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Abstract: Gastric mucus gel is known to exhibit dramatic and unique swelling behaviors in response
to the ionic composition of the hydrating solution. This swelling behavior is important in the
maintenance of the mucus layer lining the stomach wall, as the layer is constantly digested by
enzymes in the lumen, and must be replenished by new mucus that swells as it is secreted from the
gastric wall. One hypothesis suggests that the condensed state of mucus at secretion is maintained
by transient bonds with calcium that form crosslinks. These crosslinks are lost as monovalent
cations from the environment displace divalent crosslinkers, leading to a dramatic change in the
energy of the gel and inducing the swelling behavior. Previous modeling work has characterized the
equilibrium behavior of polyelectrolyte gels that respond to calcium crosslinking. Here, we present an
investigation of the dynamic swelling behavior of a polyelectrolytic gel model of mucus. In particular,
we quantified the rate at which a globule of initially crosslinked gel swells when exposed to an ionic
bath. The dependence of this swelling rate on several parameters was characterized. We observed that
swelling rate has a non-monotone dependence on the molarity of the bath solution, with moderate
concentrations of available sodium inducing the fastest swelling.

Keywords: polyelectrolyte gel; mathematical model; gel swelling

1. Introduction

Gastric mucus is a polyelectrolyte gel which serves an important biological function. It is generally
accepted that the gastric mucus layer provides a protective barrier between the stomach wall and the
stomach interior, shielding the wall from acid and digestive enzymes and preventing auto-digestion of
the stomach epithelium. However, there are several outstanding questions regarding the maintenance
of the gastric barrier. Digestive enzymes within the stomach are constantly degrading the mucus layer
from the inside-out, cleaving the mucin glycoproteins and destroying the entangled network which
makes up the mucus gel [1]. This degradation of the network must be balanced by secretion of fresh
mucus from the stomach wall to maintain a stable layer.

Fresh mucus is secreted from epithelial cells on the stomach wall via exocytosis of microscopic
vesicles filled with densely packed mucin polymers. This dense packing of negatively charged
polymers is shielded by an abundance of divalent calcium ions within the vesicle [2]. When the
contents of these vesicles are exposed to an aqueous environment, the mucus swells dramatically [3].
However, this swelling behavior is known to depend on environmental pH and ionic composition [4].
In particular, when dense mucus is secreted into a deionized environment, the dramatic swelling event
does not occur [3]. Experiments have shown that swelling is accompanied by a massive (and rapid)
transport of monovalent cations (such as sodium or hydrogen) into the densely packed mucus in
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exchange for the divalent calcium [5], removing the efficient charge shielding. It is possible that the
divalent nature of calcium ions provides an explanation for the observed behavior. Due to having a
charge of 2+, calcium can form two bonds with the negatively charged mucin polymers, effectively
forming a “crosslink”. Even though these crosslinks are much less stable than (for example) one
potentially formed by covalent bonds [6–10], large numbers of crosslinks may allow for very dense
network configurations. Conversely, replacing calcium with monovalent sodium removes the ability
to form crosslinks, potentially causing rapid hydration of the gel.

The dynamics of swelling hydrogels have been studied for over seventy years, using theoretical
frameworks of increasing sophistication [11]. However, the proposed mechanism must necessarily
depend on electrodiffusive transport of ionic species, motion of the glycoprotein network and hydrating
fluid, and chemical interactions between the network and dissolved ions. All of these processes are
coupled and affect one another. In [12], the authors derived from first principles a model describing the
transport of mono- and divalent ionic species which bind and unbind to a gel-like material described
by a two-phase mixture model. The equilibrium behavior of the model is explored in [12], and the
linear behavior near equilibria is explored in [13]. We present here the first general investigation of the
dynamic swelling behavior of this model. In particular, we attempted to quantify the rate of swelling
of a polyelectrolyte gel material as a function of the parameters which govern its chemical interaction
with dissolved ions.

2. Mathematical Model

In this work, we choose to model a mucus gel using a two-phase framework. Similar frameworks
have been used in a wide variety of biological contexts, including the modeling of blood clots,
cellular mechanics, and bacterial biofilms [14–17]. In our framework, the local composition of the
complex gel material is described by the volume fractions of two distinct phases which we call network
(denoted with subscript n) and solvent (subscript s). The network represents the entangled mesh of
polymeric proteins which give rise to the gel, while the solvent represents the interstitial hydrating
fluid. Each material is allowed to move with its own distinct velocity. Dissolved ionic species are
allowed to move through the solvent phase, and bind/unbind to/from the network phase.

2.1. Gel Evolution

As is standard in a two-phase model, there are four equations for the composite material composed
of network and solvent. The first two equations describe conservation of mass of the solvent and
network phases, respectively:

∂

∂t
θn +∇ · (θn~un) = 0, (1)

∂

∂t
θs +∇ · (θs~us) = 0. (2)

Here, θn and θs are the volume fractions of network and solvent, respectively, and ~un and ~us are their
respective velocities. By definition, the volume fractions satisfy the constraint θs(~x, t) + θn(~x, t) = 1.
As a consequence of this constraint, Equations (1) and (2) imply that the volume-averaged
incompressibility condition

∇ · (θn~un + θs~us) = 0, (3)

must hold. The velocity fields of each phase are determined by conservation of momentum. Because
the spatial scale of interest is small (microns) and the velocities of the solvent and network are low, it is
reasonable to ignore inertial forces. Hence, momentum balance reduces to force balance equations for
each phase,

∇ · (θnσn)− ξθnθs (~un − ~us)− θn∇µn − θn∇p = 0, (4)

∇ · (θsσs)− ξθnθs (~us − ~un)− θs∇µs − θn∇p− θs

(
∑

j
φj∇µj

)
= 0. (5)
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Here, σn and σs are stress tensors which encapsulate the internal stresses within the network and
solvent, respectively; ξ is the coefficient of the drag force that arises whenever there is relative motion
between the two materials; µs, µn, and µj for j ≥ 3 are chemical potentials that act on the solvent,
network, and ionic species, respectively; and p is the hydrodynamic pressure. The final term in
Equation (5) replaces the drag forces between the ions and the solvent. In effect, the forces from the
ionic potentials are transferred to the solvent because the only forces that act on the ions of type j are
that from ∇µj and the drag between the solvent and these ions, and these forces must sum to zero.
The pressure p is determined by the incompressibility constraint in Equation (3). In Equation (5), φj is
the ratio of the number density of ion j to the number density of water particles. This ionic contribution
is valid in the limit that ions are dilute in the solvent.

The internal stresses within each phase must be given by a constitutive law. In this work,
we assume that both the solvent and network exhibit a viscous response (though the modeling
framework is adaptable to account for elastic or viscoelastic constitutive laws as well). In one spatial
dimension, the stress tensor for each phase reduces to

σi = νi
∂~ui
∂x

, i = s, n, (6)

where νi is the viscosity of the respective phase.

2.2. Dissolved Ion Evolution

The ionic species dissolved within the solvent phase are each subject to a Nernst–Planck
type equation, modified to account for diffusion through a fluid of non-uniform volume fraction.
Cations may bind to the network via mass-action type reactions, while anions may not. We are
specifically interested in the behavior of the model when we have three distinct types of ions
present: a monovalent cation (which we call sodium), a divalent cation (calcium), and a monovalent
anion (chloride).

∂

∂t
cNa +∇ · (cNa~us) =

1
θs
∇ ·

(
DNaθs (∇cNa + zNacNa∇Ψ)

)
− kon

Naθn McNa + koff
Naθ2

s bNa, (7)

∂

∂t
cCa +∇ · (cCa~us) =

1
θs
∇ ·

(
DCaθs (∇cCa + zCacCa∇Ψ)

)
− kon

Caθn McCa + koff
Caθ2

s bCa, (8)

∂

∂t
cCl +∇ · (cCl~us) =

1
θs
∇ ·

(
DClθs (∇cCl + zClcCl∇Ψ)

)
. (9)

Here, cj is the concentration of species j measured in units of moles per liter solvent volume, Dj is
that ion’s diffusion coefficient, zj its valence, and Ψ is the electric potential measured in terms of
thermal voltage RT/F (R: ideal gas constant; T: absolute temperature; and F: Faraday constant).
The parameter kon

j is the binding rate of ion j to the gel network, while koff
j is the corresponding

unbinding rate. The ratio Kj = koff
j /kon

j is the dissociation constant of that cation.

