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Abstract: To better understand the molecular basis of respiratory diseases of viral origin, high-
throughput gene-expression data are frequently taken by means of DNA microarray or RNA-seq
technology. Such data can also be useful to classify infected individuals by molecular signatures in
the form of machine-learning models with genes as predictor variables. Early diagnosis of patients
by molecular signatures could also contribute to better treatments. An approach that has rarely
been considered for machine-learning models in the context of transcriptomics is data augmentation.
For other data types it has been shown that augmentation can improve classification accuracy and
prevent overfitting. Here, we compare three strategies for data augmentation of DNA microarray
and RNA-seq data from two selected studies on respiratory diseases of viral origin. The first study
involves samples of patients with either viral or bacterial origin of the respiratory disease, the
second study involves patients with either SARS-CoV-2 or another respiratory virus as disease
origin. Specifically, we reanalyze these public datasets to study whether patient classification by
transcriptomic signatures can be improved when adding artificial data for training of the machine-
learning models. Our comparison reveals that augmentation of transcriptomic data can improve
the classification accuracy and that fewer genes are necessary as explanatory variables in the final
models. We also report genes from our signatures that overlap with signatures presented in the
original publications of our example data. Due to strict selection criteria, the molecular role of these
genes in the context of respiratory infectious diseases is underlined.

Keywords: data augmentation; deep learning; generative adversarial networks; transcriptomic data;
high-dimensional data; viral acute respiratory illness; SARS-CoV-2

1. Introduction

Viral diseases of the respiratory system are frequently studied on the molecular level
of the transcriptome [1–3]. This can help to identify genes that are involved in the immune
response or pathogenesis [4] but also to use these genes as predictors in machine-learning
(ML) models to classify patients based on molecular data. Finally, ML models can help to
optimize treatment strategies for patients. Facilitated by the technological progress of DNA
microarrays and high-throughput RNA-sequencing (RNA-seq), molecular signatures in
high-dimensional gene-expression data have been studied for over 20 years, employing
classical ML techniques such as support vector machines (SVM) [5], linear discriminant
analysis (LDA) [6], random forest (RF) [7], artificial neural networks (ANN) [8], or more
specialized methods [9]. The term ‘molecular signature’ usually refers to a set of genes
that constitute the predictor variables in an ML model. It has been shown that molecular
signatures from ML models can provide ‘valuable insights into cell biology and mechanisms

Int. J. Mol. Sci. 2022, 23, 2481. https://doi.org/10.3390/ijms23052481 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23052481
https://doi.org/10.3390/ijms23052481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9955-748X
https://doi.org/10.3390/ijms23052481
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23052481?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 2481 2 of 22

of human disease’ [10]. Recently, di Julio et al. [11] also studied ’transfer transcriptomic
signatures’ which could have predictive value for infectious diseases across species, based
on the fact that transcriptomic changes are among the early responses to infection. Such
transfer signatures could therefore also be valuable to better understand the molecular
processes across species. A prior step before fitting an ML model with transcriptomic
data is to select a set of differentially expressed genes between two study groups (e.g.,
infected versus uninfected)—typically by means of statistical testing—before investigating
this ‘molecular signature’ for its diagnostic or predictive power in ML models. Although
differential expression analysis is usually performed on a single dataset, diagnostic or
predictive signatures in an ML model are usually evaluated in independent datasets or at
least by means of cross-validation. One can therefore argue that the high performance of a
molecular signature in an ML model underlines the role of these genes in the molecular
processes of the studied disease. Molecular processes involved in viral respiratory diseases
include virus–host cell interactions, signaling pathways of the innate and adaptive immune
response, as well as viral evasion strategies and tissue-repair mechanisms, which are
orchestrated by the expression of specific genes. A better understanding of these pathways
and the role of the respective genes is essential for the discovery of new therapeutic targets
or potent prevention strategies [12–14].

In this work, we reanalyze two transcriptomic datasets from study contexts of respira-
tory, viral-caused diseases to demonstrate how data augmentation can help to improve the
performance of ANNs based on high-dimensional gene-expression data. Gene-expression
data for the two selected studies are freely available from the gene-expression omnibus
(GEO) archive [15]. One of these two studies involves gene-expression data taken from
human blood samples by means of DNA microarrays. All patients suffered from an acute
respiratory illness (ARI), but with either viral or bacterial origin [16]. In the second study,
gene expression was taken by means of RNA-seq and involved human nasopharyngeal
swab samples from a diagnosed SARS-CoV-2 group and another group of patients with
respiratory symptoms caused by different viruses such as influenza A and B, adenovirus
(B, E), parainfluenza 1–4, respiratory syncytial virus A and B, human metapneumovirus,
human rhinovirus, coronavirus (229E, OC43, NL63, HKU1), coxsackie/echo virus and
bocavirus [8]. The authors of the original publications of the two datasets also fitted ML
models to assess the diagnostic performance of selected molecular signatures, but without
a step of data augmentation. Given that ML models trained with augmented versions of
the original data show higher classification accuracies than without data augmentation,
there would be more evidence for the important molecular role of the predictor genes
involved in these models. Furthermore, ML models based on augmented data tend to be
less overfitted. When being applied to draw treatment decisions, such models would result
in fewer misclassifications and therefore in an improved treatment of patients.

To obtain robust ML models, a high quantity of annotated training data is usu-
ally required [17]. However, it is often difficult and expensive to obtain enough la-
beled samples [18], especially in the context of transcriptomics. High-dimensional gene-
expression data represent expression levels for thousands of genes in a rather small number
of biological samples. Thus, the dimension d of the data is much larger than the sample
size n, i.e., d >> n. Furthermore, with a small sample size, it is difficult to achieve good
generalization performance [19], i.e., the training data are learned well, but the trained
ML model cannot easily be transferred to new independent data. In the past ten years, as
ANNs have become more frequently employed for biomedical classification problems, it
was found that augmented datasets can improve the classification accuracy of the trained
models [20], and can also help to reduce the risk of overfitting [21]. Data augmentation
means to artificially increase the sample size by modifying instances of the original data.
Here, we compare three different strategies for data augmentation of high-dimensional
gene-expression data. In the past few years, many algorithms based on ANNs have been
developed, including the generative adversarial network (GAN), which represents a new
approach to data augmentation [22]. Recent work has shown that GANs can be used suc-
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cessfully, among image or text generation, to add synthetic samples to insufficient training
data and thus improve classification accuracy. However, it mainly addresses the problem of
class imbalance [19]. Studies on enlarging relatively small datasets for classification (such
as small-sized transcriptomics data) are rare [19,23]. For fitting the ANN models on the
data of the two respiratory studies, we compare two variants of GAN algorithms as well as
a less complex approach of mixing observations for data augmentation.

In the next section, we detail the results of the comparison of the three data augmen-
tation techniques in the two respiratory datasets. We also compare the sets of genes in
the molecular signatures from our ANN models with the signatures from the original
publications. The results section is followed by a discussion about the computational
and biological findings. The datasets used and the methods for data augmentation and
classification are described in the last chapter.

2. Results

Using the two gene-expression datasets on respiratory infections, we investigated
the applicability of data augmentation methods to both continuous microarray data and
discrete RNA-seq count data. More specifically, we compared three different augmentation
approaches: (a) a simple approach that is based on mixing observations, hereafter referred
to as the mixed weighted observations (MWO) approach, as described in Section 4.6, (b) a
standard GAN as described in Section 4.7, and (c) a Wasserstein GAN with gradient penalty
(WGAN-GP) as described in Section 4.8. With these methods, the training datasets were
expanded in such a way that initially twice as many artificial samples were added for
each class as original samples were available. Evaluating the classification performance
using these augmentation methods, we wanted to answer the following questions: (i) Does
data augmentation increase the classification accuracy? (ii) Comparing the aforementioned
methods (MWO, GAN and WGAN-GP), which one performs best for augmenting high-
dimensional expression data? (iii) Can we identify genes found in the original studies,
whose molecular importance is emphasized by our approach?

