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A key factor controlling skeletal muscle hypertrophy by enhancing the recruitment
of muscle stem cells
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Adult skeletal muscles adapt their fiber
size to workload. We show that

serum response factor (Srf) is required
for satellite cell-mediated hypertrophic
muscle growth. Deletion of Srf from
myofibers, and not satellite cells, blunts
overload-induced hypertrophy, and
impairs satellite cell proliferation and
recruitment to pre-existing fibers. We
reveal a gene network in which Srf within
myofibers modulates interleukin-6 and
cyclooxygenase-2/interleukin-4 expressions
and therefore exerts a paracrine control of
satellite cell functions. In Srf-deleted
muscles, in vivo overexpression of inter-
leukin-6 is sufficient to restore satellite
cell proliferation, but not satellite cell
fusion and overall growth. In contrast,
cyclooxygenase-2/interleukin-4 overexpres-
sion rescues satellite cell recruitment and
muscle growth without affecting satellite
cell proliferation, identifying altered
fusion as the limiting cellular event.
These findings unravel a role for Srf in
the translation of mechanical cues applied
to myofibers into paracrine signals, which
in turn will modulate satellite cell func-
tions and support muscle growth.

Adult skeletal muscle is a highly plastic
tissue, the mass of which changes in
response to environmental cues and/or
physiological stimuli. The basic cellular
building blocks of adult muscle are the
multinucleated myofibers, which undergo
remodeling during post-natal growth,
during regeneration following injury, and
in response to functional demand such as
external loads and to nutrient availability.

In addition to the multinucleated post-
mitotic myofibers, there are mono-
nucleated stem cells located under the
basal lamina—the satellite cells. Quiescent
satellite cells become activated to meet
myofiber adaptive requirements. Once
activated, satellite cells follow an ordered
set of events including proliferation,
migration and fusion to growing adult
myofibers.1

Mature myofibers can grow by different
ways: (1) the increase of their cytoplasmic
volume by making more sarcomeric pro-
teins and (2) the acquisition of new
genetic material by accretion of new nuclei
provided by the satellite cells.

As the accumulation of contractile
proteins within the fiber, and the loss of
such proteins, are associated with muscle
hypertrophy and atrophy respectively,
muscle protein synthesis and degradation
are believed to be crucial in the regulation
of muscle mass. Mechanical stimuli and
anabolic reagent (such as IGF-1) lead
to the activation of the translational
machinery via PI3K/Akt/mTOR pathway.
Conversely, chronic mechanical unloading
and catabolic agents (such as glucocorti-
coids, TNFa) result in the activation of
FOXO and NF-kB and the subsequent
expression of genes implicated in protein
catabolism such as the muscle E3 ubiqui-
tin ligases (MuRF1 and MAFbx) and
autophagy-related genes.2

The mechanisms controlling satellite
cell function (activation, proliferation,
migration and fusion) contribute as well
to muscle growth by regulating the addi-
tion of new myonuclei to the growing
fibers. Satellite cell functions are regulated
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by extrinsic signals such as growth factors
and cytokines.3 Among the secreted
factors, interleukin 6 (IL6), a myokine
detected at high concentrations in con-
tracting muscle fibers and after increased
load, enhances satellite cell proliferation
and migration during muscle hyper-
trophy.4-6 Muscle-secreted interleukin 4
(IL4) promotes muscle regeneration and
post-natal growth by facilitating the
fusion of myoblasts to nascent myotubes.7

Prostaglandins produced by cyclo-
oxygenase (Cox) enzymes, which catalyze
the rate-limiting step in their synthesis, are
bioactive lipid mediators that can also
regulate satellite cell behavior.8-10

While significant progress has been
made in understanding the signaling path-
ways that control muscle mass, the
molecules that translate muscle load into
signals that support muscle growth are
unclear. Furthermore, very little is known
about the transcription factors and the
target genes that are involved in promoting
adult muscle growth.

In this context, we focused our atten-
tion on the transcription factor Srf (Serum
Response Factor) that is highly expressed
in skeletal muscles and that controls the
expression of genes specifically expressed
in skeletal muscle (dystrophin, muscle
creatine kinase, myoD), including several
genes encoding sarcomeric proteins (such
as a skeletal actin, myosin light chain,
tropomyosin).11 Data obtained from mouse
genetic models with skeletal muscle speci-
fic loss of Srf or Mrtfs functions emphasize
their crucial role in post-natal muscle
growth.12,13 In the adult, Srf activity
could also be important for the control
of skeletal muscle mass. Evidence of an
increase in Srf expression during overload-
induced hypertrophy and a decrease in
Srf expression during disuse-induced
muscle atrophy and aging reinforces this
hypothesis.14-16

In order to decipher the role of Srf in
the control of muscle mass in the adult,
mice in which the deletion of the Srf gene
was induced in myofibers (Srfflox/flox:HSA-
Cre-ERT2 mice injected with tamoxifen)
were subjected to overload-induced plan-
taris muscle hypertrophy achieved by the
incapacitation of two synergic muscles,
the soleus and the gastrocnemius. During
the compensatory hypertrophy phase,

growth was completely blunted in the
Srf-deleted plantaris muscle, demonstrat-
ing that Srf is necessary for overload-
induced myofiber hypertrophy.

