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Simple Summary: Estrogen receptors α (ERα) and β (ERβ) show distinct contributions to tumor
initiation and progression. Given that ERβ mainly functions as a “tumor suppressor”, activation
of ERβ using its specific agonist should be able to inhibit tumor progression. In this study, we
show that a newly developed ERβ agonist, OSU-ERb-12, can not only impede ovarian cancer cell
expansion and tumor growth but also reduce the cancer stem cell (CSC) population. OSU-ERb-12
could inhibit epithelial-to-mesenchymal transition (EMT) in ovarian cancer cells by increasing Snail
expression, thereby, blocking EMT-mediated cancer cell dedifferentiation. We also found that OSU-
ERb-12 inhibits ovarian cancer expansion in an ERα-independent manner while limiting the CSC
population in an ERα-dependent manner. Taken together, our data suggest that the newly developed
ERβ agonist OSU-ERb-12 can be used not only to hinder tumor growth but also has the potential to
prevent tumor relapse and metastasis by depleting CSCs.

Abstract: Epithelial ovarian cancer is the most lethal malignancy of the female reproductive tract. A
healthy ovary expresses both Estrogen Receptor α (ERα) and β (ERβ). Given that ERα is generally
considered to promote cell survival and proliferation, thereby, enhancing tumor growth, while ERβ
shows a protective effect against the development and progression of tumors, the activation of ERβ
by its agonists could be therapeutically beneficial for ovarian cancer. Here, we demonstrate that the
activation of ERβ using a newly developed ERβ agonist, OSU-ERb-12, can impede ovarian cancer
cell expansion and tumor growth in an ERα-independent manner. More interestingly, we found that
OSU-ERb-12 also reduces the cancer stem cell (CSC) population in ovarian cancer by compromising
non-CSC-to-CSC conversion. Mechanistically, we revealed that OSU-ERb-12 decreased the expression
of Snail, a master regulator of the epithelial-to-mesenchymal transition (EMT), which is associated
with de novo CSC generation. Given that ERα can mediate EMT and facilitate maintenance of the CSC
subpopulation and that OSU-ERb-12 can block the transactivity of ERα, we conclude that OSU-ERb-
12 reduces the CSC subpopulation by inhibiting EMT in an ERα-dependent manner. Taken together,
our data indicate that the ERβ agonist OSU-ERb-12 could be used to hinder tumor progression and
limit the CSC subpopulation with the potential to prevent tumor relapse and metastasis in patients
with ovarian cancer.
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1. Introduction

Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproduc-
tive tract with a low five-year survival rate of only 28% in advanced stages [1]. Serous
ovarian carcinomas comprise ~70% of all EOCs [2]. The most aggressive subtype, high-
grade serous ovarian cancer (HGSOC), accounts for 90% of these serous carcinomas and
the majority of ovarian cancer deaths [3].

Most tumors are initially responsive to conventional chemotherapy, and the patients
enter into clinical remission after initial treatment. However, tumor metastasis and recur-
rence occur in more than 70% of EOC patients despite treatment, ultimately leading to
death from EOC [4]. Therefore, identifying efficient ways to halt ovarian cancer progression
is particularly important to improving progression-free survival and decreasing mortality
in ovarian cancer patients.

Ovarian tissues express both Estrogen receptor α (ERα) and β (ERβ) [5]. While the
expression of ERα remains fairly constant, the expression of ERβ gradually decreases as the
cells undergo malignant transformation and further with the progression of cancer [6]. ERα
is thought to promote the expression of genes associated with cell survival and proliferation,
enhancing tumor growth and progression [7]. In contrast, the natural function of ERβ is
anti-inflammatory and pro-apoptotic [8–11].

ERβ was also found to repress the transactivity of ERα and block its cellular pro-
liferative action [12,13]. In addition, the ability of ERβ to reduce the development of
orthotopic ovarian xenograft further supports the role of ERβ as a ‘tumor suppressor’ in
EOC tumorigenesis [12]. Thus, the activation of ERβ by using its agonists should be able
to inhibit ovarian cancer progression.

Although numerous chemically diverse selective ERβ agonists have been described [14],
only a few eventually entered clinical trials; however, they did not show favorable out-
comes [15–18]. The para-carborane BE120 was shown to be an effective 17β-estradiol mimic
and exhibited high ERβ selective activity with sufficient druglike properties [19]. Based on
BE120, Sedlak and his colleagues synthesized a series of para-carbonate ERβ agonists and
demonstrated that OSU-ERb-12 (compound 8) has low nanomolar potency, greater selectivity
for ERβ over ERα, limited off-target activity against other nuclear receptors and favorable
pharmacological properties compared to other clinically developed ERβ agonists, such as
ERB-041 and LY500307 [20]. However, its effect on ovarian cancer is unknown.

Tumors contain phenotypically and functionally heterogeneous cancer cells. Among
them, a minority cell subpopulation, termed cancer stem cells (CSCs), which possess the
capacity for self-renewal and are able to generate the heterogeneous lineage of cancer cells,
has been believed to be responsible for the initiation and maintenance of tumors [21]. Apart
from their self-renewal and differentiation properties shared with stem cells, CSCs are
characterized by high tumorigenic potential and are also referred to as tumor-initiating
cells (TICs) [22].