2.3. Bound Ion Evolution

Cations that are bound to the mucus network advect with the network velocity. The concentration
of bound ions may also change through binding and unbinding reactions described by

∂

∂t
bNa +∇ · (bNa~un) = kon

Naθs McNa − koff
Naθ2

s bNa, (10)

∂

∂t
bCa +∇ · (bCa~un) = kon

Caθs McCa − koff
Caθ2

s bCa −
1
2

kon
CaMbCa + 2koff

CabC2, (11)

∂

∂t
bC2 +∇ · (bC2~un) =

1
2

kon
CaMbCa − 2koff

CabC2. (12)
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Here, bNa is the concentration of sodium bound to the network, measured in moles per total volume.
Because calcium is divalent, it may bind twice, and therefore exists in one of two bound states: singly
bound (bCa) and doubly bound (bC2). The quantity M is the concentration of negative charge on the
mucus network which is not bound to a cation; it is determined by the relationship

z̃θn = M + bNa + bCa + 2bC2, (13)

where z̃ is the density (per network volume) of negative sites on a unit of network. We are assuming that
negative charge on the network and binding sites which cations may occupy exist in a one-to-one ratio.

2.4. Driving Potentials

The potentials which act on the volume-occupying species (network and solvent) account for
entropic, long-range electrostatic, and short-range internal energy effects. The potentials acting directly
on the solvent are given by

µs

kBT
= ln(θs) +

(
1− 1

N

)
θn − σI︸ ︷︷ ︸

I

+

(I
2

θ2
n + µ0

s

)
︸ ︷︷ ︸

II

, (14)

and the potentials acting directly on the network are given by

µn

kBT
=

1
N

ln(θn) +

(
1
N
− 1
)

θs︸ ︷︷ ︸
I

+

(I
2

θ2
s + µ0

n

)
︸ ︷︷ ︸

II

− z̃Ψ︸︷︷︸
III

. (15)

Terms in Equations (14) and (15) labeled (I) represent entropic effects, and capture osmotic pressure
acting on the solvent. Terms labeled (II) represent potentials due to short range interactions and
generalize the standard Flory–Huggins mixture theory. We discuss the factor I in more detail below.
Finally, the term labeled (III) represents the potential due to the charged nature of the mucus network.
Here, kB is the Boltzmann constant and N is the number of monomers in a typical polymer chain of
mucin. The term σI is the total ionic molality, given by

σI = ∑
j

φj, (16)

where, again, φj = cj/cwater is the concentration of ion j divided by the standard molarity of water
(cwater = 55.5 M).

Because the ionic species are regarded as massless, the forces on each species are in balance.
Thus, the chemical potential force and the solvent drag force on each ionic species sum to zero. Since
the drag force the ions exert on the solvent is the opposite of that the solvent exerts on the ions, the net
effect is that the chemical potential forces appear to act on the solvent itself (as incorporated in the last
term of Equation (5)). The potentials which act on dissolved ions are given by

µj

kBT
= ln(φj) + 1− 2σI︸ ︷︷ ︸

I

+ zjΨ︸︷︷︸
II

, (17)

where zj is the valence of ion j. Equation (17) accounts for both entropic (I) and electric (II) potentials.
We now return to the term I , which appears in Term (II) in Equations (14) and (15). We refer to this

as the “interaction parameter”, and note that it is somewhat analogous to a typical Flory interaction
parameter [11]. However, here I is not a constant; it is given by

I = 6(ε1 + ε2)− 2
(

1− 1
N

)
ε1 − ε1α, (18)
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where ε1 and ε2 are constants described below. The quantity α(~x, t) is the ratio of the concentration of
current crosslinks within the network (bC2(~x, t)) to the maximum concentration of crosslinks possible
(z̃θn(~x, t))/2):

α =
2bC2

z̃θn
. (19)

Because α may vary spatially and temporally as the concentration of doubly bound calcium and
network volume fraction do, so may I . Thus, our modeling framework is capable of describing a gel
network with a “Flory interaction parameter” that varies spatiotemporally in response to the local
ionic concentrations.

Finally, terms µ0
n and µ0

s (in Equations (14) and (15)) are the so-called “standard free energy” of
the mucus phase and solvent phase, respectively. The solvent term µ0

s is a constant, and therefore
does not affect the behavior of the system (as only gradients of potentials appear in the force balance).
The network standard free energy is given by

µ0
n = −3ε3 + ε4

(
1− 1

N

)
+

α

2
ε3. (20)

Note that the crosslinking fraction α appears in this expression. The parameters ε1, ε2, ε3, and ε4 are
referred to as the interaction energies, and arise in a standard mean-field calculation of the internal
energy associated with a given mucus/solvent mixture. A detailed derivation of this modeling
framework, especially the potentials given in Equations (14), (15) and (17), may be found in [12].

3. Results

3.1. Numerical Experiments and Initial Conditions

Our goal was to investigate the effect of the ambient ionic concentration on the dynamic swelling
of high density network. To this end, we constructed initial profiles of volume fraction and ionic
concentrations which represent a dense, highly crosslinked amount of network in a small region
immersed in a fluid of known ionic composition. We refer to the region with appreciable volume
fractions of network as the “inner” region, and initially placed it at the left end of the one-dimensional
domain of width L = 25 µm. The rest of the domain is referred to as the “bath” and initially has
essentially no network and a prescribed ionic composition. To construct the initial profiles, we
prescribed θn, z̃ and the total amount of calcium, sodium, and chloride. Under the assumption that
all species are spatially uniform, Equations (7) to (12) may be solved to determine the individual
concentrations (cj and bj) at which the binding and unbinding chemistry is at local equilibrium. This
process was carried out separately for the inner region and the bath. We then used a hyperbolic
tangent function (centered at x = 5 µm) to construct spatial profiles that transition smoothly but
sharply between the inner and bath concentrations. These profiles were used as the initial conditions
for Equations (7) to (12). An example of the initial conditions can be seen in Figure 1. We simulated
Equations (7) to (12) using no-flux boundary conditions for all species and zero Dirichlet conditions
for both velocities (to represent a closed container) to investigate the dynamic swelling behavior of the
network. Please see Appendix A.1 for details of the numerical techniques used.
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Figure 1. Example initial profiles of: volume fraction (left); bound ionic concentrations (middle); and
dissolved ionic concentrations (right).

In all simulations, the initial volume fraction of network, the mechanical and energetic properties
of the network (the parameters µs, µn, ξ, ε1, ε2, ε3, ε4 and N), and the diffusion coefficients (Dj) of
the ions were identical. The values of these parameters are listed in Table 1. In particular, the εi were
chosen to produce a network which has a very weak propensity to swell when fully cross-linked,
but swells quickly when no calcium crosslinking is present. When fully crosslinked (α = 1), the network
exhibits an interaction parameter I = 0, which does not drive swelling at all (this is analogous to a
Flory interaction parameter of zero). However, when there is no crosslinking (α = 0), the network
exhibits an interaction parameter I = −45, which is analogous to a large, negative Flory interaction
parameter, and leads to rapid swelling. The parameter ε3 was chosen to be small and negative, as
large negative values of this parameter can lead to gels which tend to phase separate, which is not
a behavior we wanted to investigate. The final interaction energy ε4 does not impact the system
dynamics, as it is simply an additive constant that produces no potential gradient. In all simulations,
the bath concentration of sodium was large, while the calcium concentration was small. The chloride
concentration was chosen to maintain electroneutrality. This choice was made to allow monovalent
sodium from the bath to displace calcium crosslinks within the network.