2.1. Signature Selection and Classifier Performance without Data Augmentation

We first describe the incremental signature selection for both datasets via ML without
data augmentation. By increasing the number of genes, their influence on the performance
of the classifier was examined. As mentioned in the introduction ANNs were used as
classification model, more specifically we fitted multilayer perceptrons (MLP) with two
hidden layers with 150 and 50 neurons each and rectified linear unit (ReLU) activation.
The number of input neurons corresponded to the number of genes that were used as
input signature. The output layer was one single neuron with linear activation. The ANN
architecture is described in more detail in the methods Section 4.4.

A 10-fold cross-validation was used to estimate the performance of each classification
model, i.e., the original dataset D was split into K = 10 subsets, and for each k ε {1, 2, . . . , K},
the ANN was trained on the training subset D\Dk and afterwards used to predict the labels
of the test subset Dk.

To identify the minimum number of genes as input features required for optimal ANN
classification performance, an incremental feature selection was carried out for each cross-
validation training subset D\Dk. This subset was used to test the genes for differential
expression and genes were ranked according to their p-values in ascending order, i.e.,
the gene with the lowest p-value being the first important input feature, and so on. This
approach assumes that the genes with the most evidence for differential expression are
also important for the discrimination of phenotypes. As a result, including an increasing
number of the top ranked genes, i.e., the first 50, 100, 150, . . . , 750 most significant genes, as
input features for training and testing the classification ANN, led to different classification
performances. Figure 1 shows the distribution of the Brier score for models fit on the two
respiratory datasets as obtained from the cross-validation and for different numbers of
input genes. Including an increasing number of genes as input features tended to result
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in better performances of the ANNs, i.e., the median Brier score tended to decrease when
increasing the number of top genes as input features from 50 to 750 (from 0.16 to 0.10 for
the microarray data and from 0.24 to 0.22 for the RNA-seq experiment, respectively).

Performances of the ANN models for both datasets when using data augmentation
are provided in the following subsections.

Figure 1. Brier scores from 10-fold cross-validation for the original microarray dataset (orange)
and the original RNA-seq dataset (blue) when including an increasing number of top differentially
expressed genes as input features for the ANN. The median Brier score tended to decrease when
increasing the number of genes as predictors from 50 to 750.

2.2. Classification Performance of Molecular Signatures Selected in the Microarray Ari Study

Here, we describe the performance of ANN models trained with genes selected in
the microarray study that aimed to distinguish between viral and bacterial origin of ARIs.
Figure 2 shows the accuracies (left plot) and Brier scores (right plot) for the ANNs trained
on different augmented datasets compared to ANNs trained without data augmentation.
Numbers are also provided in Tables 1 and 2 as well as in the Supplementary Materials.
Again, the number of top genes selected as input signature was varied. Maximum accuracy,
sensitivity, specificity and minimum Brier score are highlighted in each table, so that
one can see the minimum number of top genes required for an optimized classification
results. Looking at the Brier scores, the ANNs trained with augmented data performed
clearly better than those trained without data augmentation, e.g., the lowest Brier score is
obtained when using the WGAN-GP augmentation method and 450 genes. Regarding the
accuracies, the WGAN-GP approach for augmenting the original training data showed the
most accurate classification results by achieving the maximum mean accuracy of 0.91 when
using 700 genes as input signature, followed by the MWO approach. Additionally, in terms
of the Brier score, Figure 2 suggests that an increasing number of genes did not affect
classification performance as much when the training data were augmented as it did with
the non-augmented training data. Concerning the obtained accuracies, it seemed that the
standard GAN was not performing better than the no-augmentation approach, whereas
the Brier scores for the GAN approach were consistently lower than for classification using
only the not-augmented original training data.

Since the above detailed differences between augmented and non-augmented sce-
narios describe tendencies, significant difference can also be detected using the duality
between statistical test and confidence interval, as we have shown 95%—confidence inter-
vals (CI) in all figures and tables. According to the duality between statistical test and CI, a
significant difference can be inferred with a significance level of 5% when the 95%—CI for
two scenarios do not overlap. Using this principle, one can see in the figures and tables
clearly that data augmentation yields significantly better results in some of our simulated
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scenarios. Regarding the different influence of the number of genes being included in the
model, from Figure 2 one can infer a significant difference between the Brier score when
comparing the performances of the no-augmentation approach with either 50 or 150 top
genes, whereas the CIs for the classifiers trained with augmented data do overlap.

Figure 2. Results from 10-fold cross-validation in terms of accuracies (A) and Brier scores (B) for the
microarray data when using different data augmentation methods and various numbers of top genes
as input signatures. Error bars represent the 95% confidence interval of the mean.

Table 1. Classification performance measures for microarray data (test subsets) after training with
original training subset only. The table shows the 95% confidence intervals (mean ± 1.96 standard
errors) for accuracy, Brier score, sensitivity and specificity, respectively. Values in bold are the best
scores for the respective performance metric.

Method Number of
Top Genes Accuracy Brier Score Sensitivity Specificity

No 50 0.86 ± 0.0440 0.16 ± 0.0143 0.92 ± 0.0515 0.76 ± 0.0998
Augmentation 100 0.86 ± 0.0413 0.15 ± 0.0140 0.92 ± 0.0487 0.78 ± 0.1090

150 0.87 ± 0.0466 0.13 ± 0.0121 0.92 ± 0.0514 0.79 ± 0.1090
200 0.88 ± 0.0488 0.13 ± 0.0128 0.93 ± 0.0535 0.79 ± 0.1090
250 0.88 ± 0.0436 0.12 ± 0.0124 0.93 ± 0.0411 0.79 ± 0.1037
300 0.88 ± 0.0429 0.12 ± 0.0129 0.92 ± 0.0514 0.82 ± 0.0887
350 0.88 ± 0.0463 0.11 ± 0.0144 0.92 ± 0.0515 0.81 ± 0.0939
400 0.87 ± 0.0466 0.11 ± 0.0168 0.92 ± 0.0487 0.81 ± 0.1028
450 0.87 ± 0.0515 0.10 ± 0.0184 0.92 ± 0.0515 0.79 ± 0.1118
500 0.88 ± 0.0463 0.10 ± 0.0160 0.92 ± 0.0514 0.81 ± 0.0998
550 0.88 ± 0.0401 0.10 ± 0.0145 0.92 ± 0.0487 0.84 ± 0.0748
600 0.88 ± 0.0488 0.10 ± 0.0164 0.92 ± 0.0515 0.81 ± 0.0939
650 0.88 ± 0.0481 0.10 ± 0.0184 0.92 ± 0.0515 0.82 ± 0.0919
700 0.88 ± 0.0429 0.10 ± 0.0168 0.92 ± 0.0515 0.82 ± 0.0783
750 0.89 ± 0.0447 0.10 ± 0.0166 0.93 ± 0.0411 0.82 ± 0.0919
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Table 2. Classification performance measures for microarray data (test subsets) after training with
augmented training data either augmented with mixed weighted observations (‘MWO’), a standard
generative adversarial network (‘GAN’) or the advanced Wasserstein GAN with gradient penalty
(‘WGAN-GP’) with the number of synthetic samples being two times the number of original samples
in each class, respectively. The table shows the 95% confidence intervals (mean ± 1.96 standard
errors) for accuracy, Brier score, sensitivity and specificity, respectively. Values in bold are the best
scores for the respective performance metric.