Thus, the eradication of CSCs could be an effective way to improve the prognosis of
patients with cancer. The CSC population can be maintained in the tumor via a balanced
conversion between non-CSCs and CSCs. The disruption of this balance can induce CSC
depletion or expansion. The epithelial-to-mesenchymal transition (EMT) is a process
through which epithelial cells acquire the mesenchymal gene program to facilitate their
migration and invasion. The EMT program has been linked to the generation of CSCs
from non-CSCs [23]. Thus, EMT inhibition has the potential to limit the CSC population in
a tumor.

In the present study, we demonstrate that OSU-ERb-12 inhibits ovarian cancer cell
proliferation both in vitro and in vivo and reduces the CSC subpopulation via the inhibi-
tion of EMT in ovarian cancer cells. Given that CSCs are responsible for tumor relapse,
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treatment with OSU-ERb-12 should have the potential to improve the prognosis of ovarian
cancer patients.

2. Materials and Methods
2.1. Cell Culture and Reagents

The human ovarian cancer cell lines Kuramochi and OVCAR4 were kindly provided
by Dr. Adam Karpf from the University of Nebraska. OVCAR3 cells were purchased from
ATCC, PEO1 cells were kindly provided by Dr. Rugang Zhang from the Wistar Institute,
and OV2008 cells were provided by Dr. Francois X. Claret from the MD Anderson Cancer
Center. All cell lines were authenticated by DNA (short tandem repeat) profiling and tested
for Mycoplasma contamination routinely.

These cells were cultured in RPMI 1640 medium supplemented with 10% FBS, 100 µg/mL
Streptomycin and 100 units/mL Penicillin. Primary ovarian tumor cells were isolated from an
HGSOC Patient-Derived Xenograft (PDX-2414) provided by Dr. Jinsong Liu at the MD Ander-
son Cancer Center (Houston, TX, USA). The tumor was washed with RPMI-1640 medium
and then minced and digested with Collagenase in RPMI-1640 medium at 37 ◦C for 2 h. The
digested tissue was passed through a 70 µm cell strainer to obtain a single-cell suspension.
Excess RBC was removed by Histopaque-1077 centrifugation.

The live, nucleated cells collected were seeded in culture dishes and cultured in RPMI
1640 medium supplemented with 10% FBS, 100 µg/mL Streptomycin and 100 units/mL
Penicillin. The ERβ agonist OSU-ERb-12 was produced and provided by the Drug De-
velopment Institute (DDI) at Ohio State University. The ERα agonist, PPT [1,3,5-tris
(4-hydroxyphenyl)-4-propyl-1H-pyrazole] was purchased from Tocris (Bio-Techne, Min-
neapolis, MN, USA). Recombinant Transforming Growth Factor-β (TGFβ) was purchased
from Millipore Sigma (St. Louis, MO, USA).

2.2. Establishment of Organoid Culture from Freshly Removed Human Ovarian Tumor

A freshly removed HGSOC tumor (OV39) was obtained from the Department of
Pathology within 4 h after surgery in accordance with a protocol approved by the Ohio
State University’s IRB. The tumor was washed with DMEM-F12 media supplemented with
5% HEPES buffer and 5% Penicillin (100 units/mL) and Streptomycin (100 µg/mL), minced
and digested with Collagenase (2.5 mg/mL) in the same media at 37 ◦C for 20 min. The
digested tissue was passed through a 70 µm cell strainer to obtain a single-cell suspension.
Excess RBC was removed by Histopaque-1077 centrifugation. The live, nucleated cells
collected were washed with medium, counted and seeded in pre-warmed 24-well plates in
75% Matrigel.

The plates were then incubated at 37 ◦C for 15 min in an inverted position to pre-
vent the droplet suspension from adhering to the bottom of the plate. We added 450 µL
of Organoid specific media, containing advanced DMEM F12 supplemented with 1%
Penicillin-Streptomycin, 1% Glutamax, 1% HEPES, 1X B27, 10 mM Nicotinamide, 1.25 mM
N-acetyl cysteine, 50 ng/mL EGF, 500 nM A8301, 100 ng/mL Noggin, 100 ng/mL R-
spondin 1, 10 ng/mL FGF2, 10 ng/mL FGF10, 1 µM Prostaglandin E2 and 10 µM SB202190,
to each well, as described in the literature [24]. The media was changed every 3 days, and
the growth of the organoids was monitored.

2.3. Cell Sensitivity Assay

Ovarian cancer cells were seeded in 96-well plates at densities of 5 × 102 to 1 × 103

cells/well for 24 h, and then treated with different concentrations of ERβ agonist, OSU-ERb-12,
once at the beginning and further cultured for 7 days. The cells were then washed with PBS,
fixed with 3.7% formaldehyde for 30 min and stained with 1.0% Methylene Blue for 60 min.
The plates were dried after rinsing under running water. We added 100 µL of dissolving
solution (10% acetic acid, 50% methanol in water) to each well to dissolve the cells.

The absorbance was read at 609 nm. The vehicle-treated cells were set to 100% to
calculate the relative cell viability. OV39 organoids were seeded at 10,000 cells/well in
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75% Matrigel in a 96-well plate and treated with different concentrations of OSU-ERb-12
for 7 days. The Promega 3D cell titer Glo luminescent cell viability assay kit (Cat. No.
G7571, Madison, WI, USA) was used to determine the relative cell viability following the
manufacturer’s protocol.