We performed four major sets of experiments to investigate how two basic aspects of the network
chemistry affect swelling behavior. Specifically, we investigated the regime where there is an extremely
high density of binding sites on the network (referred to as “dense binding”), as well as the regime
where this is a more moderate density of binding sites (referred to as “sparse binding”). Estimates for
the density of cation binding sites on salivary mucus have been reported to be less than one molar [18].
However, the experiments in [19] suggest that gastric mucus may bind hydrogen ions in concentrations
above one molar. Therefore, we assumed that a “sparse” network exhibits 0.1 mole of binding sites
per liter of pure mucus (z̃ = 0.1) while a “dense” network has 1 mole of binding sites per liter of
pure mucus (z̃ = 1). We also investigated the case where a network–calcium bond is chemically
preferred to a network–sodium bond (KCa < KNa), as well as the case where network–sodium bonds
are preferred (KCa > KNa). We refer to these cases as “calcium preferred” and “sodium preferred”,
respectively. We investigated both cases, as estimates for the dissociation constants for both sodium
and calcium vary over orders of magnitude depending on the experimental setup and type of mucus
used [18,20]. Furthermore, we know of no reliable estimates for the individual kinetic rate constants
for either ion. The steady state analysis in [12] assumed that the timescale of chemical reactions was
fast compared to other timescales in the problem. Following in this spirit, we chose kon

Ca, koff
Ca, kon

Na,
and koff

Na to be large and to produce dissociation constants which are roughly in line with literature
values (10−4 or 10−3). We note that the phrase “calcium preferred” only describes the relative size
of the two dissociation constants, and does not necessarily imply that there is actually more calcium
bound to the network. The actual concentration of bound ions of each type depends on the chemistry,
as well as the total amounts of each ion available for binding. To construct a network which is initially
in a highly crosslinked state, we chose inner sodium and calcium concentrations that, for each case,
yield a binding/unbinding equilibrium where most of the network is crosslinked (α > 0.8). Chloride
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concentrations were then specified to maintain electroneutrality. In each of these four regimes, we
carried out swelling experiments for a variety of bath concentrations of sodium. Again, chloride
concentrations were adjusted to maintain electroneutrality. The inner and bath concentrations, as well
as the binding/unbinding rates and binding site density used in each of these four cases are listed
in Table 2.

Table 1. Parameters that do not vary between sets of experiments.

Parameter Value

ε1 −45
ε2 25
ε3 −0.5
ε4 0
N 6

inner θn 0.5
bath θn 1× 10−9

Total bath Ca 1 mM
Total bath Na 0.2–200 mM
Total bath Cl 2.2–202 mM

DNa 2.5× 10−5 cm2/s
DCa 2.5× 10−5 cm2/s
DCl 2.5× 10−5 cm2/s

Table 2. Parameters that vary between experiments.

Parameter KCa > KNa, KCa > KNa, KCa < KNa, KCa < KNa,
Dense Binding Sparse Binding Dense Binding Sparse Binding

Total inner Ca 250 mM 25.3 mM 250 mM 25.3 mM
Total inner Na 5 mM 1 mM 5 mM 1 mM
Total inner Cl 5 mM 1.6 mM 5 mM 1.6 mM

kon
Ca 1× 106 M−1s−1 1× 106 M−1s−1 1× 107 M−1s−1 1× 107 M−1s−1

koff
Ca 1× 103 s−1 1× 103 s−1 1× 103 s−1 1× 103 s−1

kon
Na 5× 106 M−1s−1 5× 106 M−1s−1 5× 105 M−1s−1 5× 105 M−1s−1

koff
Na 5× 102 s−1 5× 102 s−1 5× 102 s−1 5× 102 s−1

z̃ 1 M 0.1 M 1 M 0.1 M

3.2. Gel Swelling Experiments

Figure 2 shows an example time evolution of the network and solvent volume fraction, as well
as dissolved and bound ion concentrations. The shown data were generated using a bath sodium
concentration of 0.02 M with KCa > KNa and sparse binding sites. The initial condition was the same
as that shown in Figure 1. The images show that, as time progresses, sodium from the bath diffuses
into the inner region, reducing the bath concentration of sodium. As this occurs, the concentration of
bound sodium drastically increases and propagates left, towards the interior region of dense network.
This necessarily drives a decrease in the concentration of bound and doubly-bound calcium, and this
release of bound calcium leads to an increase in the concentration of calcium dissolved in the solvent.
As time progresses, the ionic concentrations (both bound and dissolved) approach uniform profiles.
As the ions diffuse into and out of the region of network volume fraction, there is a rearrangement of
the network phase. In particular, volume fraction of network flows from left (high density) to right.
This decrease in maximum network density combined with an increase in the spatial region where
network volume fraction exists is interpreted as swelling of the network phase. Eventually, over the
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course of several seconds, the network phase spreads across the domain and approaches a uniform
steady state.
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Figure 2. Example time evolution of: volume fraction (first column); bound ionic concentrations
(second column); and dissolved ionic concentrations (third column).
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To quantitatively measure the rate at which the network phase swells, we track the maximum
network volume fraction (θmax

n (t)) as a function of time. Due to conservation of mass, the volume
fraction of network at steady state (when the gel is completely uniform) may be determined directly
from initial conditions. We denote this quantity as θss

n and note that, in these experiments, θss
n ≈ 0.1.

We may then define the quantity
∆θ(t) = θmax

n − θss
n (21)

as a measure of the network swelling behavior. As the network swells towards its final configuration,
∆θ approaches zero. Figure 3 shows the time evolution of ∆θ for several bath concentrations of sodium.
All of these data were produced in the case when binding is sparse and sodium binding is preferred
(KCa > KNa). It is immediately apparent that the bath concentration of sodium influences the rate
of swelling, although the nature of this influence is not necessarily simple. The rate at which ∆θ

decreases does not appear to be monotonic with respect to bath sodium concentrations (we return to
this below). Furthermore, the effect of bath sodium on swelling rate varies depending on the time one
considers. For example, at times prior to roughly 1 s, the network swells more quickly when the bath
sodium concentration is 0.002 M (green solid curve in Figure 3) compared to when it is 0.02 M (red
dashed curve). However, at longer time scales, this behavior reverses, and the network immersed
in a 0.02 M sodium bath swells more rapidly. Finally, we note that, at longer times (greater than
approximately 1 s), the behavior of ∆θ appears exponential (linear on the semilog plot in Figure 3).
Exponential swelling behavior has been predicted by numerous other studies. However, on time scales
less than a second, the behavior of ∆θ is distinct. This “short time” behavior is a novel prediction of
the model, and something that we investigate further below. The transition between this “short time”
behavior and the more obvious exponential decay is difficult to precisely quantify, but generically
occurs sometime prior to 1 s. To focus on the short time swelling behavior, we turn to a separate
quantification of swelling rate.

0 1 2 3 4 5
Time [s]

10-3

10-2

10-1

100

 
n [-

]

Peak Height Decay

Na = 2x10-4 M

Na = 2x10-3 M

Na = 2x10-2 M

Na = 2x10-1 M

Figure 3. Decay of maximum network volume fraction to steady state for several concentrations of
external sodium. Vertical dash-dot line indicates (roughly) the transition from early-time expansion
behavior to long-time exponential behavior.

3.3. Front Propagation

For expositional purposes, suppose that a region of network of size L∗(t) and constant volume
fraction θ(t) swells to a new, steady state size L and volume fraction θss

n . Conservation of mass stipulates
that, at all points in time, L∗(t)θ(t) = Lθss

n . If we then assume that volume fraction approaches its
steady state value in an exponential manner

θ(t)− θss
n ∝ e−γt, (22)
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then we may deduce that

∆
(

L−1
)
=

1
L∗(t)

− 1
L

∝ e−γt. (23)

From Figure 2, it is clear that the network in our experiments does not have a spatially uniform profile,
and thus does not meet the assumptions of the above calculation. However, this argument provides a
scaling law for the size of the network globule which we investigate. Now, to define the width of the
network globule in our experiments, we identify the location where network volume fraction is equal
to 0.01

θn
(

L∗(t)
)
= 0.01.