Method Number of
Top Genes Accuracy Brier Score Sensitivity Specificity

MWO 50 0.87 ± 0.0384 0.09 ± 0.0181 0.91 ± 0.0451 0.81 ± 0.0805
100 0.88 ± 0.0346 0.09 ± 0.0216 0.91 ± 0.0451 0.83 ± 0.0798
150 0.88 ± 0.0378 0.09 ± 0.0228 0.92 ± 0.0487 0.82 ± 0.0783
200 0.88 ± 0.0456 0.09 ± 0.0235 0.92 ± 0.0487 0.84 ± 0.0953
250 0.88 ± 0.0408 0.09 ± 0.0245 0.91 ± 0.0451 0.84 ± 0.0953
300 0.88 ± 0.0408 0.09 ± 0.0243 0.91 ± 0.0451 0.84 ± 0.0953
350 0.88 ± 0.0456 0.09 ± 0.0236 0.92 ± 0.0487 0.84 ± 0.0953
400 0.89 ± 0.0461 0.09 ± 0.0239 0.92 ± 0.0487 0.86 ± 0.0760
450 0.88 ± 0.0401 0.09 ± 0.0247 0.92 ± 0.0487 0.84 ± 0.0748
500 0.88 ± 0.0401 0.09 ± 0.0242 0.91 ± 0.0451 0.85 ± 0.0815
550 0.89 ± 0.0461 0.09 ± 0.0240 0.92 ± 0.0487 0.86 ± 0.0760
600 0.89 ± 0.0461 0.09 ± 0.0235 0.92 ± 0.0487 0.86 ± 0.0760
650 0.89 ± 0.0391 0.09 ± 0.0238 0.91 ± 0.0451 0.86 ± 0.0760
700 0.89 ± 0.0447 0.09 ± 0.0240 0.92 ± 0.0487 0.85 ± 0.0815
750 0.89 ± 0.0420 0.09 ± 0.0237 0.91 ± 0.0451 0.86 ± 0.0760

GAN 50 0.87 ± 0.0383 0.09 ± 0.0248 0.9 ± 0.0484 0.84 ± 0.0748
100 0.87 ± 0.0383 0.10 ± 0.0261 0.90 ± 0.0484 0.84 ± 0.0748
150 0.87 ± 0.0442 0.09 ± 0.0275 0.90 ± 0.0484 0.82 ± 0.0919
200 0.87 ± 0.0384 0.10 ± 0.0307 0.89 ± 0.0497 0.84 ± 0.0748
250 0.87 ± 0.0384 0.10 ± 0.0308 0.89 ± 0.0497 0.84 ± 0.0748
300 0.86 ± 0.0436 0.10 ± 0.0283 0.88 ± 0.0504 0.82 ± 0.0919
350 0.86 ± 0.0466 0.10 ± 0.0286 0.88 ± 0.0504 0.84 ± 0.0889
400 0.86 ± 0.0466 0.10 ± 0.0297 0.88 ± 0.0504 0.84 ± 0.0889
450 0.86 ± 0.0466 0.10 ± 0.0280 0.87 ± 0.0561 0.85 ± 0.0848
500 0.87 ± 0.0466 0.10 ± 0.0291 0.88 ± 0.0504 0.87 ± 0.0897
550 0.87 ± 0.0491 0.10 ± 0.0298 0.89 ± 0.0497 0.85 ± 0.0945
600 0.86 ± 0.0466 0.10 ± 0.0297 0.88 ± 0.0504 0.84 ± 0.0889
650 0.87 ± 0.0468 0.10 ± 0.0275 0.88 ± 0.0504 0.85 ± 0.0848
700 0.88 ± 0.0488 0.10 ± 0.0270 0.89 ± 0.0497 0.87 ± 0.0897
750 0.87 ± 0.0413 0.09 ± 0.0277 0.88 ± 0.0560 0.86 ± 0.0635

WGAN-GP 50 0.87 ± 0.0384 0.09 ± 0.021 0.92 ± 0.0487 0.79 ± 0.0916
100 0.88 ± 0.0346 0.09 ± 0.0235 0.91 ± 0.0451 0.83 ± 0.0798
150 0.88 ± 0.0401 0.09 ± 0.0249 0.92 ± 0.0487 0.84 ± 0.0748
200 0.87 ± 0.0384 0.09 ± 0.0264 0.91 ± 0.0451 0.81 ± 0.0906
250 0.88 ± 0.0401 0.09 ± 0.0254 0.91 ± 0.0451 0.85 ± 0.0815
300 0.88 ± 0.0429 0.09 ± 0.0240 0.92 ± 0.0487 0.84 ± 0.0953
350 0.88 ± 0.0429 0.09 ± 0.0260 0.92 ± 0.0487 0.84 ± 0.0953
400 0.88 ± 0.0408 0.09 ± 0.0250 0.91 ± 0.0451 0.84 ± 0.0953
450 0.90 ± 0.0447 0.08 ± 0.0231 0.93 ± 0.0535 0.85 ± 0.0862
500 0.89 ± 0.0420 0.09 ± 0.0245 0.92 ± 0.0487 0.85 ± 0.0815
550 0.90 ± 0.0420 0.08 ± 0.0241 0.92 ± 0.0487 0.88 ± 0.0688
600 0.89 ± 0.0391 0.09 ± 0.0235 0.92 ± 0.0487 0.85 ± 0.0862
650 0.88 ± 0.0401 0.09 ± 0.0248 0.91 ± 0.0451 0.85 ± 0.0916
700 0.91 ± 0.0401 0.09 ± 0.0247 0.92 ± 0.0514 0.88 ± 0.0618
750 0.90 ± 0.0420 0.09 ± 0.0231 0.92 ± 0.0514 0.86 ± 0.0696

As the previously described results of the 2-fold augmentation already led to promising
results, we tested further augmentation factors, namely 1-fold, 3-fold and 5-fold augmen-
tation. Regarding the WGAN-GP approach, it could be shown that the accuracy and the
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Brier score improved with increasing augmentation; an improvement in the Brier score
could be observed for the MWO approach. In contrast, when increasing the number of
GAN-generated samples for training, the trained classification network performed worse
on the test data. The detailed results are part of the Supplementary Materials.

Besides studying the use of data augmentation for assessing the value of a molecular
signature, we were also interested how well each augmentation method maintained the
correlation structure among genes. When performing data augmentation, it is important
that the distribution of the artificial data closely meets that of the original data. That applies,
for example, to the correlation structure between genes, which is represented, for example,
by the covariance matrix of the expression matrices. Since a covariance matrix between
thousands of genes cannot be estimated unbiased, we randomly selected small subsets of
genes for which we studied the covariance matrices of original and artificial data. Figure 3
shows graphical representations of covariance matrices for two sets of 50 randomly selected
genes from the ARI study. Comparing the covariance structures of the original data and
those of the different synthetic datasets suggests that the covariance structure is maintained
by each of the artificially generated samples, whereby the covariance structure seems to be
most precisely maintained when generating artificial data with the MWO approach or the
WGAN-GP approach. The covariance matrices of the artificial samples generated with a
GAN look more different from that calculated from the original data.

Figure 3. Heatmaps representing covariance matrices for selected genes from the microarray study.
Covariance structures of original and artificial samples are compared for two sets of 50 randomly
chosen genes. The covariance structures are best maintained when generating artificial samples with
the MWO or WGAN-GP approach. The details are showed in (A,B).

Although Figure 3 illustrates the results for two selected subsets of genes, Figure 4
shows the distribution of normalized root mean square errors and mean absolute differences
for the different augmentation methods when comparing their covariance structure with the
original covariance structure when 50 genes were randomly drawn, repeatedly 500 times.
Comparing the three augmentation strategies, the covariance structures are best maintained
when generating artificial samples with the MWO approach. Regarding the normalized
root mean square error, the WGAN-GP approach shows less deviation than the GAN
approach, but in terms of the mean absolute difference of eigenvalues, the WGAN-GP
approach performs a bit worse than the GAN approach.
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Figure 4. Distribution of normalized mean square errors (top) and mean absolute difference of
eigenvalues (bottom) for microarray data when comparing the covariance matrices of artificial and
original data. The boxplots represent data for 500 runs, in each of which 50 genes were randomly
drawn and the correlation matrices were created. The symbol **** denotes p-value < 0.0001.