2.4. RNA Isolation and qPCR Analysis

The total RNA was extracted using TRIzol reagent (ThermoFisher Scientific, Carlsbad,
CA, USA), and reverse transcription was performed to generate cDNA using the Promega
Reverse Transcription System (Promega, Cat. No: A3500) in a 20 µL reaction containing
2 µg of total RNA. A 0.5 µL aliquot of cDNA was amplified by Fast SYBR Green Master
Mix (Applied Biosystems, Bedford, MA, USA. Cat. No: 43858610) in each 20 µL reaction.
PCR reactions were run on the QuantStudio 3 Real-Time PCR system (Applied Biosystems).
The primers used for the real-time RT-PCR are listed in Table 1.

Table 1. Sequences of the primers used in this study.

Genes Forward Reverse

Nanog 5′-GTCCCAAAGGCAAACAACCC-3′ 5′-TTGACCGGGACCTTGTCTTC-3′

Sox2 5′-TCAGGAGTTGTCAAGGCAGAG-3′ 5′-GGCAGCAAACTACTTTCCCC-3′

Oct4 5′-TCGCAAGCCCTCATTTCACC-3′ 5′-CGAGAAGGCGAAATCCGAAG-3′

ESR1 5′-GCTACGAAGTGGAATGATGAAAG-3′ 5′-TCTGGCGCTTGTGTTTCAAC-3′

ESR2 5′-ACTTGCTGAACGCCGTGACC-3′ 5′-CAGATGTTCCATGCCCTTGTT-3′

GAPDH 5′-GAAGGTGAAGGTCGGAGT-3′ 5′-GAAGATGGTGATGGGATTTC-3′

CCND1 5′-GGGTTGTGCTACAGATGATAGAG-3′ 5′-GAGGTGACTTCAGCCATGAATA-3′

NRIP1 5′-CTCCAAGAATGGTCTGCTAAGT-3′ 5′-GGTTAAGCAAGGACCCATACA-3′

2.5. Immunoblotting

Whole-cell lysates were prepared by boiling the cell pellets for 15 min in SDS ly-
sis buffer (2% (w/v) SDS, 10% (v/v) glycerol, 62 mM Tris-HCl, pH 6.8 and a complete
miniprotease inhibitor mixture (Roche Applied Sciences, Indianapolis, IN, USA)). Pro-
tein quantification was performed using a Bio-Rad DC protein assay kit. Equal amounts
of protein were loaded and separated on a polyacrylamide gel. The proteins on the gel
were transferred to a nitrocellulose membrane, blocked with 5% nonfat milk in TBST and
incubated with appropriate antibodies (Table 2) at 4 ◦C overnight.

Table 2. Antibodies used in the study.

Antibody Catalog Number Company Dilution Factor

Anti-ERα #8644S Cell Signaling Technology 1:500

Anti-ERß N/A Ohio State University 1:500

Anti-cPARP #9546S Cell Signaling Technology 1:1000

Anti-GAPDH #Sc-365062 Santa Cruz Biotechnology 1:2000

Anti-Tubulin #2144S Cell Signaling Technology 1:2000

Anti-E-Cadherin #610077 BD Transduction Laboratories 1:1000

Anti-Snail #3879S Cell Signaling Technology 1:1000

After extensive washing, the membrane was incubated with the goat anti-rabbit or
goat anti-mouse antibodies conjugated with HPR (Millipore Sigma, Cat. No. 12-348,
12-349) for 1 h at room temperature. After washing, the protein bands were detected
with chemiluminescence. The band intensity was further quantitated using Image J and
normalized by the loading control. The relative protein amount was further calculated by
comparing it to the corresponding control group.
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2.6. Immunofluorescence

Ovarian cancer cells were treated with 5 ng/mL TGFβ and 10 µM of OSU-ERb-12
individually and in combination (OSU-ERb-12 followed by TGFβ). The cells were then
fixed and permeabilized with 2% paraformaldehyde and 0.5% Triton X-100. After blocking
with 20% normal goat serum, the cells were incubated with mouse anti-E-Cadherin (1:100)
for 1 h at room temperature, washed with TBST four times and then incubated with
goat anti-mouse IgG conjugated with FITC. Fluorescence images were obtained using the
Revolve fluorescent microscope (ECHO, San Diego, CA, USA).

2.7. Transwell Migration and Invasion Assays

Transwell migration and invasion assays were performed using Corning Transwell
inserts with or without matrigel (Corning Costar, Glendale, AZ, USA). Specifically, about
5× 104 PEO1 cells and 3× 104 OVCAR3 cells were seeded in the inserts in 500 µL of media,
and the inserts were gently placed in each well of a 24-well plate containing 700 µL of
media supplemented with vehicle control or 10 µM of OSU-ERb-12 for 72 h at 37 ◦C and 5%
CO2. The experiment was performed in triplicates. The inserts containing the invaded and
migrated cells on the underside of the filters were stained with Crystal Violet for 45 min at
room temperature, rinsed with water to remove the excess stain, air dried, observed under
microscope (40×) and counted.

2.8. ALDH Analysis

ALDH+ cells were analyzed and sorted with the ALDEFLUOR Kit (STEMCELL Tech-
nologies, Cambridge, MA, USA) using fluorescence-activated cell sorting (FACS) with
a flow cytometer (BD Aria III). For each sample, one-half of the cells were treated with
50 mmol/L diethylaminobenzaldehyde (DEAB) to define negative gates.

2.9. CD44/CD117 Analysis

Anti–CD117-PE and anti–CD44-FITC antibodies (BD Pharmingen, San Diego, CA,
USA) were used for FACS analyses. Briefly, the cells were incubated with antibodies on ice
for 40 min in the dark. After washing with cold PBS, the cells were resuspended in 200 µL
PBS and subjected to FACS analyses on a BD FACS Aria III flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA).