We refer to the location L∗ as the “front” of the network, as there is 99% solvent (by volume) in the
space to the right of this point. We know that the steady state width of the network is L = 25 µm,
as it fills the entire domain. Figure 4 shows an example time course of ∆

(
L−1). The data shown were

generated from the same simulation illustrated in Figure 2, where the bath concentration of sodium
was 0.02 M, KCa > KNa, and binding sites were sparse.

Figure 4 shows several behaviors. At extremely short times, prior to approximately 0.2 s, ∆
(

L−1)
decreases rapidly, indicating a rapid propagation of front location. At longer times, after approximately
1.4 s, we again see a rapid decrease in ∆

(
L−1), corresponding to the front reaching the right end of

the domain (this occurs in finite time, causing ∆
(

L−1) to reach zero, which cannot be illustrated on
the semilog plot). It is worth noting that the front approaching the right hand end of the domain
approximately corresponds to the transition between the “short time” and “long time” behaviors
seen in Figure 3 (see dashed blue line). However, at intermediate times, we see an approximately
exponential decrease in ∆

(
L−1) (again, indicated by an approximately linear behavior on the semilog

plot). To identify the rate of this exponential decrease, we perform a linear fit to the quantity

L̃ = ln(∆
(

L−1)).
The slope of this linear fit can be interpreted as the exponential decay rate γ (see Equation (23)).
To eliminate the contribution of the extremely early time start-up behavior, as well as the effects
of the front reaching the right end of the domain, we only use data points between 0.2 s and 0.8 s.
For reference, Figure 4 shows a dashed line indicating a purely exponential behavior with the decay
rate γ = 2.39 s−1, which is the value calculated from the numerical simulation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

100

101

102

103

104

(L
-1

) 
[

m
-1

]

Difference of inverse distance

Simulation Result

Exponential Fit (  = 2.39 s-1)

Figure 4. Time evolution of network front towards right wall (at x = L). Dashed line indicates
exponential fit from t = 0.2 to t = 1 s. The slope of this line (γ = 2.39 s−1) represents the early-time
expansion rate of the network.
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Figure 5 shows the calculated decay rate γ across all experiments. Red curves indicate cases
where calcium binding is preferred (KCa < KNa), while blue curves indicate networks that chemically
prefer sodium binding (KNa < KCa). Dashed lines indicate networks with sparse binding sites (z̃ = 0.1)
and solid lines indicate networks with dense binding sites (z̃ = 1). For extreme concentrations of
sodium in the bath, the behavior of gel swelling is relatively easy to characterize. At very high bath
concentrations of sodium, all networks appear to swell at the same rate. In this limit, bath sodium
is so prevalent that all calcium crosslinks on the network are rapidly replaced with sodium binding
(regardless of the relative size of dissociation constants, or number of binding sites), and the networks
all swell in an identical manner. In the limit of low sodium concentration, we observe two clear
patterns: a network with dense binding sites swells more slowly than one with sparse binding, and a
network that chemically prefers calcium bonds swells more slowly than one that prefers sodium bonds.
To understand this behavior, note that, if the bath concentration of sodium is very low, then the total
number of sodium ions in the domain is severely limited. This means that a network with a high
density of binding sites cannot break a large proportion of calcium crosslinks in favor of sodium bonds,
and thus will not swell very rapidly (i.e., solid curves indicate slower swelling than their dashed
counterparts in Figure 5). By a similar logic, if the number of sodium ions is small, then a network that
prefers calcium bonds will not break crosslinks in favor of sodium binding, and will not swell rapidly
(i.e., red curves indicate slower swelling than their blue counterparts in Figure 5).

However, at moderate concentrations of sodium, we see regimes where these patterns are
reversed. For networks that prefer sodium bonds (blue curves), for sodium concentrations between
approximately 4× 10−3 and 2× 10−1 M, the network with dense binding sites swells more rapidly than
the network with sparse binding sites. A similar behavior is observed for networks that prefer calcium
bonds (red curves), though at higher bath concentrations of sodium (approximately 4× 10−2 to 2 M),
as more sodium ions are required to displace calcium bonds. Similarly, for certain regimes of moderate
bath sodium concentrations, we see that networks which prefer calcium bonds (red curves) actually
swell faster than networks which prefer sodium bonds (blue curves). This behavior occurs between
roughly 4× 10−3 and 4× 10−1 M for sparse binding sites and 2× 10−1 and 2 M for dense binding
sites. This result is counter-intuitive, as one would suppose that chemically preferring calcium bonds
would always retard the breaking of calcium crosslinks, and thus result in slower swelling behavior.
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Figure 5. Computed swelling rate γ as the bath concentration of sodium is varied. Data are shown
for sparse (dashed) and dense (solid) network binding in the cases where sodium (blue circles) and
calcium (red crosses) binding is preferred.
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4. Discussion

In this paper, we have presented the first investigation of the dynamic swelling behavior of the
model of polyelectrolyte gels first derived in [12]. We characterized the early-time swelling rate of the
gel network as a function of the chemical parameters that govern the network’s ability and propensity
to form crosslinks via calcium bonds, as well as the bath concentration of sodium. Our primary
focus was on how the loss of calcium crosslinks alters the energetic landscape of the gel network,
thereby driving a swelling event. The fact that swelling rate depends in a non-monotonic way on
the concentration of sodium in the bath is a major result of this work. We do not currently have a
simple explanation for this counter-intuitive behavior, and future investigations will address this issue.
Experimental validation of this prediction would be exciting, but we know of no directly comparable
studies. Experimental data would also provide an opportunity to estimate several parameters in the
model (specifically, the interaction energies εk) for which we have no reliable estimates.

Finally, we note that, for the sake of simplicity, we chose to treat the rheology of the mucus
network as constant and viscous. However, it is known that mucus networks may exhibit a wide
range of viscoelastic behaviors depending on the ionic milieu and other factors [21–23], including the
presence of permanent covalent crosslinking within the gel network [24]. It may be that the formation
and breakage of calcium crosslinks alters the rheology of mucus gel in a manner which we do not
account for here. If so, the dynamics of swelling are likely governed by a complex interplay between
the changing the internal energy and the evolving rheology of the gel mixture as its crosslinking
structure varies in space and time. Such considerations are beyond the scope of this work, but may be
included in future modeling attempts and potentially fully characterize the ionic regulation of mucus
swelling in the human stomach.
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Appendix A

Appendix A.1. Numerical Scheme

Here, we outline the numerical scheme used to simulate our system of of equations. To solve
the momentum equations while respecting the volume-averaged incompressibility constraint
(Equations (3) to (5)), we utilize a relatively standard second order finite difference method,
in conjunction with the “ε-regularization” outlined in [25]. To evolve the volume fractions of network
and solvent, we utilize a variation of second-order finite volume method (with van Leer limiter) [26].
To evolve the equations which govern ion transport and chemistry, we use a semi-implicit variation of
the electrodiffusive solution scheme described in [27].

We begin by discretizing space using a so-called “staggered grid”. Two collections of spatial
points are defined, and various quantities more naturally “live” at each. The first collection of points
we refer to as “cell centers,” and they are defined by

xj = (j− 1/2)∆x j = 1, 2, 3 . . . J. (A1)

The second collection of points are referred to as “cell edges” and are defined by

xj = (j− 1/2)∆x j =
3
2

,
5
2

, . . . J − 1/2, (A2)
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where ∆x = L/J is the spatial resolution of the grid. There are in total J − 1 cell edges and J cell
centers. A schematic of the spatial discretization is shown in Figure A1. Finally, we have a single
temporal discretization

tk = k ∆t, k = 0, 1, . . . (A3)

x3/2 = ∆x

x1 = ∆x/2

L0

xJ = L−∆x/2

Figure A1. A schematic representation of our computational grid for J = 5. Dashed vertical black lines
indicate the boundaries of the computational domain. Circles indicate cell centers, while diamonds
indicate cell edges.