Although the training data in this example had a rather large sample size of 171,
many microarray studies are much smaller. Therefore, we randomly selected a subset of
30 samples as training data, and compared again classifier performance with and with-
out data augmentation. In this analysis, from a total of 190 samples, the 160 remaining
samples were used as test samples. The whole procedure was repeated ten times to
obtain confidence intervals for accuracy and the other performance measures. We com-
pared the classification results for 2-fold and 5-fold augmentation with the classification
results obtained without augmentation. Both 2-fold and 5-fold augmentation, i.e., having
30 original and 60 (150) artificial samples as training data, led to a significant improve-
ment of the classification performance in terms of the Brier score, whereas considerable
improvements of the accuracy could be observed only when including 50–200 genes into
the classifier. The results for the different augmentation methods and different numbers of
genes for the 2-fold and 5-fold augmentation of randomly chosen subsets are shown in the
Supplementary Materials.

2.3. Classification Performance of Molecular Signatures Selected in the RNA-Seq
SARS-CoV-2 Study

Here, we describe the performance of classification models trained with genes selected
in the RNA-seq study that aimed to distinguish between SARS-CoV-2 and other viral
origins of respiratory infections. Figure 5 shows the classification performances for the
different augmentation strategies for the RNA-seq data. Numbers are also provided in
Tables 3 and 4 as well as in the Supplementary Materials. The accuracies (left plot) and
Brier scores (right plot) for the different data augmentation methods were compared to
classification without augmentation and for various numbers of genes being included
as input features. Again, maximum accuracy, sensitivity, specificity and minimum Brier
score are highlighted in each table, so that one can see the minimum number of top
genes required for optimized classification results. E.g., in the RNA-seq example, when
augmenting the original sample size by a factor of 2 using the WGAN-GP approach, the
maximum accuracy of 0.77 is reached with 300 genes. However, when looking at the Brier
score, 400 genes would be necessary to reach the minimum of 0.17. Regarding the Brier
scores, the classification with data augmentation using the MWO or WGAN-GP approach
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always leads to better results than without augmentation of the training data, regardless
of the number of input genes. Including the accuracy values, the WGAN-GP approach
for augmenting the original training data shows the most accurate classification results,
followed by the MWO approach. Regarding the obtained accuracies, it seems that the
standard GAN is not performing better than the no-augmentation approach, whereas the
Brier scores for the GAN approach are consistently lower than for classification using only
not-augmented training data.

Table 3. Classification performance measures for RNA-seq data (test subsets) after training with
original training data only. The table shows the 95% confidence intervals (mean ± 1.96 standard
errors) for accuracy, Brier score, sensitivity and specificity, respectively. Values in bold are the best
scores for the respective performance metric.

Method Number of
Top Genes Accuracy Brier Score Sensitivity Specificity

No 50 0.59 ±0.0557 0.24 ±0.0027 0.24 ±0.1100 0.98 ±0.0218
Augmentation 100 0.64 ± 0.0564 0.24 ± 0.0050 0.52 ± 0.1806 0.79 ± 0.2591

150 0.63 ± 0.0563 0.24 ± 0.0051 0.43 ± 0.1501 0.86 ± 0.1902
200 0.66 ± 0.0527 0.24 ± 0.0073 0.43 ± 0.0976 0.92 ± 0.0544
250 0.66 ± 0.0524 0.24 ± 0.0074 0.54 ± 0.1211 0.79 ± 0.1842
300 0.64 ± 0.0512 0.24 ± 0.0051 0.54 ± 0.1332 0.76 ± 0.1813
350 0.63 ± 0.0550 0.24 ± 0.0056 0.50 ± 0.1405 0.78 ± 0.1825
400 0.67 ± 0.0464 0.23 ± 0.0072 0.51 ± 0.0720 0.86 ± 0.049
450 0.67 ± 0.0518 0.23 ± 0.0109 0.57 ± 0.1160 0.78 ± 0.1652
500 0.65 ± 0.0657 0.23 ± 0.0117 0.46 ± 0.1185 0.86 ± 0.0845
550 0.67 ± 0.0411 0.23 ± 0.0086 0.54 ± 0.0630 0.82 ± 0.0722
600 0.67 ± 0.0469 0.23 ± 0.0110 0.54 ± 0.0663 0.82 ± 0.0514
650 0.66 ± 0.0425 0.23 ± 0.0069 0.53 ± 0.0516 0.80 ± 0.0697
700 0.64 ± 0.0570 0.23 ± 0.0078 0.52 ± 0.0482 0.78 ± 0.1222
750 0.67 ± 0.0355 0.22 ± 0.0094 0.54 ± 0.0547 0.81 ± 0.0490

Again, the duality-principle between statistical test and CIs can be used to show that
augmentation yields a significantly better performance of a classifier than training only
with original data or between a particular number of top genes included into a classifier.
One can for example infer a significant difference between the Brier score in Figure 5, when
comparing the performance of the WGAN approach with either 50 or 150 of the top genes.
In particular, there is no overlap between CIs of the Brier scores for classifiers trained with
augmented and non-augmented data for most numbers of top genes.

As for the microarray study, also 1-fold, 3-fold and 5-fold augmentation scenarios were
tested to investigate the quality of the augmented samples. With further augmentation, the
results improved further for the MWO and the WGAN approach, whereas the results for
the ANNs trained with GAN augmented training data were not consistently better and
showed an increasing variety in the classification of the test data. Detailed results can be
found in the Supplementary Materials.

Figure 6 shows again heatmaps illustrating the covariance matrices of original and
artificially generated data for two sets of 50 randomly selected genes from the SARS-CoV-2
study. Comparing the covariance structures of the original data and the different synthetic
data suggests that the covariance structure is mostly maintained when generating artificial
data with the MWO approach. The heatmaps for the covariance matrices of the data
generated with the WGAN-GP approach implies that the covariance structure is partially
preserved. With the GAN approach, the covariance structure is obviously hardly preserved.

Figure 7 shows the distribution of log-transformed normalized root mean square errors
and log-transformed mean absolute differences for the different augmentation methods
when comparing their covariance structure with the original covariance structure when
50 genes were randomly drawn, repeatedly 500 times. In this comparison of the three
augmentation strategies, the distance between the covariances of the original data and those
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of the artificial data generated with the MWO approach is the smallest. The corresponding
deviations between the original and WGAN-GP-generated samples, on the other hand,
are somewhat larger and the distance to the artificial samples that were generated with a
standard GAN is the greatest.

Figure 5. Cross validation classification accuracies (A) and Brier scores (B) for the RNA-seq experi-
ment for different augmentation methods and various numbers of input features. Error bars represent
the 95% confidence interval of the mean.

Figure 6. Heatmaps illustrating covariance matrices for the RNA-seq data study. Comparison of
covariance matrices of original and artificial samples for two sets of 50 randomly chosen genes. The
details are showed in (A,B).
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Table 4. Classification performance measures for RNA-seq data (test subsets) after training with
augmented training data either augmented with mixed weighted observations (‘MWO’), a standard
generative adversarial network (‘GAN’) or the advanced Wasserstein GAN with gradient penalty
(‘WGAN-GP’) with the number of synthetic samples being two times the number of original samples
in each class, respectively. The table shows the 95% confidence intervals (mean ± 1.96 standard
errors) for accuracy, Brier score, sensitivity and specificity, respectively. Values in bold are the best
scores for the respective performance metric.