2.10. Small Interference RNA (siRNA) Transfection

siGENOME human ESR1 ON-TARGET plus SMARTpool siRNA (Cat. No. L-003401-
00-0005) and non-targeting control siRNA (5′-UUC UCC GAA CGU GUC ACG UdTdT-3′)
were purchased from Horizon Discovery (Lafayette, CO, USA). siRNA Control, and siESR1
(100 nM) were transfected into cells using Lipofectamine 2000 (Life Technologies, Carlsbad,
CA, USA).

2.11. Sphere Forming Assay

A total of 1000 cells were mixed with semisolid media (MethoCult H4100; STEMCELL
Technologies) containing 3D Tumorosphere Medium XF medium (PromoCell, Heidelberg,
Germany) and seeded in six-well Ultra-Low Attachment plates (Corning). Sphere formation
was assessed after 12 days of culture. To evaluate the frequency of sphere-forming cells
(SFCf), cells were plated in ultra-low attachment 96-well plates in a limiting dilution
manner (1, 5, 10 and 20 cells/well) using FACS. Cells were cultured in the above-mentioned
medium for 12 days. The number of wells containing spheres was counted, and the SFCf
was calculated using the ELDA software (http://bioinf.wehi.edu.au/software/elda/index.
html, accessed on 22 April 2021).

2.12. Animal Study

NSG mice (6–8 weeks, female; 20–25 g body weight) were obtained from The Jackson
Laboratory (Bar Harbor, ME, USA). Animal care was in accordance with the institutional

http://bioinf.wehi.edu.au/software/elda/index.html
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guidelines, and all studies were performed with the approval of the Institutional Animal
Care and Use Committee at Ohio State University. To determine the effect of the novel
ERβ agonist OSU-ERb-12 on tumor growth in vivo, small pieces of the ovarian papillary
serous adenocarcinoma PDX tissue (TM00335), obtained from the Jackson Laboratory, were
implanted subcutaneously into the flank of NSG mice.

When tumors from all the animals were almost 1 cm, they were subdivided into three
subgroups, one group being orally dosed with vehicle control, the second group with
10 mg/kg OSU-ERb-12 and the third group with 100 mg/kg OSU-ERb-12. The animals
were dosed with the help of an oral gavage every day for 19 days, and the tumor sizes were
measured using a vernier-caliper every alternate day. The bodyweight of the animals was
also recorded. At the end of the experiment, the mice were euthanized, and tumor tissues
were removed for the isolation of tumor cells, which were analyzed for ALDH activity
using the aforementioned method.

2.13. Statistical Analysis

Descriptive statistics, i.e., the means± SD, are shown in the figures. Two sample t-tests
or ANOVA were performed for data analysis for experiments with two groups or more
than two groups’ comparisons respectively for independent data. The linear mixed-effects
model was used to compare the tumor growth rates to take account of the correlations
among observations from the same animal. Holm’s procedure was used to adjust for
multiple comparisons when needed. For all statistical testing, p < 0.05 was considered
statistically significant. All tests were two-sided.

3. Results
3.1. ERβ Agonist OSU-ERb-12 Is Able to Suppress Ovarian Cancer Cell Proliferation

OSU-ERb-12 is a newly developed ERβ agonist that demonstrates highly selective
ERβ activation [20]. To test the cytotoxic effect of OSU-ERb-12 on ovarian cancer cells,
we treated a panel of ovarian cancer cell lines with OSU-ERb-12, cultured cells in the
continuous presence of OSU-ERb-12 for 7 days and determined the cell viability. We found
that OSU-ERb-12 could decrease the cell viability in a dose-dependent manner with IC50
ranging from 7.28 to 15.36 µM (Figure 1A).

In addition, we isolated primary tumor cells from freshly removed HGSOC tumor
tissue and cultured them as organoids. We found that OSU-ERb-12 is also effective in the
inhibition of organoid growth, with a similar IC50 (12.89 µM) (Figure 1A). These results
indicate that OSU-ERb-12 exhibits cytotoxicity in ovarian cancer cells in vitro.

It has been shown that ERα plays a critical role in cancer cell survival and proliferation,
and the tumor suppressor function of ERβ could be mediated via the inhibition of the
ERα function [12]. To determine whether the effect of OSU-ERb-12 on ovarian cancer cell
expansion is related to the expression level of ERα and ERβ, we evaluated the ERα and
ERβ expression in these ovarian cancer cells at both the mRNA and protein levels.

We identified a huge range of ERα expression but a relatively small range of ERβ
expression in these ovarian cancer cell lines (Supplementary Figure S1A–D). Given that
OSU-ERb-12 can inhibit cell expansion in all cancer cell lines tested in this study at a
similar efficacy, these results indicate that the killing of ovarian cancer cells by OSU-ERb-12
is independent of ERα expression. In support of this, knockdown of ERα in PEO1 and
OV2008 cells, two cell lines with high ERα expression, did not show any changes in their
sensitivity to OSU-E Rb-12 (Supplementary Figure S1E–H).