We approximate ionic concentrations (bound and dissolved), as well as volume fractions and
pressure at cell centers. Where necessary, we use a second subscript j to denote the spatial location
where an approximation takes place, while a superscript k denotes the temporal location.

Ck
i, j ≈ ci(xj, tk), i = Na, Ca, Cl. (A4)

Bk
i, j ≈ bi(xj, tk), i = Na, Ca, C2. (A5)

Θk
i, j ≈ θi(xj, tk), i = s, n. (A6)

Pk
j ≈ p(xj, tk). (A7)

Because concentrations are defined at cell centers, particle fractions are as well.

φ̂k
i, j ≈ φj(xj, tk), i = Na, Ca, Cl. (A8)

Conversely, we approximate velocities, potential gradients, and the electric potential gradient at
cell edges.

Uk
i, j ≈ ~ui(xj, tk), i = s, n. (A9)

For brevity, we introduce the quantity Vi to represent the potential gradient associated with species i,
and Φ to represent the electric potential gradient.

Vk
i, j ≈ ∇µi(xj, tk), (A10)

Φk
j ≈ ∇Ψ(xj, tk). (A11)

The overall time integration scheme can broadly be described in the following steps carried out at
each timestep:

1. Given ionic concentrations (Ck
i, j and Bk

i, j), electric potential gradient (Φk
j ), and both volume

fractions (Θk
i, j), evaluate the potential gradients which act on the solvent and network phase (Vk

i, j).

2. Given the potential gradients on each phase (Vk
i, j), solve the momentum equations to determine

the network and solvent velocities (Uk
i, j).

3. Given their respective velocity fields, update the solvent and network volume fraction (Θk+1
i, j ).
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4. Given the two transport velocities and volume fractions (Uk
i, j and Θk+1

i, j ), evolve the
ionic concentrations while simultaneously solving for a new electric potential gradient
(Ck+1

i, j , Bk+1
i, j and Φk+1

j ).

Appendix A.1.1. Momentum Solve

To solve the momentum equations for the two velocity fields, we use the ε-regularization
described in [25]. This method is designed to avoid complications where the linear operators in
Equations (4) and (5) become ill defined in regions where θn ≈ 0. Simply put, we define “regularized”
volume fractions which avoids such an issue

Θ̂k
n j =

Θk
n, j + ε if min

j=1...J
Θk

n, j < ε

Θk
n, j otherwise

. (A12)

Θ̂k
s j = 1− Θ̂k

n j. (A13)

We then use these volume fractions in discrete versions of the momentum and volume-averaged
incompressibility constraint to avoid any poorly scaled linear operators. These “regularized” volume
fractions are not used later when we update the actual volume fractions, but are simply used to create
a regularization of the elliptic operators that define the velocity fields. Using standard second order
finite difference schemes and moving all potentials (aside from pressure) to the right hand side, we can
write Equations (4) and (5) as a set of linear equations to solve for the unknown velocities. The discrete
version of Equation (4) at cell edges takes the form

νn
∆x2

(
Θ̂k

n, j+1/2Uk
n, j+1 −

(
Θ̂k

n, j+1/2 + Θ̂k
n, j−1/2

)
Uk

n, j + Θ̂k
n, j−1/2Uk

n, j−1

)

−ξ

(
Θ̂k

n, j+1/2+Θ̂k
n, j−1/2

)
2

(
Θ̂k

s, j+1/2+Θ̂k
s, j−1/2

)
2

(
Uk

n, j −Uk
s, j

)
−
(

Θ̂k
n, j+1/2+Θ̂k

n, j−1/2

)
2∆x

(
Pk

j+1/2 − Pk
j−1/2

)
=

(
Θ̂k

n, j+1/2+Θ̂k
n, j−1/2

)
2 Vk

n, j.

(A14)

At cell edges which are adjacent to the domain boundary (j = 3/2 and j = J − 1/2), these equations
contain terms which are not represented on our numerical grid. However, the closed domain and
corresponding no-flux conditions on solvent and network imply that Uk

n, 1/2 = Uk
n, J+1/2 = 0. Similarly,

Uk
s, 1/2 = Uk

s, J+1/2 = 0. For j = 3/2 . . . J − 1/2,

νs
∆x2

(
Θ̂k

s, j+1/2Uk
s, j+1 −

(
Θ̂k

s, j+1/2 + Θ̂k
s, j−1/2

)
Uk

s, j + Θ̂k
s, j−1/2Uk

s, j−1

)

−ξ

(
Θ̂k

n, j+1/2+Θ̂k
n, j−1/2

)
2

(
Θ̂k

s, j+1/2+Θ̂k
s, j−1/2

)
2

(
Uk

s, j −Uk
n, j

)
−
(

Θ̂k
s, j+1/2+Θ̂k

s, j−1/2

)
2∆x

(
Pk

j+1/2 − Pk
j−1/2

)
=

(
Θ̂k

s, j+1/2+Θ̂k
s, j−1/2

)
2 Vk

s, j +

(
Θ̂k

s, j+1/2+Θ̂k
s, j−1/2

)
2 ∑

i=Na,Ca,Cl.

(
φ̂k

i, j+1/2+φ̂k
i, j−1/2

)
2 Vk

i, j.

(A15)

Again, we stipulate that Uk
s, 1/2 = Uk

s, J+1/2 = 0. The discrete form of the incompressibility constraint is
enforced “at” the cell centers. Therefore, for j = 1 . . . J, we have

1
∆x

( (
Θ̂k

s, j+1+Θ̂k
s, j

)
2 Uk

s, j+1/2 +

(
Θ̂k

n, j+1+Θ̂k
n, j

)
2 Uk

n, j+1/2

−
(

Θ̂k
s, j+Θ̂k

s, j−1

)
2 Uk

s, j−1/2 −
(

Θ̂k
n, j+Θ̂k

n, j−2

)
2 Uk

n, j−1/2

)
= 0.

(A16)
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Equations (A14) to (A16) are a set of 3J − 2 linear equations for the unknowns Uk
s, j, Uk

n, j

(for j = 3/2 . . . J − 1/2) and Pk
j (for j = 1 . . . J). Solving these equations allows us to determine

the velocity fields and pressure at the k-th time step.

Appendix A.1.2. Volume Fraction Advection

Once the velocities and pressure field have been determined, we use the advection equations
(Equations (1) and (2)) to update each volume fraction. To do this, we use a modification of a standard
high-order advection scheme. Given solvent volume fractions at the cell centers (Θk

s, j, j = 1 . . . J) and

velocities at cell edges (Uk
s, j, j = 3/2 . . . J − 1/2), we define fluxes at the cell edges using a van Leer

limited high order method [26] (Fk
s, j, j = 3/2 . . . J − 1/2). We then update the volume fraction via the

following relation:

Θk+1
s, j = Θk

s, j +
∆t
∆x

(
Fk

s, j−1/2 − Fk
s, j+1/2

)
, j = 1 . . . J. (A17)

To enforce the no-flux boundary conditions consistent with a closed domain, we assume that Fk
s, 1/2 =

Fk
s, J+1/2 = 0. Finally, we update the volume fraction of network via

Θk+1
n, j = 1−Θk+1

s, j . (A18)

At this point, the concentration of dissolved ions must be numerically corrected. To illustrate,
consider the concentration of chloride in the domain. The evolution equation (Equation (9)) (and the
derivation of our model in [12]) conserve the total amount of chloride in the domain∫ L

0
θscCl dx = const. (A19)

Therefore, our numerical scheme must be conservative as well, preserving the numerical integral

∑
j=1...J

Θk
s, jC

k
Cl, j∆x = const. (A20)

This is particularly important in problems of electrodiffusion, as a non-conservative numerical
scheme may lead to a local imbalance of charge within the domain, which will result in extremely
large electric potential gradients that may prove numerically untenable. However, even though
Equation (A17) is a conservative scheme for the quantity Θs, the update may have altered the
discrete integral in Equation (A20). To correct this, we first calculate the flux quantities F̃k

i, j (at cell

edges) for each ion i by using the same van Leer limited high order method on the quantity Θk
s, jC

k
i, j

(again, using solvent velocities). We then define the corrected concentration

C∗i ,j =
Ck

i, jΘ
k
s, j +

∆t
∆x

(
F̃k

i, j−1/2 − F̃k
i, j+1/2

)
Θk+1

s, j

, j = 1 . . . J. (A21)