Method Number of
Top Genes Accuracy Brier Score Sensitivity Specificity

MWO 50 0.68 ± 0.0533 0.22 ± 0.0111 0.43 ± 0.0933 0.96 ± 0.0365
100 0.71 ± 0.0450 0.22 ± 0.0125 0.52 ± 0.0654 0.92 ± 0.0544
150 0.70 ± 0.0448 0.21 ± 0.0109 0.53 ± 0.0729 0.89 ± 0.0691
200 0.71 ± 0.0447 0.21 ± 0.0126 0.56 ± 0.0651 0.89 ± 0.0547
250 0.70 ± 0.0511 0.21 ± 0.0111 0.56 ± 0.0595 0.86 ± 0.0772
300 0.72 ± 0.0338 0.20 ± 0.0112 0.58 ± 0.0481 0.88 ± 0.0609
350 0.72 ± 0.0374 0.19 ± 0.0126 0.59 ± 0.0505 0.87 ± 0.0606
400 0.71 ± 0.0341 0.19 ± 0.0136 0.60 ± 0.0466 0.82 ± 0.0618
450 0.71 ± 0.0405 0.19 ± 0.0175 0.62 ± 0.0480 0.81 ± 0.0732
500 0.71 ± 0.0338 0.19 ± 0.0139 0.62 ± 0.0537 0.82 ± 0.0618
550 0.71 ± 0.0338 0.19 ± 0.0131 0.62 ± 0.0487 0.81 ± 0.0425
600 0.71 ± 0.0338 0.20 ± 0.0194 0.64 ± 0.0406 0.79 ± 0.0609
650 0.71 ± 0.0373 0.19 ± 0.0160 0.63 ± 0.0475 0.81 ± 0.0547
700 0.71 ± 0.0318 0.19 ± 0.0151 0.63 ± 0.0518 0.80 ± 0.0499
750 0.71 ± 0.0373 0.19 ± 0.0165 0.63 ± 0.0475 0.81 ± 0.0547

GAN 50 0.63 ± 0.0792 0.24 ± 0.0102 0.76 ± 0.1749 0.48 ± 0.3068
100 0.67 ± 0.0828 0.23 ± 0.0113 0.78 ± 0.1292 0.53 ± 0.2768
150 0.66 ± 0.0794 0.23 ± 0.0131 0.80 ± 0.1247 0.50 ± 0.2700
200 0.70 ± 0.0836 0.22 ± 0.0157 0.86 ± 0.0934 0.52 ± 0.2481
250 0.70 ± 0.0805 0.22 ± 0.0183 0.87 ± 0.0776 0.50 ± 0.2435
300 0.70 ± 0.0873 0.21 ± 0.0178 0.87 ± 0.0974 0.50 ± 0.2447
350 0.70 ± 0.0823 0.21 ± 0.0207 0.89 ± 0.0840 0.49 ± 0.2354
400 0.70 ± 0.0798 0.20 ± 0.0202 0.89 ± 0.0840 0.48 ± 0.2320
450 0.68 ± 0.0747 0.20 ± 0.0273 0.89 ± 0.0760 0.43 ± 0.2294
500 0.68 ± 0.0724 0.20 ± 0.0222 0.89 ± 0.0760 0.44 ± 0.2259
550 0.67 ± 0.0712 0.20 ± 0.0225 0.88 ± 0.0862 0.43 ± 0.2242
600 0.68 ± 0.0550 0.21 ± 0.0225 0.89 ± 0.0814 0.45 ± 0.1936
650 0.71 ± 0.0591 0.20 ± 0.0228 0.89 ± 0.0760 0.49 ± 0.1909
700 0.71 ± 0.0653 0.20 ± 0.0262 0.91 ± 0.0628 0.49 ± 0.2029
750 0.71 ± 0.0597 0.20 ± 0.0244 0.90 ± 0.0633 0.48 ± 0.1802

WGAN-GP 50 0.70 ± 0.0418 0.22 ± 0.0114 0.48 ± 0.0801 0.95 ± 0.0436
100 0.72 ± 0.0333 0.20 ± 0.0111 0.56 ± 0.0367 0.92 ± 0.0544
150 0.72 ± 0.0334 0.20 ± 0.0088 0.59 ± 0.0398 0.88 ± 0.0609
200 0.74 ± 0.0474 0.18 ± 0.0143 0.65 ± 0.0580 0.85 ± 0.0722
250 0.76 ± 0.0462 0.18 ± 0.0137 0.68 ± 0.0605 0.86 ± 0.0646
300 0.77 ± 0.0448 0.18 ± 0.0120 0.70 ± 0.0572 0.86 ± 0.0691
350 0.76 ± 0.0379 0.18 ± 0.0143 0.70 ± 0.0533 0.83 ± 0.0568
400 0.74 ± 0.0469 0.17 ± 0.0146 0.70 ± 0.0644 0.80 ± 0.0606
450 0.74 ± 0.0469 0.17 ± 0.0165 0.71 ± 0.0584 0.78 ± 0.0697
500 0.75 ± 0.0404 0.17 ± 0.0165 0.72 ± 0.0482 0.78 ± 0.0653
550 0.74 ± 0.0440 0.18 ± 0.0160 0.72 ± 0.0500 0.75 ± 0.0689
600 0.72 ± 0.0385 0.18 ± 0.0177 0.70 ± 0.0490 0.75 ± 0.0596
650 0.72 ± 0.0402 0.18 ± 0.0187 0.70 ± 0.0561 0.75 ± 0.0596
700 0.74 ± 0.0373 0.18 ± 0.0200 0.75 ± 0.0668 0.74 ± 0.0665
750 0.74 ± 0.0344 0.18 ± 0.0173 0.74 ± 0.0472 0.74 ± 0.0618

We also studied in this RNA-seq example whether data augmentation would also be
helpful with a smaller set of training data. From the 258 samples, we selected randomly
a subset of 30 samples as training data, and compared again classifier performance with



Int. J. Mol. Sci. 2022, 23, 2481 12 of 22

and without data augmentation. In this analysis, all remaining 228 samples were taken as
test data. The whole procedure was repeated ten times to obtain confidence intervals for
accuracy and the other performance measures. To augment the training data, we considered
2-fold augmentation and 5-fold augmentation of the small training subset. The results of the
analysis support the previously shown results that augmentation improves classification
performance, since here too the accuracy increased, and the Brier score decreased with
increasing augmentation; for the WGAN-GP and the MWO approach more than for the
GAN approach. Detailed results are part of the Supplementary Materials.

Figure 7. Boxplots of log-transformed normalized mean square errors (top) and log-transformed
mean absolute differences of eigenvalues (bottom) for the RNA-seq experiment when comparing the
covariance matrices of artificial and original data. The boxplots contain results for 500 runs, in each
of which 50 genes were drawn at random and the correlation matrices were created. The symbol
**** denotes p-value < 0.0001.

2.4. Molecular Signatures of Microarray and RNA-Seq Study, and Overlap with Originally
Published Signatures

To select genes as molecular signatures from the microarray and RNA-seq studies, we
counted in how many folds of the cross-validation a gene was selected. In each fold, the
selection criterion for a gene was that the FDR-adjusted p-value was <0.05 and the absolute
log fold change was >2. Using the number of cross-validation folds is a sharper criterion
than statistical testing on the whole dataset, because multiple reduced datasets (i.e., with
reduced power) are used and genes are validated in the left-out dataset.

In the microarray ARI study, 44 genes were selected in each of the 10 cross-validation
runs. In the RNA-seq SARS-CoV-2 study, 88 genes were selected, accordingly. Of these
88 genes, 41 coded for small nuclear RNAs.

We compared the selected genes with those presented as signatures in the original
publications of the two datasets ([8,16]). It must be said that the different ML models and
different subsamples and groupings of the data were used in these publications. Hence,
classifiers and selected signatures are not directly comparable. However, genes that are
jointly selected in different models have more evidence of being involved in the molecular
processes of the studied respiratory diseases. For the microarray study, the overlap of our
signatures with the signatures presented in the originally published results was rather
small, i.e., the overlap were three genes: LY6E, OASL, IFIT1. For the RNA-seq study, the
overlap were 21 genes: ACAN, BATF3, BHLHA15, CACNA1F, CCL2, CCL8, CMKLR1,
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CST8, CXCL11, FCN1, GUK1, IFNL1, IRG1, OPRL1, OR2W5, SERPINB12, SLAMF7, TFEC,
TNIP3, TRPV5, ZNF81.

