cell lysis 

buffer (20 mM Tris-HCL pH 8.0, 5 mM EDTA and 1% Triton X-100) and supplemented with protease 

inhibitors (Cat. 539134, Merck, Darmstadt, Germany) for 30 min. Sample collections were sonicated  

three times for 20 s and centrifuged at 10,000× g for 30 min at 4 °C. Protein quantification of 

supernatant was determined by method of BCA kit (Thermo, Waltham, MA, USA). 

Exactly 12 μg of cell total proteins extraction was separated by SDS-PAGE and transferred onto 

PVDF membranes. The rabbit anti-occludin, rabbit anti-ZO-1 or rabbit anti-β-actin (Bios, Beijing, 

China) antibodies were used as the primary antibody. The horseradish peroxidase-conjugated  

anti-rabbilt IgG (diluted 1:3000, Tianjin Sungene Biotech Co., Tianjin, China) was incubated as the 

second antibody. The Luminata Crescendo Western HRP Substrate (Millipore, Billerica, MA, USA) was 

applied for chemiluminescent detection using tabletting and autoradiographic film (Kodak, Xiamen, 

China). Grey levels were estimated using Quantity One software-4.6.2 (Basic) (Bio-Rad, Hercules, 

CA, USA). Western blot band density was compared to β-actin in each lane as a loading control. 

4.8. RNA Extraction 

The IPEC-J2 was stimulated with varying concentrations of β-conglycinin (0, 0.5, 1, 1.5, 2, 2.5,  

3.0 mg/mL) for 24 h. Then the cells were rinsed twice with phosphate-buffered saline (PBS) without 

Ca2+ and Mg2+, harvested, centrifuged, and subjected to RNA extraction procedure. 

Total cellular RNA was extracted from IPEC-J2 with E.Z.N.A. Total RNA Kit II (Omega, 

Doraville, GA, USA) according to the manufacturer’s instructions. To prevent DNA contamination, 

DNase digestion was performed with RNase-free DNase. The Purified RNA extracts were stored at 

−80 °C in RNase, DNase-free water (Takara, Otsu, Japan) until use. The concentration and purity of 

RNA extracts was determined using the absorbance at 260 and 280 nm in a spectrophotometer 

(Beckmandu-800, Fullerton, CA, USA). The samples with the ratio 260 nm/280 nm between 1.9 and 
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2.1 were further evaluated for their quality. The integrity of RNA was determined on 1% agarose gels 

and visualization of the 28S and 18S ribosomal RNA. 

4.9. Reverse Transcription 

Reverse transcription was performed using the High Capacity cDNA Reverse Transcription Kits 

(Applied Biosystems, Foster City, CA, USA). The reverse transcription was carried out in a 20 µL 

final volume that included 2 µL 10× RT Buffer, 0.8 µL 25× dNTP Mix (100 mM), 2 µL 10× RT 

Random Primers, 1 µL MultiScribe™ Reverse Transcriptase (Applied Biosystems, Foster City, CA, 

USA), 2 µg RNA template, and Nuclease-free H2O to complete the final volume. The reserve 

transcription mix was incubated at 25 °C for 10 min, heated to 37 °C for 120 min, and finally 

inactivated at 85 °C for 5 min. The resultant cDNA was stored at −80 °C until use. 

4.10. Real-Time Quantitative PCR Analysis 

The real-time quantitative PCR was carried out using a StepOne Plus real-time PCR system 

(Applied Biosystems, Foster City, CA, USA). TaqMan Gene Expression Master Mix was used 

according to manufacturer’s specifications (Applied Biosystems, Foster City, CA, USA). Primer and 

probe sets for target genes were prevalidated in TaqMan Gene Expression Assay kits (ABI):  

(ZO-1 Assay ID: Ss03373514; Occludin Assay ID: Ss03377507; β-actin Assay ID: Ss03376081). The 

PCR reaction was carried out in 96-well reaction plates with 10 µL TaqMan Gene Expression Master 

Mix (2×), 1 µL TaqMan Gene Expression Assay (20×), 2 µL cDNA template and 7 µL Nuclease-free 

H2O. The 40 thermal cycles of 2 min at 50 °C, 10 min at 95 °C, 15 s at 95 °C and 1 min at 60 °C were 

utilized according to manufacturer recommendations. 

Relative quantification of target genes was calculated using the 2−ΔΔCt method. Target gene 

expression was normalized to β-actin messenger RNA (mRNA) levels. 

4.11. Statistical Analysis 

Data of relative gene expression were analyzed using the general linear model procedure of 

Statistical Package for Social Sciences version 11.5 (SPSS Inc., Chicago, IL, USA). Differences 

among means were tested using Duncan’s multiple range tests. Linear regression with calculation of 

the correlation factor (r) was used for jointly distribution variables. Statements of statistical 

significance were based upon p ≤ 0.05. 

5. Conclusion 

The altered TJ expression induced by β-conglycinin gives rise to the barrier dysfunction of 

intestinal epithelium. 
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