This corrected concentration ensures the discrete conservation of each ionic species

∑
j=1...J

Θk
s, jC

k
i, j∆x = ∑

j=1...J
Θk+1

s, j C∗i, j∆x. (A22)

At this point, having corrected any ionic imbalances that the volume fraction advection step may have
created, we are able to take a time step of the electrodiffusive equations.
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Appendix A.1.3. Ion Update

To time-step the evolution equations for ionic species, we use a methodology similar to that
employed in [27]. The goal is to use an implicit–explicit (IMEX) time integration technique on all
ionic species simultaneously, to avoid any further time-splitting errors. Unfortunately, the electric
flux term and several reaction terms involve non-linear products of ionic concentrations and/or the
electric potential gradient. Therefore, we treat these terms semi-implicitly in time. To do so requires
extrapolating “forward” in time. We use first order extrapolation whenever possible, and zeroth order
whenever we must (i.e., at the very first time step). Doing so allows us to define the quantities

C̃k+1
i, j =

2C∗i, j − Ck−1
i, j , n ≥ 1

C∗i, j, n = 0
, i = Na, Ca, Cl, (A23)

as well as

B̃k+1
i, j =

2Bk
i, j − Bk−1

i, j , n ≥ 1

B∗i, j, n = 0
, i = Na, Ca, C2, (A24)

We then define Fk+1
i, j as the fluxes of C∗i, j due to solvent velocity (using the same van Leer limited

method) and Gk+1
i, j as the fluxes of Bk

i, j due to network velocity.
We are now able to discretize Equations (7) to (9) for the evolution of each of the three dissolved

ionic species. At cell centers which are not adjacent to the boundary (j = 2, 3, . . . J − 1), we have

Ck+1
Na, j−Ck

Na, j
∆t + 1

∆x

(
Fk

Na, j+1/2 − Fk
Na, j−1/2

)
=

DNa
Θk+1

s, j ∆x2

[(
Θk+1

s, j+1+Θk+1
s, j

2

)
Ck+1

Na, j+1 −
(

Θk+1
s, j+1+2Θk+1

s, j +Θk+1
s, j−1

2

)
Ck+1

Na, j +

(
Θk+1

s, j +Θk+1
s, j−1

2

)
Ck+1

Na, j−1

]

+DNazNa
Θk

s, j∆x

[(
Θk+1

s, j+1+Θk+1
s, j

2

)(
C̃k+1

Na, j+1+C̃k+1
Na, j

2

)
Φk+1

j+1/2 −
(

Θk+1
s, j +Θk+1

s, j−1
2

)(
C̃k+1

Na, j+C̃k+1
Na, j−1

2

)
Φk+1

j−1/2

]
−kon

NaΘk+1
n, j

(
z̃Θk+1

n, j − Bk+1
Na, j − Bk+1

Ca, j − 2Bk+1
C2, j

)
C̃k+1

Na, j + koff
Na(Θ

k+1
s, j )2Bk+1

Na, j.

(A25)

At the first cell center (j = 1), the no flux boundary condition yields

Ck+1
Na, 1−Ck

Na, 1
∆t + 1

∆x

(
Fk

Na, 3/2

)
= DNa

Θk+1
s, 1 ∆x2

[(
Θk+1

s, 2 +Θk+1
s, 1

2

)
Ck+1

Na, 2 −
(

Θk+1
s, 2 +Θk+1

s, j
2

)
Ck+1

Na, 1

]

+DNazNa
Θk

s, 1∆x

[(
Θk+1

s, 2 +Θk+1
s, 1

2

)(
C̃k+1

Na, 2+C̃k+1
Na, 1

2

)
Φk+1

3/2

]
−kon

NaΘk+1
n, 1

(
z̃Θk+1

n, 1 − Bk+1
Na, 1 − Bk+1

Ca, 1 − 2Bk+1
C2, 1

)
C̃k+1

Na, 1 + koff
Na(Θ

k+1
s, 1 )2Bk+1

Na, 1.

(A26)
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At the last cell center (j = J), the no flux boundary condition yields

Ck+1
Na, J−Ck

Na, J
∆t + 1

∆x

(
−Fk

Na, J−1/2

)
=

DNa
Θk+1

s, J ∆x2

[
−
(

Θk+1
s, J +Θk+1

s, J−1
2

)
Ck+1

Na, J +

(
Θk+1

s, J +Θk+1
s, J−1

2

)
Ck+1

Na, J−1

]

+DNazNa
Θk

s, J ∆x

[
−
(

Θk+1
s, J +Θk+1

s, J−1
2

)(
C̃k+1

Na, J+C̃k+1
Na, J−1

2

)
Φk+1

J−1/2

]
−kon

NaΘk+1
n, J

(
z̃Θk+1

n, J − Bk+1
Na, J − Bk+1

Ca, J − 2Bk+1
C2, J

)
C̃k+1

Na, J + koff
Na(Θ

k+1
s, J )2Bk+1

Na, J .

(A27)

Similarly, the equations for the dissolved calcium are (for j = 2 . . . J − 1)

Ck+1
Ca, j−Ck

Ca, j
∆t + 1

∆x

(
Fk

Ca, j+1/2 − Fk
Ca, j−1/2

)
=

DCa
Θk+1

s, j ∆x2

[(
Θk+1

s, j+1+Θk+1
s, j

2

)
Ck+1

Ca, j+1 −
(

Θk+1
s, j+1+2Θk+1

s, j +Θk+1
s, j−1

2

)
Ck+1

Ca, j +

(
Θk+1

s, j +Θk+1
s, j−1

2

)
Ck+1

Ca, j−1

]

+DCazCa
Θk

s, j∆x

[(
Θk+1

s, j+1+Θk+1
s, j

2

)(
C̃k+1

Ca, j+1+C̃k+1
Ca, j

2

)
Φk+1

j+1/2 −
(

Θk+1
s, j +Θk+1

s, j−1
2

)(
C̃k+1

Ca, j+C̃k+1
Ca, j−1

2

)
Φk+1

j−1/2

]
−kon

CaΘk+1
n, j

(
z̃Θk+1

n, j − Bk+1
Na, j − Bk+1

Ca, j − 2Bk+1
C2, j

)
C̃k+1

Ca, j + koff
Ca(Θ

k+1
s, j )2Bk+1

Ca, j.

(A28)

At the first cell center (j = 1), the no flux boundary condition yields

Ck+1
Ca, 1−Ck

Ca, 1
∆t + 1

∆x

(
Fk

Ca, 3/2

)
= DCa

Θk+1
s, 1 ∆x2

[(
Θk+1

s, 2 +Θk+1
s, 1

2

)
Ck+1

Ca, 2 −
(

Θk+1
s, 2 +Θk+1

s, j
2

)
Ck+1

Ca, 1

]

+DCazCa
Θk

s, 1∆x

[(
Θk+1

s, 2 +Θk+1
s, 1

2

)(
C̃k+1

Ca, 2+C̃k+1
Ca, 1

2

)
Φk+1

3/2

]
−kon

CaΘk+1
n, 1

(
z̃Θk+1

n, 1 − Bk+1
Na, 1 − Bk+1

Ca, 1 − 2Bk+1
C2, 1

)
C̃k+1

Ca, 1 + koff
Ca(Θ

k+1
s, 1 )2Bk+1

Ca, 1.