Most of these genes encode for molecules that are potentially involved in the pathogen-
esis of viral respiratory disease, such as antiviral and interferon-associated proteins of the
innate immune response (LY6E, OASL, IFIT1, IRG1, CMKLR1, FCN1), transcription factors
regulating cell differentiation (BATF3), chemokines (CCL2, CCL8, CXCL11), cytokines
(IFNL1), molecules of membrane receptor-ligand systems (OPRL1, OR2W5), and molecules
involved in calcium pathways (BHLHA15, CACNA1F) [24–29].

Besides looking at individual genes, we also performed gene ontology (GO) enrich-
ment analysis [30], again based on selected genes from the 10 cross-validation runs. GO
terms related to biological processes (BP), molecular functions (MF) and cellular compo-
nents (CC) were studied separately. Among the significant GO terms in the microarray
example, only a few were related to infection or immune response, e.g., antigen processing
(GO:0002483, GO:0019885). In contrast, the significant GO terms in the RNA-seq example in-
cluded those related to immune response (GO:0006955), T-cell differentiation (GO:0002292),
and virus or immune receptor activity (GO:0001618, GO:0140375). The detailed results of
GO enrichment analysis are provided as Supplementary Tables. Further significant GO
terms, which are related to infection are listed in the following:

• Microarray example, biological processes: antigen processing and presentation of
endogenous peptide antigen (GO:0002483); antigen processing and presentation
of endogenous peptide antigen via MHC class I (GO:0019885); antigen process-
ing and presentation (GO:0019882); antigen processing and presentation of peptide
antigen via MHC class I (GO:0002474); regulation of dendritic cell differentiation
(GO:2001198); dendritic cell differentiation (GO:0097028); macrophage cytokine pro-
duction (GO:0010934); antigen processing and presentation of endogenous antigen
(GO:0019883); phagocytosis, engulfment (GO:0006911); antigen processing and pre-
sentation of peptide antigen (GO:0048002)

• Microarray example, cellular component: phagocytic vesicle (GO:0045335)
• Microarray example, molecular function: MHC protein binding (GO:0042287); MHC

class I protein binding (GO:0042288); MHC protein complex binding (GO:0023023)
• RNA-seq example, biological processes: macrophage activation (GO:0042116); T-

cell differentiation involved in immune response (GO:0002292); leukocyte activation
involved in immune response (GO:0002366); regulation of macrophage activation
(GO:0043030); CD4-positive, alpha-beta T-cell differentiation involved in immune re-
sponse (GO:0002294); cell activation involved in immune response (GO:0002263); alpha-
beta T-cell activation involved in immune response (GO:0002287); alpha-beta T-cell
differentiation involved in immune response (GO:0002293); regulation of interleukin-1
production (GO:0032652); regulation of interleukin-1 beta production (GO:0032651);
myeloid leukocyte activation (GO:0002274); regulation of cytokine production
(GO:0001817); regulation of interleukin-17 production (GO:0032660); immune re-
sponse (GO:0006955); T-cell activation involved in immune response (GO:0002286); re-
sponse to molecule of bacterial origin (GO:0002237); cytokine production (GO:0001816);
response to lipopolysaccharide (GO:0032496); cellular response to oxidative stress
(GO:0034599); NIK/NF-kappaB signaling (GO:0038061); regulation of microglial cell
activation (GO:1903978); T-helper cell differentiation (GO:0042093); microglial cell
activation (GO:0001774); leukocyte activation involved in inflammatory response
(GO:0002269); interleukin-1 production (GO:0032612); reactive oxygen species metabolic
process (GO:0072593); leukocyte activation (GO:0045321); interleukin-1 beta produc-
tion (GO:0032611); plasma membrane bounded cell projection assembly (GO:0120031);
positive regulation of cytokine production (GO:0001819); interleukin-17 production
(GO:0032620); mitochondrial translation (GO:0032543); cytokine-mediated signaling
pathway (GO:0019221); CD4-positive, alpha-beta T-cell differentiation (GO:0043367);
lymphocyte activation involved in immune response (GO:0002285); cell projection
assembly (GO:0030031)
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• RNA-seq example, molecular function: antigen binding (GO:0003823); virus receptor
activity (GO:0001618); immune receptor activity (GO:0140375); cytokine receptor
binding (GO:0005126); double-stranded RNA binding (GO:0003725); cytokine receptor
activity (GO:0004896); chemokine binding (GO:0019956)

3. Discussion

Early diagnosis of patients with respiratory diseases caused by viral infections is
important to provide a good treatment. Since changes in the transcriptome are among the
early responses upon infection, classifiers based on high-throughput gene-expression data
would provide a reasonable means for diagnosis. Early diagnosis is important to allow
rapid therapeutical intervention, preventing progression of tissue damage and respiratory
distress, resulting in a better prognosis. Additionally, early diagnosis is essential for the
reduction of viral shedding and the initiation of early disease control strategies in the
environment of affected individuals, which limits further virus spread.

Several studies have been performed to study the differentiability of patients with
respiratory diseases of viral origin, usually using standard ML models fitted to transcrip-
tomics data. We selected two of such studies to demonstrate that ANNs in combination
with a step of data augmentation, can provide improved classification accuracy. Although
data augmentation has a long tradition in classifying samples based on other data types
(e.g., images), it has rarely been considered for transcriptomic data. We selected two differ-
ent kinds of transcriptomic data, i.e., one study based on DNA microarray data and one
based on RNA-seq data. Although high-dimensional gene-expression data are distributed
on a continuous scale as fluorescence values from DNA microarrays [31], discrete count
data are produced when using RNA-sequencing (RNA-seq) instead [32]. In summary, our
comparative analyses yielded that data augmentation can indeed improve the classification
performance. The best performance was achieved by an advanced generative adversarial
network (WGAN-GP approach) which is, however, computationally time-consuming. The
second-best method was to simply mix individual observations (MWO approach) which is
computationally much less demanding.

We mainly focused on accuracy and Brier score when presenting the results. A
common metric for evaluating medical diagnoses is the F1-score, which is the harmonic
mean of sensitivity (recall) and positive predictive value (precision) [33]. Looking at the F1-
scores supported the previous results as it behaved similar to the findings for the accuracies.
i.e., for the microarray dataset no significant improvement could be observed when using
all the training data for training the classifier whereas when using only a smaller subset for
training at least for the first 200 most differentially expressed genes as input signature the
classifiers trained with augmented data outperformed that without augmentation. For the
RNA-seq data, further augmentation, i.e., increase of the augmentation factor, improved
the classification both in the case of using all training data for training and the case where
only a smaller subset of the data was used for training. F1-scores are also added to the
Supplementary Tables and Figures.

Furthermore, our simulations have shown that the amount of augmentation has an
impact on the classifier performance. In principle, the larger the amount of augmentation,
the larger was the observed performance. In some cases, already with a 1-fold augmentation,
a significant improvement was observed. However, a significant improvement might not
necessarily mean a clinical relevant improvement. With a 5-fold augmentation in the RNA-
seq example, one could obtain a significant improvement of the accuracy by 20%. This
would mean a clearly larger number of correct classifications, and would be important if
such a classification had an impact on therapy decisions. Therefore, it is not reasonable here
to make a general statement regarding the minimum required amount of augmentation for
classifiers with high-dimensional gene-expression data. Instead, we recommend checking
the performance individually when other scientist use augmentation for such data.