To determine whether OSU-ERb-12 can inhibit tumor growth in vivo, we generated
PDXs of HGSOC in NSG mice and treated tumor-bearing mice with two doses of OSU-
ERb-12 for 19 days. We found that both 10 mg/kg and 100 mg/kg OSU-ERb-12 treatment
significantly inhibited tumor growth (Figure 1B) without significantly affecting the body
weights of mice (Figure 1C). Taken together, these results indicate that OSU-ERb-12 can
suppress ovarian cancer cell proliferation both in vitro and in vivo.
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Figure 1. ERβ agonist OSU-ERb-12 suppresses ovarian cancer cell proliferation both in vitro and
in vivo. (A) OSU-ERb-12 treatment reduced the cell viability of ovarian cancer cells. A panel of
ovarian cancer cell lines and organoid cultured primary ovarian tumor cells were treated with OSU-
ERb-12 at different doses for 7 days. The cell viability was determined using the methylene blue
assay. n = 5, bar: SD. (B,C) OSU-ERb-12 suppressed ovarian tumor growth in vivo. The PDX model
was generated through the engraftment of ovarian papillary serous adenocarcinoma tumor tissues
(TM00335) into NSG mice. Mice were treated with vehicle control (n = 7), OSU-ERb-12 at 10 mg/kg
(n = 7), or OSU-ERb-12 at 100 mg/kg (n = 5) once every day for 19 days. Tumor volumes (B) and
mice weights (C) were monitored. Bar: SD. ** p < 0.01 compared to vehicle control.

3.2. ERβ Agonist OSU-ERb-12 Reduces the CSC Population in Ovarian Cancer Cells

The suppression of tumor growth might not eliminate the tumor due to the potential
recurrence as a result of CSC enrichment. It has been reported that ERβ is upregulated in
breast CSCs and plays a role in the maintenance of stemness properties in these cells [25].
Thus, we wanted to know whether the activation of ERβ by OSU-ERb-12 affects the CSC
population in ovarian tumors while inhibiting tumor growth. ALDH+ cells are considered
CSCs in many tumors, including ovarian cancer [26–28]. We isolated tumor cells from PDXs
that were treated with OSU-ERb-12 or vehicle control as aforementioned and analyzed the
percentage of ALDH+ cells in these PDXs using FACS to reflect changes in the abundance
of CSCs.

Surprisingly, we did not see any increase in the ALDH+ cell population in PDXs treated
with OSU-ERb-12; instead, OSU-ERb-12 treatment significantly reduced the abundance
of CSCs in these PDXs (Figure 2A,B). We further confirmed this finding in a panel of
ovarian cancer cell lines and an HGSOC PDX cell line treated with OSU-ERb-12 in vitro.
We found that OSU-ERb-12 treatment unanimously reduced the ALDH+ cell population
(Figure 2C–F). In addition, OSU-ERb-12 was also able to reduce the CSC population
characterized by CD44+CD117+ [29] (Supplementary data, Figure S2).
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3.3. ERβ Agonist OSU-ERb-12 Suppresses the Dedifferentiation of Ovarian Cancer Cells 
The abundance of the CSC subpopulation in a tumor can be regulated by CSC differ-

entiation and non-CSC dedifferentiation [30]. To understand whether OSU-ERb-12 is able 
to promote CSC differentiation, we enriched CSCs from ovarian cancer cells by spheroid 
cultures and treated these cells with OSU-ERb-12. We did not notice a significant reduc-
tion in the self-renewal ability of these sphere cells (Supplementary Figure S3A,B), indi-
cating that OSU-ERb-12 does not significantly affect the CSC properties. We then at-
tempted to ascertain whether OSU-ERb-12 is able to inhibit cancer cell dedifferentiation.  

Figure 2. ERβ agonist OSU-ERb-12 reduces the CSC population in ovarian cancer cells. (A,B) OSU-
ERb-12 treatment reduced ALDH+ cells in PDXs in vivo. ALDH+ cells in primary ovarian tumor
cells isolated from PDXs described in Figure 2 were analyzed using the ALDEFLUOR assay with
flow cytometry. n = 3, bar: SD. * p < 0.05. (C–F) OSU-ERb-12 treatment reduced ALDH+ cells in
ovarian cancer cells in vitro. A panel of ovarian cancer cell lines and in vitro cultured primary tumor
cells isolated from PDX-2414 were treated with OSU-ERb-12 for 72 h. ALDH+ cells were analyzed
as described in (A). n = 3, bar: SD. ** p< 0.01. (G–H) OSU-ERb-12 treatment inhibited the sphere
formation ability of ovarian cancer cells. OVCAR3 and OVCAR4 cells were treated with OSU-ERb-12
for 72 h; their sphere formation ability was determined using a spheroid culture with limiting dilution
assay. The sphere forming cell frequency (SFCf) was calculated. n = 24.

Furthermore, we assessed the self-renewal ability of these cells by determining the
frequency of sphere-forming cells (SFCf) with a limited dilution assay. We found that
OSU-ERb-12 treated OVCAR3 and OVCAR4 cells showed a significantly lower SFCf than
vehicle control (Figure 2G,H). Taken together, these data indicate that the activation of
ERβ by OSU-ERb-12 could reduce, rather than increase, the CSC subpopulation in ovarian
cancer cells.

3.3. ERβ Agonist OSU-ERb-12 Suppresses the Dedifferentiation of Ovarian Cancer Cells

The abundance of the CSC subpopulation in a tumor can be regulated by CSC differ-
entiation and non-CSC dedifferentiation [30]. To understand whether OSU-ERb-12 is able
to promote CSC differentiation, we enriched CSCs from ovarian cancer cells by spheroid
cultures and treated these cells with OSU-ERb-12. We did not notice a significant reduction
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in the self-renewal ability of these sphere cells (Supplementary Figure S3A,B), indicating
that OSU-ERb-12 does not significantly affect the CSC properties. We then attempted to
ascertain whether OSU-ERb-12 is able to inhibit cancer cell dedifferentiation.