Unexpectedly, we showed that the lack
of Srf in myofibers affected satellite cells
proliferation and fusion to the growing
fibers. In our genetic mouse model,
Cre recombinase is expressed only in
myofibers and not in satellite cells. This
suggested a paracrine control of satellite
cell functions by the myofibers that we
were able to corroborate using cultured
muscle cells.

To identify the secreted molecules
mediating these effects and whose expres-
sion is under the control of Srf, we used a
global transcriptomic approach allowing
the identification of genes activated by Srf.
We focused our attention on genes
encoding the secreted factors IL6, IL4
and on Cox2 (which encodes a key enzyme
for prostaglandin synthesis).

The potential roles of these factors in
the lack of hypertrophic growth of muscles
lacking Srf was tested by in vivo AAV-
driven overexpression of IL6, IL4 or Cox2
in plantaris muscles prior to overload. In
Srf-deleted muscles, the overexpression of
IL6 is sufficient to restore satellite cell
proliferation, but not satellite cell fusion
and overall growth. In contrast, Cox2/IL4
overexpression rescues satellite cell recruit-
ment and muscle growth without affecting
satellite cell proliferation, identifying
altered fusion as the limiting cellular event
precluding hypertrophic growth of Srf-
deleted muscles. In addition, we demon-
strated that expressions of Cox2 and of IL4
genes are linked and that Cox2 is a direct

Srf target gene which in turn controls IL4
expression. Thus, IL4 could mediate at
least some of the action of Cox2 on
satellite cell recruitment during muscle
overload hypertrophy.

The contribution of satellite cells to
muscle hypertrophy has been a controver-
sial issue.17,18 Our data support a role for
satellite cells in activity-induced hyper-
trophy and are in line with an elegant
study showing that addition of nuclei
precedes increased fiber size during com-
pensatory hypertrophy and that this con-
stitutes the major cause of hypertrophy.19

In addition, recent data from Larsson’s
group suggested that hypertrophy must be
accompanied by new myonuclear incor-
poration for the maintenance of muscle-
specific force and that there is a critical
cytoplasmic volume that individual
myonuclei can support efficiently.20

Interestingly, although satellite cells appear
to be involved in muscle hypertrophy in
normal circumstances, satellite cell-
depleted muscles undergo effective fiber
hypertrophy (McCarthy et al., 2011).21

The compensatory mechanism allowing
growth in satellite cell-depleted skeletal
muscle may be impaired in our model
because of the lack of Srf expression in
myofibers.

Together our findings unravel a role for
Srf in the translation of mechanical cues
applied to myofibers into paracrine signals,
which in turn modulate satellite cell
functions and support muscle growth
(Fig. 1).22 We provide evidence for a
gene network operating in myofibers
during overload-induced muscle growth
in which Srf modulates IL6 and Cox2/IL4

Figure 1. Schematic model, in response to increased workload, Srf within myofibers modulates IL6
and Cox2/IL4 expression and, therefore, exerts a paracrine control of satellite cell proliferation and
fusion, respectively, which in turn support skeletal muscle hypertrophy.
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expression levels, which control satellite
cell proliferation and fusion, respectively.
Interestingly, Srf is required for muscle
growth in response to increased loading,
but is dispensable for Myr-Akt induced
muscle hypertrophy, which occurs in the
absence of increased mechanical signals.
Our future studies will focus on the
identification of the mechanical signals

and the underlying signaling pathways that
can be interpreted by Srf.

Hypertrophy induced by overload is
greatly attenuated in older animals and we
previously reported a decreased expression
of Srf in aged human and mouse
muscles.16,23,24 Accordingly, loss of Srf
within myofibers of young adult mice
induced premature skeletal muscle aging.16

Therefore, during aging, there is a further
link between Srf activity and muscle
hypertrophic capacities. Thus, the iden-
tification of Srf as a master controller of
physiological hypertrophy carries potential
significance for the search for muscle
atrophy therapies and treatments alleviat-
ing muscular atrophy during muscle aging
and disease.
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