In this manuscript, we have evaluated the use of data augmentation in the context of
ANNs. Moreover, we did some additional evaluations of transcriptomic data augmentation
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with other classifier methods, specifically SVMs, LDA and RF, but could not see the
same amount of improvement. Regarding LDA, it might be that additional observations
generated by the studied approaches do not much change the estimates for group means
and covariance matrices. For SVMs, additional observations generated by the studied
approaches may not change much the shape of the separating hyperplane. It may be
that other augmentation methods could work with SVMs, LDA and RF. Therefore, more
research will be necessary to understand how augmentation of transcriptomics data can be
performed in combination with different classifier models.

Independent from the question, whether augmented data can improve the classifier
performance, we have compared covariance matrices of randomly selected gene sets to see,
whether artificial data would also be useful for computer simulations, where researchers
want to have data that reflects the correlation between genes. We found that the difference
between the covariance matrix of original and artificial data was smallest for the MWO
approach but larger for the GAN and WGAN-GP approaches. Although we observed
these significant differences, the general shape of the covariance structure seems to be
maintained as can be seen in Figures 3 and 6. A reason for the observed differences with the
GAN and WGAN approaches may be that with these approaches random data vectors are
generated as new observations without taking the correlation structure between genes into
account. For the MWO, the covariance structure is changed through the different weights
with which the original columns in the gene-expression matrix are mixed. In summary,
the artificial data may be useful for simulation purposes since the general shape of the
covariance structure remains. Furthermore, if the covariance structure of artificial and
original data was the same, the artificial data might have no added value for the classifier
training. It should be added that the differences for the RNA-seq data appear much larger
than the differences observed for the microarray data. This is due to the different scale of
both data types.

Our classification results are not comparable with that of the ML models presented in
the original publications of the two example datasets. First, we did use different groupings
of samples, and second, we used other classifier models. In general, it is difficult to
reimplement exactly ML models from other publications. However, our basic goal was
to show that data augmentation in combination with ANNs can improve classification
performance in contrast to ANNs fitted on the original data only, and that is what we have
demonstrated here.

Knowledge about changes in the transcriptome during a disease can significantly
contribute to a better understanding of the molecular processes of the pathogenesis and
therapy response. Thus, it can be helpful to know which genes are significantly up- or
down-regulated, and which GO terms are involved. We found that some of the significantly
enriched GO terms have been mentioned in the context of other infectious diseases. In
the microarray example, we selected the biological process GO:0002483 which was also
found enriched in a study on juvenile dermatomyositis [34], which is supposed to be
caused by viruses and can involve inflammation of the lung. The cellular component
of phagocytic vesicles (GO:0045335) was also mentioned in the context of SARS-CoV-
2 infection and pulmonary fibrosis [35]. Additionally, the enriched molecular function
GO:0042287, responsible for MHC protein binding was found in a recent SARS-CoV-2
study [36], based on an enrichment analysis in 76 selected neighbor proteins of the SARS-
CoV-2 spike protein. In the EBI QuickGO database the term GO:0042287 is further described
as ‘Binding to a major histocompatibility complex molecule; a set of molecules displayed on
cell surfaces that are responsible for lymphocyte recognition and antigen presentation’. In
the RNA-seq example, the selected biological process ‘macrophage activation’ (GO:0042116)
was also mentioned in the context of Asthma [37]. Furthermore, the molecular function
‘antigen binding’ (GO:00003823) was found to be enriched in a study on early-stage lung
carcinoma [38].

Typically, differentially expressed genes are detected by statistical tests to judge signif-
icance and by the log fold change to quantify the strength of the effect. We have argued
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in the introduction that there is more evidence for the molecular importance of a set of
differentially expressed genes, if these genes show additionally a high performance in
a ML model. To estimate this performance more robust, we used the concept of data
augmentation. In the two datasets, we have shown that the selected signatures have also
a higher diagnostic power when using data augmentation for fitting the ANN models.
Following our above argumentation, we think that there is good evidence regarding the
molecular role of the selected set of differentially expressed genes and GO terms.

4. Materials and Methods

We developed a standardized pipeline with varying data augmentation methods
followed by training a classifier using an increasing number of preselected features and
testing the classifier for unseen test data. The pipeline was performed for two real world
datasets to assess the applicability of those augmentation methods and their influence on
the robustness of a classification model. For the latter, we chose an artificial neural network
with two hidden layers. The number of input features was successively increased, with the
genes being sorted based on how strongly they are differentially expressed, i.e., incremental
feature selection [39]. Two main approaches for data augmentation were taken into account:
Generative adversarial networks and a less complex method as a benchmark. The number
of synthetic samples generated with the different augmentation methods was two times
the number of samples in each class, i.e., the class proportions have been retained. The
generic pipeline is shown in Figure 8.

Figure 8. Generic pipeline: Starting at the top left the whole dataset is split into a training subset
and a test subset. The training subset is then augmented using various augmentation methods.
Following a feature selection, the augmented dataset with a reduced number of genes is used to train
a classification network which itself is used to classify the so-far unseen test data.

4.1. Example 1: Microarray Data from Infection Study

Data were taken from the GEO archive (https://www.ncbi.nlm.gov/geo, accessed
on 15 April 2020) under the accession number GSE63990, containing microarray data of
patients with respiratory infection. In the original study [16], RNA from 317 subjects
with clear clinical phenotypes, namely bacterial ARI, viral ARI, non-infectious illness and
healthy controls was analyzed. Total RNA was extracted from peripheral blood. The
authors developed a classifier to diagnose bacterial ARI and viral ARI based on gene-
expression data, finding that using patients with non-infectious illness as the control group
is more appropriate than healthy individuals to identify gene-expression classifiers. For
our study, we only took sequence data from individuals with viral ARI and bacterial ARI,
i.e., 190 samples. No preprocessing was conducted, because the available data were already
normalized based on robust multi-array average (RMA) [40] and log2 transformed.

https://www.ncbi.nlm.gov/geo
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4.2. Example 2: RNA-Seq Data from SARS-CoV-2 Study

Samples were taken from GEO archive (https://www.ncbi.nlm.gov/geo, accessed on
23 February 2021) under the accession number GSE163151 and contained RNA-sequencing
data from nasopharyngeal swabs of humans with either SARS-CoV-2 infection, other viral
ARI or non-viral ARI. Originally, the data also included whole blood samples and were
used to investigate the differential host responses to SARS-CoV-2 infection [8]. For our
study, we only took count data from nasopharyngeal (NP) swabs of patients with either
SARS-CoV-2 infection or viral ARI, i.e., 258 samples. We conducted pre-filtering of the
count data keeping only genes where at least ten samples showed at least ten counts. The
filtered count data were normalized using the R package DESeq2’ [41].

4.3. K-Folds Cross-Validation

K-folds cross-validation was used to evaluate the different augmentation methods.
K-folds cross-validation is a common approach for estimating the accuracy of a classifier,
and for model selection [42]. Therefore, the data D is randomly split into K non-overlapping
subsets (folds) D1, D2, . . . , DK of approximately equal size. The algorithm is therefore
trained and validated K times: for each k ε {1, 2, . . . , K}, it is trained on D\Dk and validated
on Dk [43]. In our study, we split the respective training data into K = 10 subsets preserving
the percentage of samples per class (i.e., stratified K-folds cross-validation [42]) by a single
split of the data before starting the training. Beginning with the first fold as test set, feature
selection, data augmentation and training of the classifier is conducted for the respective
training subset. The trained network is then used to predict the labels (outcome) of the so-
far unseen test data. Performance metrics including accuracy and Brier score are calculated
for each fold and stored for later comparisons. Although the accuracy is the proportion
of correctly classified samples of all samples, the Brier score measures the mean squared
difference between the probability of belonging to class 1 and the actual outcome of the
sample (0 or 1):

Let yi ε {0, 1} be the outcome of the event for sample i. Transforming the output of the
classification ANN as described in Section 4.4 by means of the logistic sigmoid function,
i.e., S(xi) =

exi
exi+1 with xi being the output value of the classification ANN for sample i, the

latter is mapped to a value between zero and one. This can be interpreted as the estimated
probability that sample i has the outcome 1, denoted by p̂(yi = 1). The predicted outcome
is assigned as follows:

ŷi =

{
0, if p̂(yi = 1) ≤ 0.5
1, if p̂(yi = 1) > 0.5

(1)

The proportion of correctly classified samples, i.e., ŷi == yi, of all samples, is defined
as the accuracy.