We used ALDH+ cells to represent CSCs and ALDH− cells to represent non-CSCs
and analyzed the conversion of ALDH− cells to ALDH+ cells to represent cancer cell
dedifferentiation (Figure 3A). We first isolated ALDH− cells from OVCAR3 and OVCAR4
cells using FACS, cultured them in the presence or absence of OSU-ERb-12 for 7 days and
measured the emergence of ALDH+ cells.
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Figure 3. ERβ agonist OSU-ERb-12 suppresses the dedifferentiation of ovarian cancer cells.
(A) Schematic diagram of experiments designed to analyze cancer cell dedifferentiation.
(B–E) OSU-ERb-12 treatment suppressed the conversion of ALDH− cells to ALDH+ cells. ALDH−

cells were sorted from OVCAR3 (B,C) and OVCAR4 (D,E) cells using the ALDEFLUOR assay and
further cultured in the presence or absence of OSU-ERb-12 (10 µM) for 7 days. The percentage of
ALDH+ cells were further analyzed using the ALDEFLUOR assay with flow cytometry. n = 3, bar:
SD, ** p < 0.01.

As expected, ALDH− cells can convert to ALDH+ cells during culture, demonstrating
the existence of cancer cell plasticity and cancer cell dedifferentiation in these ovarian
cancer cell lines. OSU-ERb-12 treatment can significantly inhibit such ALDH−-to-ALDH+

cell conversion in both cell lines (Figure 3B–E), indicating that OSU-ERb-12 reduces the
abundance of the CSC subpopulation by compromising cancer cell dedifferentiation.

3.4. ERβ Agonist OSU-ERb-12 Inhibits EMT in Ovarian Cancer Cells

Cancer cells can acquire CSC properties via EMT [23,30]. Given that ERβ can serve as a
keeper of epithelial phenotype and a repressor of metastasis [31], we reasoned that OSU-ERb-
12 could inhibit EMT by augmenting the function of ERβ. To test this hypothesis, we treated
the EOC cell lines PEO1, OVCAR3 and OVCAR4 with 10 µM of OSU-ERb-12 for different
periods and determined the expression of the epithelial marker E-Cadherin (E–Cad) and an
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EMT transcription factor Snail. As expected, OSU-ERb-12 caused an increase in E-Cadherin
and a decrease in Snail expression in all three cell lines (Figure 4A–C). These data indicate that
the ERβ agonist OSU-ERb-12 is able to suppress spontaneous EMT in ovarian cancer cells.
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duced EMT, we treated OVCAR3 and PEO1 cells with 5 ng/mL TGFβ for 6 h, followed by 

Figure 4. ERβ agonist OSU-ERb-12 inhibits EMT in ovarian cancer cells. (A–C) OSU-ERb-12 treatment
altered expression of EMT markers. PEO1 (A) was treated with OSU-ERb-12 at 10 µM for 5 days,
OVCAR3 (B) and OVCAR4 (C) cells were treated with OSU-ERb-12 at 10 µM for the indicated time
periods, and immunoblotting was conducted to determine the expression of E-Cad and Snail. Arrow:
Specific E-Cad band. (D–F) OSU-ERb-12 treatment offset TGFβ-induced EMT. OVCAR3 and PEO1
cells were treated with TGFβ (5 ng/mL) for 6 h, followed by treatment with OSU-ERb-12 (10 µM)
for 24 h. Immunofluorescent analysis was conducted to determine the expression of E-Cad (D).
immunoblotting was conducted to determine the protein expression of Snail (E,F). (G,H) OSU-ERb-12
treatment inhibited the migration and invasion ability of ovarian cancer cells. OVCAR3 and PEO1
cells were treated with 10 µM of OSU-ERb-12 for 72 h. The migration ability (G) and the invasion
ability (H) of these cells were determined using the transwell migration assay and transwell invasion
assay, respectively. The number of migrated or invaded cells were counted, and the relative number
of migrated cells were calculated. n = 3, bar: SD, ** p < 0.01 compared to the control. The band
intensity of the EMT proteins was quantitated and normalized by that of GAPDH or Tubulin. The
relative protein amount was further calculated by comparing to the corresponding control group.
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It is well known that EMT in cancer cells residing in the tumor microenvironment can
be triggered by TGFβ. To investigate whether OSU-ERb-12 can also inhibit TGFβ-induced
EMT, we treated OVCAR3 and PEO1 cells with 5 ng/mL TGFβ for 6 h, followed by treat-
ment with OSU-ERb-12 for 24 h. The epithelial marker E-Cad in these cells was visualized
using Immunofluorescence. As expected, TGFβ treatment can efficiently induce EMT,
reflected by reduced E-Cad signal in treated cells. However, treatment with OSU-ERb-12
can block TGFβ-induced alteration of E-Cad (Figure 4D). In addition, we also demonstrated
that OSU-ERb-12 could inhibit TGFβ-induced Snail expression (Figure 4E,F), suggesting
that the ERβ agonist OSU-ERb-12 might block EMT by suppressing the expression of the
EMT transcription factor Snail.

