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ABSTRACT The complete genome sequences of three Xanthomonas citri strains iso-
lated from lime trees in Texas were found to belong to the Aw group. All carried
nearly identical large plasmids with similarity to those of a citrus canker strain from
India and to xanthomonads from Africa and Colombia. All three strains harbored un-
usual pthA homologs.

Xanthomonas citri subsp. citri and Xanthomonas fuscans subsp. aurantifolii cause
identical canker disease symptoms on citrus hosts (1). All pathogenic strains of both

species inject a common type III effector (TTE), PthA, into host cells (2). Strains of X. citri
subsp. citri are subdivided into pathotypes A, A*, and Aw (3). The AW pathotype is
characterized by virulence on lime, determined by the TTEs XopF1 and AvrGF1 (4).

Citrus canker disease was eradicated from Texas in the 1940s. Three Xanthomonas
strains (160042, 160149, and 160197) were recently isolated from lime trees exhibiting
citrus canker symptoms in Texas. PacBio sequencing was used to obtain the complete
genomes of these strains, which were 5,330,822 bp, 5,341,733 bp, and 5,337,252 bp in
size with 419�, 393�, and 144 � coverage, respectively. Assemblies were performed
using SMRT Portal version 2.3 (Pacific Biosciences, Menlo Park, CA), and annotations
were generated using PROKKA (5).

The three genomes revealed average nucleotide identity (ANI) values (6, 7) of �99%
compared to X. citri subsp. citri strains 306A and AW. Mauve analyses (8) revealed that
the highest genome similarities were to AW. The TTE repertoire and lipopolysaccharide
(LPS) genes of the Texan strains were identical to those described in X. citri subsp. citri
pathotype AW, including TTEs avrGF1 and xopF1 (4).

Strains 160042 and 160197 had 2 plasmids each, and strain 160149 had 3 plasmids.
One of the plasmids in all three strains was large (�123,557 bp) and nearly identical in
sequence (�99% ANI) in all three strains. BLASTN (9) revealed high levels of extensive
identity with contigs from multiple partial genomes of strains identified as both X. citri
subsp. citri and as Xanthomonas axonopodis pv. manihotis. X. axonopodis pv. manihotis
is not a pathogen of citrus but causes bacterial blight of cassava. The X. citri subsp. citri
strain 160042 large plasmid revealed 99% identity with contigs from both X. citri subsp.
citri strain NCPPB 3562, isolated in India from lemon, and X. axonopodis pv. manihotis
strain UG21, isolated from cassava in Uganda (10), with 85% and 82% query coverage,
respectively. Of note, the plasmids contained a region of ca. 39 kb identified by
T346Hunter (11) as similar to type 4 conjugational transfer genes, indicating the
potential for horizontal transfer. No genes encoding potential effectors were identified
on any of these plasmids. Three primer sets found useful for identifying this plasmid
were GAGGACGGGAGGTATGTCCT and AACTCGATGTTGGCTCCCAG, CGGCTACCTCGAA
GGATTGG and TTGGTGATTCGTCCTGCTCC, and ACGGAGGTCGGTAAGGAAGT and CTC
GGCACACCGTAGATGAA.

All previously described strains of either X. citri subsp. citri or X. fuscans subsp.
aurantifolii that cause citrus canker encode PthA, a TTE protein with 17.5 tandem, nearly
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identical, 34-amino-acid (aa) direct repeats (12). Unusually, none of the homologs found
in the Texan strains carried 17.5 repeats, but instead, each strain carried one 18.5 repeat
version and either a 19.5 or a 14.5 tandem repeat version. Based on the transcription
activator-like (TAL)-TTE effector code (13), the 18.5 repeat variants were all predicted to
bind genomic target(s) nearly identical to those of the other known functional PthA
orthologs, suggesting that these variants represent functional copies of PthA. Also
unusually, 160042 and 160197 encoded the predicted functional orthologs on their
chromosomes.

Accession number(s). These genomes have been deposited in GenBank under

accession numbers CP020882 to CP020884 for 160042, CP020885 to CP020888 for
160149, and CP020889 to CP020891 for 160197.
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