(A29)

At the last cell center (j = J), the no flux boundary condition yields

Ck+1
Ca, J−Ck

Ca, J
∆t + 1

∆x

(
−Fk

Ca, J−1/2

)
=

DCa
Θk+1

s, J ∆x2

[
−
(

Θk+1
s, J +Θk+1

s, J−1
2

)
Ck+1

Ca, J +

(
Θk+1

s, J +Θk+1
s, J−1

2

)
Ck+1

Ca, J−1

]
+DCazCa

Θk
s, J ∆x

[
−
(

Θk+1
s, J +Θk+1

s, J−1
2

)(
C̃k+1

Ca, J+C̃k+1
Ca, J−1

2

)
Φk+1

J−1/2

]
−kon

CaΘk+1
n, J

(
z̃Θk+1

n, J − Bk+1
Na, J − Bk+1

Ca, J − 2Bk+1
C2, J

)
C̃k+1

Ca, J + koff
Ca(Θ

k+1
s, J )2Bk+1

Ca, J .

(A30)
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Because chloride is not allowed to bind to the network, the equations are relatively simple, as
there are no reaction terms.

Ck+1
Cl, j−Ck

Cl, j
∆t + 1

∆x

(
Fk

Cl, j+1/2 − Fk
Cl, j−1/2

)
=

DCl
Θk+1

s, j ∆x2

[(
Θk+1

s, j+1+Θk+1
s, j

2

)
Ck+1

Cl, j+1 −
(

Θk+1
s, j+1+2Θk+1

s, j +Θk+1
s, j−1

2

)
Ck+1

Cl, j +

(
Θk+1

s, j +Θk+1
s, j−1

2

)
Ck+1

Cl, j−1

]

+ DClzCl
Θk

s, j∆x

[(
Θk+1

s, j+1+Θk+1
s, j

2

)(
C̃k+1

Cl, j+1+C̃k+1
Cl, j

2

)
Φk+1

j+1/2 −
(

Θk+1
s, j +Θk+1

s, j−1
2

)(
C̃k+1

Cl, j+C̃k+1
Cl, j−1

2

)
Φk+1

j−1/2

]
.

(A31)

At the first cell center (j = 1), the no flux boundary condition yields

Ck+1
Cl, 1−Ck

Cl, 1
∆t + 1

∆x

(
Fk

Cl, 3/2

)
= DCl

Θk+1
s, 1 ∆x2

[(
Θk+1

s, 2 +Θk+1
s, 1

2

)
Ck+1

Cl, 2 −
(

Θk+1
s, 2 +Θk+1

s, j
2

)
Ck+1

Cl, 1

]
+ DClzCl

Θk
s, 1∆x

[(
Θk+1

s, 2 +Θk+1
s, 1

2

)(
C̃k+1

Cl, 2+C̃k+1
Cl, 1

2

)
Φk+1

3/2

]
.

(A32)

At the last cell center (j = J), the no flux boundary condition yields

Ck+1
Cl, J−Ck

Cl, J
∆t + 1

∆x

(
−Fk

Cl, J−1/2

)
=

DCl
Θk+1

s, J ∆x2

[
−
(

Θk+1
s, J +Θk+1

s, J−1
2

)
Ck+1

Cl, J +

(
Θk+1

s, J +Θk+1
s, J−1

2

)
Ck+1

Cl, J−1

]
+ DClzCl

Θk
s, J ∆x

[
−
(

Θk+1
s, J +Θk+1

s, J−1
2

)(
C̃k+1

Cl, J+C̃k+1
Cl, J−1

2

)
Φk+1

J−1/2

]
.

(A33)

Because the equations which govern bound ionic species are not diffusive, they are quite a bit
simpler. For sodium, we have (j = 1 . . . J)

Bk+1
Na, j−Bk

Na, j
∆t + 1

∆x

(
Gk

Na, j+1/2 − Gk
Na, j−1/2

)
=

+kon
NaΘk+1

n, j

(
z̃Θk+1

n, j − Bk+1
Na, j − Bk+1

Ca, j − 2Bk+1
C2, j

)
C̃k+1

Na, j − koff
Na(Θ

k+1
s, j )2Bk+1

Na, j.
(A34)

The equations for singly- and doubly-bound calcium, respectively, are

Bk+1
Ca, j−Bk

Ca, j
∆t + 1

∆x

(
Gk

Ca, j+1/2 − Gk
Ca, j−1/2

)
=

+kon
CaΘk+1

n, j

(
z̃Θk+1

n, j − Bk+1
Na, j − Bk+1

Ca, j − 2Bk+1
C2, j

)
C̃k+1

Ca, j − koff
Ca(Θ

k+1
s, j )2Bk+1

Ca, j

− 1
2 kon

Ca

(
z̃Θk+1

n, j − Bk+1
Na, j − Bk+1

Ca, j − 2Bk+1
C2, j

)
B̃k+1

Ca, j + 2koff
CaBk+1

C2, j,

(A35)

Bk+1
C2, j−Bk

C2, j
∆t + 1

∆x

(
Gk

C2, j+1/2 − Gk
C2, j−1/2

)
=

− 1
2 kon

Ca

(
z̃Θk+1

n, j − Bk+1
Na, j − Bk+1

Ca, j − 2Bk+1
C2, j

)
B̃k+1

Na, j + 2koff
CaBk+1

C2, j.
(A36)

The convention that Gk+1
i, 1/2 = Gk+1

i, J+1/2 = 0 accounts for the no flux boundary conditions (as all fluxes
are advective).

Finally, we have a set of discrete equations which enforce the electroneutrality constraint at cell
centers (j = 1, 2, . . . J − 1).

zNaΘk+1
s, j Ck+1

Na, j + zcaΘk+1
s, j Ck+1

Ca, j + zClΘ
k+1
s, j Ck+1

Cl, j + Bk+1
Na, j + 2Bk+1

Ca, j + 2Bk+1
C2, j = −z̃Θk+1

n j . (A37)
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Equations (A25) to (A37) constitute 7J− 1 linear equations for the 7J− 1 unknown electrodiffusive
quantities (J each for the Ck+1

i, j s and Bk+1
i, j s, and J − 1 for the Φk+1

j s). Therefore, solving these equations
simultaneously evolves the electrodiffusive model one time step.

Notice that we do not enforce electroneutrality at the right most cell center (j = J). This is because
the quantities Φk+1

j may be regarded as Lagrange multipliers on Equations (A25) to (A36) which serve
to enforce the constraint in Equation (A37). As we only have J − 1 Lagrange multipliers, we are only
able to enforce electroneutrality at J − 1 cells. However, as our numerical scheme is conservative,
the total amount of each ion within the domain is conserved. Therefore, enforcing electroneutrality at
all but one cell is guaranteed to enforce electroneutrality at the remaining cell.

References

1. Allen, A.; Flemström, G. Gastroduodenal Mucus Bicarbonate Barrier: Protection Against Acid and Pepsin.
Am. J. Physiol. Cell Physiol. 2005, 288, C1–C19. [CrossRef] [PubMed]

2. Perez-Vilar, J. Mucin granule intraluminal organization. Am. J. Respir. Cell Mol. Biol. 2007, 36, 183–190.
[CrossRef] [PubMed]

3. Verdugo, P. Polymer Biophysics of Mucus in Cystic Fibrosis. In Cilia, Mucus, and Mucociliary Interactions;
Marcel Dekker: New York, NY, USA, 1998; pp. 167–190.

4. Espinosa, M.; Noé, G.; Troncoso, C.; Ho, S.B.; Villalón, M. Acidic pH and Increasing [Ca(2+)] Reduce
the Swelling of Mucins in Primary Cultures of Human Cervical Cells. Hum. Reprod. 2002, 17, 1964–1972.
[CrossRef] [PubMed]

5. Verdugo, P.; Deyrup-Olsen, I.; Martin, A.W.; Luchtel, D.L. Polymer Gel Phase Transition: The Molecular
Mechanism of Product Release in Mucin Secretion? In Mechanics of Swelling; Springer: Berlin/Heidelberg,
Germany, 1992; pp. 671–681.