The EMT can enhance the migration and invasion ability of cancer cells. To further
validate the effect of OSU-ERb-12 on the EMT in ovarian cancer cells, we analyzed the
ability of migration and invasion of ovarian cancer cells following OSU-ERb-12 treatment.
The transwell migration assay clearly showed that OSU-ERb-12 can significantly inhibit
the migration ability of OVCAR3 and PEO1 cells (Figure 4G). In addition, the transwell
invasion assay also showed a significant inhibition of cell invasion when these cells were
treated with OSU-ERb-12 (Figure 4H). These results further demonstrated that the ERβ
agonist OSU-ERb-12 can inhibit EMT functionally.

3.5. ERβ Agonist OSU-ERb-12 Limits the CSC Population by Blocking the Function of ERα

ERβ can function as an antagonist to ERα to repress its transactivity [32]. Given
that estrogen can enhance EMT in prostate cancer cells by activating ERα [33] and that
EMT facilitates the generation of CSCs, we reasoned that ERβ agonists may limit the CSC
population by inhibiting the ERα function. To test this hypothesis, we first examined
whether ERα is involved in the expansion of CSCs. We treated a panel of ovarian cancer cell
lines with the ERα selective agonist PPT and determined the CSC population characterized
by the high ALDH activity. We found that PPT treatment can significantly increase the
abundance of ALDH+ cells (Figure 5A,B).

We also determined the effect of ERα activation on the self-renewal ability of ovar-
ian cancer cells. Similarly, in addition to the changes in ALDH+ cells, ERα agonist PPT
also significantly increased the sphere formation ability of both OVCAR3 and PEO1 cells
(Figure 5C,D). Furthermore, knockdown of ERα by transfecting PEO1 and OV2008 cells with
ERα siRNA inhibited the sphere formation ability of these cell lines as well (Figure 5E–H).
These results indicate that ERα is critical to the maintenance of the CSC population in ovarian
cancer. Next, we examined whether the ERβ agonist OSU-ERb-12 can suppress the expression
and/or transactivity of ERα.

We treated ovarian cancer cell lines with OSU-ERb-12 and determined the ERα protein
level and expression of two ERα target genes, CCND1 and NRIP1 [34]. We found that OSU-
ERb-12 does not reduce the expression of ERα (Supplementary Figure S4). Instead, OSU-
ERb-12 significantly reduces the mRNA level of ERα target genes (Figure 5I,J), indicating
that OSU-ERb-12 can suppress the transactivity of ERα. These results suggest that, whereas
OSU-ERb-12’s effects on cell growth inhibition is ERα independent, its effects on the CSC
subpopulation appear to be linked to the ERα activity.
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Figure 5. ERβ agonist OSU-ERb-12 reduces the CSC population by antagonizing the function of ERα.
(A,B) ERα agonist PPT expanded ALDH+ cells in ovarian cancer cells. OVCAR3 (A) and OV2008 (B)
cell lines were treated with ERα agonist PPT (10 µM) for 72 h. ALDH+ cells were determined using
the ALDEFLUORE assay. (C,D) ERα agonist PPT enhanced the sphere formation ability of ovarian
cancer cells. OVCAR3 (C) and PEO1 (D) cell lines were treated with PPT (10 µM) for 72 h. Their
sphere formation ability was determined using the spheroid culture assay. n = 3, bar: SD. * p < 0.05;
** p< 0.01. (E–H) Downregulation of ERα reduced the sphere formation ability of ovarian cancer cells.
PEO1 (E,F) and OV2008 (G,H) cells were transfected with ERα siRNA for 48 h. The expression of
ERα in these cells was determined using immunoblotting (E,G). Their sphere formation ability was
determined using a spheroid culture with limiting dilution assay (F,H). (I,J) OSU-ERb-12 inhibited
the transactivity of ERα. OVCAR3 (I) and PEO1 (J) cells were treated with OSU-ERb-12 at 10 µM for
24 h. Quantitative RT-PCR was conducted to examine the expression level of two ERα target genes.
n = 3, bar: SD. * p < 0.05; ** p< 0.01.

4. Discussion

ERβ has long been known as a tumor suppressor gene. Activation of ERβ by the use of
selective agonists has been proven to be therapeutically beneficial for ovarian cancer [12,35].
In this study, we tested the anti-tumor function of OSU-ERb-12 in ovarian cancer and
demonstrated that this compound is indeed able to suppress ovarian cancer cell expansion
and inhibit tumor growth. More interestingly, our data showed that ovarian cancer cell lines
with different ERα expression levels exhibit similar sensitivity to OSU-ERb-12-induced cell
growth inhibition, suggesting that this tumor-suppressive function is independent of ERα.
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Although the amino acid sequence of human ERα, and ERβ displays 97% sequence
identity in DNA-binding domains, there is only 54% identity in their ligand-binding domain
(LBD). OSU-ERb-12 is a derivative of para-carborane BE120 (compound 8) that can bind to
the LBD domain of ERβ with 201-fold ERβ selectivity over ERα [20]. As a 17β-estradiol
mimic, OSU-ERb-12 can specifically activate ERβ. After ligand binding, ERβ can form
either ERβ/ERβ homodimers to transactivate its target genes, or ERα/ERβ heterodimers
to inhibit the transactivity of ERα [36].