In contrast, the Brier score measures the mean squared difference between the proba-
bility of belonging to class 1 and the actual outcome of the sample [44]:

Brier score =
1
N

N

∑
i=1

(yi − p̂(yi = 1))2 (2)

Thus, the Brier score provides a more detailed measure for the performance of a
classifier than the accuracy.

4.4. Classification with Artificial Neural Networks

For classification, a deep neural network with two hidden layers with 150 and
50 neurons each was used. The number of input neurons corresponded to the number of
input features (genes). In the hidden layers, rectified linear unit activation (ReLU) function
was used to transform the input values, i.e., the output of the respective previous layer.
ReLU function is a common type of non-linear activation used in hidden layers that maps
negative values to zero and for positive values the function returns the input value [45]. The
output layer was one single neuron with linear activation. As the criterion for backward

https://www.ncbi.nlm.gov/geo
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propagation, binary crossentropy with logits loss, which is a combination of a sigmoid layer
and binary cross entropy loss in one single class, was used. Stochastic gradient descent
algorithm was used to optimize the height of the weights, i.e., to minimize the classification
loss. Dropout regularization, i.e., random selection of neurons that are set to zero, was used
to reduce overfitting [46]. The neural network was built using the open-source program
library PyTorch ([47]) and the PyTorch research framework PyTorch Lightning [48].

4.5. Incremental Feature Selection

The number of input features that were passed to the classification ANN was suc-
cessively increased, with those features being sorted accordingly to their importance, i.e.,
the most differentially expressed genes. Therefore, a feature selection was carried out for
each cross-validation fold and accordingly for each training subset, and the classification
network was trained and tested with different numbers of those preselected genes. For both
microarray data and RNA-seq data, the selection of genes followed a test for differential
expression which was conducted using the R packages ‘Limma’ [49] and ‘DESeq2’ [41],
respectively. p-values were obtained for gene ranking and the resulting lists of ranked
genes were used to extract the top n genes.

4.6. Augmentation by Weighted Mixed Observations

The approach to augment data by weighted mixed observations is mainly used for
image data augmentation and is described by Shorten et al. [21] as mixing images. Similarly,
we generated new samples by matrix multiplication. The original data, represented by a
p × n matrix, with p being the number of features and n being the number of samples is
multiplied by a (n × 1) vector of randomly chosen small weights. Repeating this calculation
n∗ times, each time with a randomly drawn weights vector and appending the vectors
generated in this way, results in a n∗ × p matrix, with n∗ being the required number of
artificial samples. Z-transforming that matrix, we obtain a synthetic dataset consisting of
the new generated arrays that lie within the range of the original data.

4.7. Augmentation by Gan

A generative adversarial network (GAN) is a type of generative model based on deep
learning [50] which was introduced to the machine-learning community in 2014 by Ian
J. Goodfellow [22]. Unlike the supervised deep learning method, we use for classifica-
tion, GAN models belong to unsupervised learning, i.e., no labels are given to train the
model [51]. GANs have been widely used for image datasets and are continually develop-
ing. However, to our knowledge, only a few attempts have been made to use GANs for
augmentation of gene-expression datasets [23,52,53].

A conventional GAN consists of two deep neural networks which are embedded in
a competitive process. The discriminator works as a classifier and discriminates between
real and fake samples. The generator generates synthetic samples from a latent vector z to
degrade the classification performance of the discriminator, i.e., to maximize the cost of the
discriminator [17]. As suggested by Goodfellow et al. [22], the discriminator is trained for
c epochs to minimize its loss before the generator is trained for one epoch. Through this
competition, the model theoretically learns a generator that creates realistic data, i.e., that
samples from the complex, high-dimensional training distribution [22]. Viñas et al. [52]
point to a problem with the augmentation of gene-expression data, namely the difficulty of
recognizing whether the gene-expression data generated by the GAN is realistic, which
is a subordinate problem in other domains such as image generation, where it can be
determined by empirical investigation. Essentially, the objective of the GAN is to minimize
the so-called Jensen–Shannon Divergence (JSD), which itself is a metric for the similarity
between two probability distributions [22].

In our model, the GAN consisted of a generator, which in turn was a MLP with
three hidden layers with 250, 500 and 1000 neurons each with ReLU activation, and
a discriminator, which was also a MLP with three hidden layers with 1000, 500 and
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250 neurons each with leaky ReLU activation. The generator takes a latent vector z,
consisting of 100 randomly selected values between 0 and 1 from the normal distribution,
processes it through the hidden layers and maps it onto a high-dimensional vector that
describes an artificial sample. Thus, the generator has as many output neurons as the
number of genes that make up an original sample, each with hyperbolic tangent (Tanh)
activation. The discriminator takes such a vector as input vector, i.e., its number of input
features corresponds to the number of output neurons of the generator, processes it through
the hidden layers and maps it to a single output neuron with linear activation. Binary
crossentropy with logits loss was used as the criterion for backward propagation for both
discriminator and generator. Adam optimization algorithm [54] with a learning rate of
0.0001 was used to optimize the height of the weights of the discriminator ANN and the
generator ANN. Training the GAN started with training of the discriminator network
for one time, followed by training of the generator once as well. After training the GAN
accordingly for 2000 epochs, a n∗ × 100 matrix, consisting of n∗ 100-dimensional noise
vectors each containing values that are randomly sampled from gaussian distribution, was
passed to the trained generator to generate n∗ artificial samples. The GAN was built using
PyTorch [47].

4.8. Augmentation by Wasserstein Gan with Gradient Penalty

As one problem with GANs is their training instability [55], much of the recent work
on GANs is on suggesting variants of the classical GAN architecture to stabilize the training
process. One alternative is the Wasserstein GAN (WGAN) proposed by Arjovski et al. [55],
which uses the Earth-Mover (Wasserstein) distance instead of Jensen–Shannon divergence
(JSD) to measure the closeness of the modelled probability distribution and the real proba-
bility distribution. Earth-Mover distance has its roots in transport theory and is, in simple
terms, the ‘cost of the optimal transport plan’ [55] to transform one distribution into another.
Compared to JSD, the Wasserstein Distance has the advantage that it is always continu-
ous and has an exploitable gradient almost everywhere, which makes it a more sensible
cost function if the real data distribution and the parametric probability distribution do
not share the support or do not overlap, i.e., when the distributions are disjoint [55,56].
However, the Wasserstein GAN which is based on the Kantorovich-Rubinstein duality of
Wasserstein distance, brings an additional Lipschitz requirement, i.e., the discriminator
must lie within the space of 1-Lipschitz functions [55]. In the standard WGAN [55], this
constraint is implemented using weight clipping. Instead of the latter, Gulrajani et al. [57]
propose the use of Wasserstein GAN with gradient penalty, i.e., constraining the gradient
norm of the critic with respect to its input, which showed better performance than standard
GAN or standard WGAN.

In our study, we employed a Wasserstein GAN with gradient penalty (WGAN-GP).
For this we used the same architecture for the generator ANN and the discriminator
ANN as with the GAN, but changed the loss function by adding a gradient penalty. For
implementing the gradient penalty term, we modified code from Persson [58], who wrote
a PyTorch script for a WGAN-GP based on the suggestions of Arjovski et al. [55] and
Guljarani et al. [57].
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