6. Cohen, J.; Macromolecules, Z.P. Viscosity of dilute polyelectrolyte solutions: Concentration dependence on
sodium chloride, magnesium sulfate and lanthanum nitrate. Macromolecules 1989, 5, 2356–2358. [CrossRef]

7. Horkay, F.; Basser, P.J.; Hecht, A.-M.; Geissler, E. Chondroitin Sulfate in Solution: Effects of Mono- and
Divalent Salts. Macromolecules 2012, 45, 2882–2890. [CrossRef] [PubMed]

8. Horkay, F.; Basser, P.J.; Londono, D.J.; Hecht, A.-M.; Geissler, E. Ions in hyaluronic acid solutions.
J. Chem. Phys. 2009, 131, 184902. [CrossRef] [PubMed]

9. Yin, D.-W.; Horkay, F.; Douglas, J.F.; de Pablo, J.J. Molecular simulation of the swelling of polyelectrolyte
gels by monovalent and divalent counterions. J. Chem. Phys. 2008, 129, 154902. [CrossRef] [PubMed]

10. Zhang, Y.; Douglas, J.F.; Ermi, B.D.; Amis, E.J. Influence of counterion valency on the scattering properties of
highly charged polyelectrolyte solutions. J. Chem. Phys. 2001, 114, 3299–3313. [CrossRef]

11. Quesada-Pérez, M.; Maroto-Centeno, J.A.; Forcada, J.; Hidalgo-Alvarez, R. Gel swelling theories:
The classical formalism and recent approaches. Soft Matter 2011, 7, 10536–10547. [CrossRef]

12. Sircar, S.; Keener, J.P.; Fogelson, A.L. The Effect of Divalent vs. Monovalent Ions on the Swelling of Mucin-Like
Polyelectrolyte Gels: Governing Equations and Equilibrium Analysis. J. Chem. Phys. 2013, 138, 014901.
[CrossRef] [PubMed]

13. Sircar, S.; Roberts, A. Ion mediated crosslink driven mucous swelling kinetics. Discret. Contin. Dyn. Syst. Ser.
B 2016, 21, 1937–1951. [CrossRef]

14. Alt, W.; Dembo, M. Cytoplasm dynamics and cell motion: Two-phase flow models. Math. Biosci. 1999, 156,
207–228. [CrossRef]

15. Cogan, N.G.; Keener, J.P. The Role of the Biofilm Matrix in Structural Development. Math. Med. Biol. J. IMA
2004, 21, 147–166. [CrossRef]

16. Dembo, M. Mechanics and Control of the Cytoskeleton in Amoeba proteus. Biophys. J. 1989, 55, 1053–1080.
[CrossRef]

17. Du, J.; Fogelson, A.L. A Two-phase mixture model of platelet aggregation. Math. Med. Biol. J. IMA 2017,
35, 225–256. [CrossRef] [PubMed]

18. Raynal, B.D.E.; Hardingham, T.E.; Sheehan, J.K.; Thornton, D.J. Calcium-dependent protein interactions in
MUC5B provide reversible cross-links in salivary mucus. J. Biol. Chem. 2003, 278, 28703–28710. [CrossRef]
[PubMed]

http://dx.doi.org/10.1152/ajpcell.00102.2004
http://www.ncbi.nlm.nih.gov/pubmed/15591243
http://dx.doi.org/10.1165/rcmb.2006-0291TR
http://www.ncbi.nlm.nih.gov/pubmed/16960124
http://dx.doi.org/10.1093/humrep/17.8.1964
http://www.ncbi.nlm.nih.gov/pubmed/12151422
http://dx.doi.org/10.1021/ma00195a060
http://dx.doi.org/10.1021/ma202693s
http://www.ncbi.nlm.nih.gov/pubmed/23814316
http://dx.doi.org/10.1063/1.3262308
http://www.ncbi.nlm.nih.gov/pubmed/19916626
http://dx.doi.org/10.1063/1.2991179
http://www.ncbi.nlm.nih.gov/pubmed/19045224
http://dx.doi.org/10.1063/1.1336148
http://dx.doi.org/10.1039/c1sm06031g
http://dx.doi.org/10.1063/1.4772405
http://www.ncbi.nlm.nih.gov/pubmed/23298059
http://dx.doi.org/10.3934/dcdsb.2016030
http://dx.doi.org/10.1016/S0025-5564(98)10067-6
http://dx.doi.org/10.1093/imammb/21.2.147
http://dx.doi.org/10.1016/S0006-3495(89)82904-2
http://dx.doi.org/10.1093/imammb/dqx001
http://www.ncbi.nlm.nih.gov/pubmed/28339733
http://dx.doi.org/10.1074/jbc.M304632200
http://www.ncbi.nlm.nih.gov/pubmed/12756239


Gels 2018, 4, 76 20 of 20

19. Schreiber, S.S.; Scheid, P.P. Gastric Mucus of the Guinea Pig: Proton Carrier and Diffusion Barrier.
Am. J. Physiol. 1997, 272 Pt 1, G63–G70. [CrossRef]

20. Crowther, R.S.; Marriott, C. Counter-ion binding to mucus glycoproteins. J. Pharm. Pharmacol. 1983, 36, 21–26.
[CrossRef]

21. Celli, J.; Gregor, B.; Turner, B.; Afdhal, N.H.; Bansil, R.; Erramilli, S. Viscoelastic Properties and Dynamics of
Porcine Gastric Mucin. Biomacromolecules 2005, 6, 1329–1333. [CrossRef] [PubMed]

22. Celli, J.P.; Turner, B.S.; Afdhal, N.H.; Ewoldt, R.H.; McKinley, G.H.; Bansil, R.; Erramilli, S. Rheology of
Gastric Mucin Exhibits a pH-Dependent Sol-Gel Transition. Biomacromolecules 2007, 8, 1580–1586. [CrossRef]
[PubMed]

23. Lai, S.K.; Wang, Y.-Y.; Wirtz, D.; Hanes, J. Micro- and Macrorheology of Mucus. Adv. Drug Deliv. Rev. 2009,
61, 86–100. [CrossRef] [PubMed]

24. Yuan, S.; Hollinger, M.; Lachowicz-Scroggins, M.E.; Kerr, S.C.; Dunican, E.M.; Daniel, B.M.; Ghosh, S.;
Erzurum, S.C.; Willard, B.; Hazen, S.L.; et al. Oxidation increases mucin polymer cross-links to stiffen airway
mucus gels. Sci. Trans. Med. 2015, 7, 276ra27. [CrossRef] [PubMed]

25. Du, J.; Guy, R.D.; Fogelson, A.L.; Wright, G.B.; Keener, J.P. An Interface-Capturing Regularization Method
for Solving the Equations for Two-Fluid Mixtures. Commun. Comput. Phys. 2013, 14, 1322–1346. [CrossRef]

26. Leveque, R.J. Finite Volume Methods for Hyperbolic Problems; Cambridge University Press: Cambridge,
UK, 2002.

27. Lewis, O.L.; Keener, J.P.; Fogelson, A.L. A physics-based model for maintenance of the pH gradient in the
gastric mucus layer. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G599–G612. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/ajpgi.1997.272.1.G63
http://dx.doi.org/10.1111/j.2042-7158.1984.tb02980.x
http://dx.doi.org/10.1021/bm0493990
http://www.ncbi.nlm.nih.gov/pubmed/15877349
http://dx.doi.org/10.1021/bm0609691
http://www.ncbi.nlm.nih.gov/pubmed/17402780
http://dx.doi.org/10.1016/j.addr.2008.09.012
http://www.ncbi.nlm.nih.gov/pubmed/19166889
http://dx.doi.org/10.1126/scitranslmed.3010525
http://www.ncbi.nlm.nih.gov/pubmed/25717100
http://dx.doi.org/10.4208/cicp.180512.210313a
http://dx.doi.org/10.1152/ajpgi.00221.2017
http://www.ncbi.nlm.nih.gov/pubmed/28882824
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Model
	Gel Evolution
	Dissolved Ion Evolution
	Bound Ion Evolution
	Driving Potentials

	Results
	Numerical Experiments and Initial Conditions
	Gel Swelling Experiments
	Front Propagation

	Discussion
	
	Numerical Scheme
	Momentum Solve
	Volume Fraction Advection
	Ion Update


	References