ERα has been associated with estrogen-dependent tumor growth and progression
by promoting the expression of genes associated with cell survival and proliferation [7].
In contrast, ERβ exhibits anti-proliferative and pro-apoptotic functions [8–11]. Generally,
the tumor-suppressive role of ERβ can be attributed to its suppression of the expression
and transactivity of ERα, thereby, blocking the cellular proliferative action of ERα [12,13].
For example, ectopic expression of ERβ in ERα positive ovarian cancer cell line BG-1
downregulated the ERα protein level and led to an inhibition of basal and estradiol-induced
cell proliferation as well as BG-1 cell-derived tumor xenograft growth [12].

ERβ can also suppress the expression of cell proliferation genes that are mainly
driven by ERα at the transcriptome level [13]. However, the cytotoxicity of OSU-ERb-12 is
independent of the expression level of ERα, indicating that activation of ERβ with OSU-
ERb-12 can specifically alter apoptosis-related genes, probably via direct regulation. This
is possible because the intrinsic differences in protein structure as well as their ability to
recruit different transcription coactivators determine the selective biological effects of ERα
and ERβ [37].

Indeed, it has been shown that ERβ can affect gene expression and signaling pathways
independent of ERα [13]. It is also likely that, although some cancer cells may have high
ERα expression levels, they may not have increased activated ERα due to limited ER
ligands, and thus the anti-apoptosis features in these cancer cells may not be attributed to
ERα. Thus, our results indicate that OSU-ERb-12 can also be used to treat ERα-negative
ovarian cancer, which accounts for 29–57% of ovarian cancer patients [38,39].

In addition to exhibiting cytotoxicity to ovarian cancer cells, OSU-ERb-12 was also
found to reduce the CSC population in ovarian cancer cells. This effect was observed in
multiple ovarian cancer cell lines, primary ovarian tumor cells isolated from patients, as
well as PDXs. The abundance of CSC subpopulation in tumors is mainly regulated by
CSC differentiation and non-CSC dedifferentiation. The inhibition of CSC differentiation
or/and enhancement of non-CSC dedifferentiation could expand the CSC subpopulation
in tumors [30].

Our results showed that OSU-ERb-12 reduces the CSC population mainly by blocking
non-CSC dedifferentiation and has little effect on the maintenance of CSC properties. Given
that CSCs can be generated by EMT-mediated non-CSC dedifferentiation [23] and that
OSU-ERb-12 is able to suppress both basic and inducible EMT in ovarian cancer cells, it is
likely that OSU-ERb-12 limits the CSC population in ovarian cancer mainly by inhibiting
the EMT.

The EMT can be mediated via ERα in multiple cancer types, including ovarian
cancer [7,31,33,40,41]. In addition, we demonstrated that activation of ERα by the ERα
agonist PPT can increase the CSC subpopulation in ovarian cancer cells. Thus, the mainte-
nance of CSC abundance in ovarian cancer can be attributed to ERα-mediated EMT, at least
partially. ERβ has been shown to inhibit the EMT, likely by antagonizing the expression
and transactivation of ERα.

For example, 17β-estradiol (E2) treatment can induce EMT in ERα positive BG-1
ovarian cancer cells via ERα activation, while overexpression of ERβ or treatment with
ERβ agonist DPN completely inhibited E2-induced EMT in these cells [7]. Our data also
showed that OSU-ERb-12 is able to suppress EMT in ovarian cancer cells, and OSU-ERb-12
is able to inhibit the transactivity of ERα. Thus, we believe that OSU-ERb-12 limits the CSC
population in ovarian cancer mainly by inhibiting the ERα-mediated EMT.
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However, we cannot exclude the possibility that ERβ agonist OSU-ERb-12 inhibits
EMT independently of ERα. As reported previously, ERβ is able to inhibit the EMT in
prostate cancer cells by destabilizing hypoxia-inducible factor 1α (HIFα), which is indepen-
dent of ERα [42]. Therefore, OSU-ERb-12 may also inhibit EMT by directly regulating the
expression of other EMT-regulating genes.

It has been reported previously that ERβ plays a critical role in the maintenance of
mammary stem cells (MSCs) and breast cancer stem cells (BCSCs); stimulation of ERβ by
ERβ agonist, DPN, in BCSCs increased their sphere formation ability, while the knockdown
of ERβ in BCSCs reduced sphere formation [25]. Our results seem to be different from this
report, as we did not see a significant impact of ERβ agonist OSU-ERb-12 on ovarian CSC
properties, including the expression of stem cell specific transcription factors and sphere
formation ability.

Instead, we clearly demonstrated an inhibitory effect of ERβ agonist OSU-ERb-12
on the de novo generation of CSCs from non-CSCs. The different functions of ERβ in
breast cancer and ovarian cancer regarding maintenance of the CSC population could be
attributed to the differences in cancer type.

5. Conclusions

In this study, we not only demonstrated the effective inhibition of ovarian cancer
expansion by the novel ERβ agonist OSU-ERb-12 but also showed that the activation of
ERβ by OSU-ERb-12 is able to deplete CSCs in ovarian cancer. Given that ERβ expression
significantly reduces with disease progression, activation of the ERβ function by use of the
specific agonist, OSU-ERb-12, could help limit the CSC subpopulation, thereby, eliminating
the source of tumor metastasis and recurrence.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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cells. Figure S2: ERβ agonist OSU-ERb-12 reduces the CSC population characterized by CD44+CD117+

in OVCAR3 cells. Figure S3: ERβ agonist OSU-ERb-12 does not affect the stemness of ovarian CSCs.
Figure S4: ERβ agonist OSU-ERb-12 does not affect the ERα protein level. Figures S5–S8: Uncropped
Western blotting images.
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